project64/Source/Project64/N64 System/Mips/Memory Virtual Mem.cpp

5531 lines
152 KiB
C++

/****************************************************************************
* *
* Project 64 - A Nintendo 64 emulator. *
* http://www.pj64-emu.com/ *
* Copyright (C) 2012 Project64. All rights reserved. *
* *
* License: *
* GNU/GPLv2 http://www.gnu.org/licenses/gpl-2.0.html *
* *
****************************************************************************/
#include "stdafx.h"
DWORD RegModValue;
BYTE * CMipsMemoryVM::m_Reserve1 = NULL;
BYTE * CMipsMemoryVM::m_Reserve2 = NULL;
CMipsMemoryVM::CMipsMemoryVM( CMipsMemory_CallBack * CallBack, bool SavesReadOnly ) :
CPifRam(SavesReadOnly),
CFlashram(SavesReadOnly),
CSram(SavesReadOnly),
CDMA(*this,*this),
m_CBClass(CallBack),
m_TLB_ReadMap(NULL),
m_TLB_WriteMap(NULL),
m_RomMapped(false),
m_Rom(NULL),
m_RomSize(0),
m_RomWrittenTo(false),
m_RomWroteValue(0),
m_HalfLine(0),
m_HalfLineCheck(false),
m_FieldSerration(0),
m_TempValue(0)
{
g_Settings->RegisterChangeCB(Game_RDRamSize,this,(CSettings::SettingChangedFunc)RdramChanged);
m_RDRAM = NULL;
m_DMEM = NULL;
m_IMEM = NULL;
}
CMipsMemoryVM::~CMipsMemoryVM()
{
g_Settings->UnregisterChangeCB(Game_RDRamSize,this,(CSettings::SettingChangedFunc)RdramChanged);
FreeMemory();
}
void CMipsMemoryVM::Reset( bool /*EraseMemory*/ )
{
if (m_TLB_ReadMap)
{
memset(m_TLB_ReadMap,0,(0xFFFFF * sizeof(DWORD)));
memset(m_TLB_WriteMap,0,(0xFFFFF * sizeof(DWORD)));
for (DWORD address = 0x80000000; address < 0xC0000000; address += 0x1000)
{
m_TLB_ReadMap[address >> 12] = ((DWORD)m_RDRAM + (address & 0x1FFFFFFF)) - address;
m_TLB_WriteMap[address >> 12] = ((DWORD)m_RDRAM + (address & 0x1FFFFFFF)) - address;
}
if (g_Settings->LoadDword(Rdb_TLB_VAddrStart) != 0)
{
DWORD Start = g_Settings->LoadDword(Rdb_TLB_VAddrStart); //0x7F000000;
DWORD Len = g_Settings->LoadDword(Rdb_TLB_VAddrLen); //0x01000000;
DWORD PAddr = g_Settings->LoadDword(Rdb_TLB_PAddrStart); //0x10034b30;
DWORD End = Start + Len;
for (DWORD address = Start; address < End; address += 0x1000)
{
m_TLB_ReadMap[address >> 12] = ((DWORD)m_RDRAM + (address - Start + PAddr)) - address;
m_TLB_WriteMap[address >> 12] = ((DWORD)m_RDRAM + (address - Start + PAddr)) - address;
}
}
}
}
void CMipsMemoryVM::ReserveMemory()
{
m_Reserve1 = (unsigned char *) VirtualAlloc( NULL, 0x20000000, MEM_RESERVE | MEM_TOP_DOWN, PAGE_READWRITE );
if (g_Settings->LoadBool(Debugger_Enabled))
{
m_Reserve2 = (unsigned char *) VirtualAlloc( NULL, 0x20000000, MEM_RESERVE | MEM_TOP_DOWN, PAGE_READWRITE );
}
}
void CMipsMemoryVM::FreeReservedMemory()
{
if (m_Reserve1)
{
VirtualFree( m_Reserve1, 0 , MEM_RELEASE);
m_Reserve1 = NULL;
}
if (m_Reserve2)
{
VirtualFree( m_Reserve2, 0 , MEM_RELEASE);
m_Reserve2 = NULL;
}
}
bool CMipsMemoryVM::Initialize()
{
if (m_RDRAM != NULL)
{
return true;
}
if (m_Reserve1)
{
m_RDRAM = m_Reserve1; m_Reserve1 = NULL;
}
if (m_RDRAM == NULL && m_Reserve2)
{
m_RDRAM = m_Reserve2; m_Reserve2 = NULL;
}
if (m_RDRAM == NULL)
{
m_RDRAM = (unsigned char *) VirtualAlloc( NULL, 0x20000000, MEM_RESERVE | MEM_TOP_DOWN, PAGE_READWRITE );
}
if ( m_RDRAM == NULL )
{
WriteTraceF(TraceError,__FUNCTION__ ": Failed to Reserve RDRAM (Size: 0x%X)",0x20000000);
FreeMemory();
return false;
}
m_AllocatedRdramSize = g_Settings->LoadDword(Game_RDRamSize);
if (VirtualAlloc(m_RDRAM, m_AllocatedRdramSize, MEM_COMMIT, PAGE_READWRITE)==NULL)
{
WriteTraceF(TraceError,__FUNCTION__ ": Failed to Allocate RDRAM (Size: 0x%X)",m_AllocatedRdramSize);
FreeMemory();
return false;
}
if (VirtualAlloc(m_RDRAM + 0x04000000, 0x2000, MEM_COMMIT, PAGE_READWRITE)==NULL)
{
WriteTraceF(TraceError,__FUNCTION__ ": Failed to Allocate DMEM/IMEM (Size: 0x%X)",0x2000);
FreeMemory();
return false;
}
m_DMEM = (unsigned char *)(m_RDRAM+0x04000000);
m_IMEM = (unsigned char *)(m_RDRAM+0x04001000);
if (g_Settings->LoadBool(Game_LoadRomToMemory))
{
m_RomMapped = true;
m_Rom = m_RDRAM + 0x10000000;
m_RomSize = g_Rom->GetRomSize();
if (VirtualAlloc(m_Rom, g_Rom->GetRomSize(), MEM_COMMIT, PAGE_READWRITE)==NULL)
{
WriteTraceF(TraceError,__FUNCTION__ ": Failed to Allocate Rom (Size: 0x%X)",g_Rom->GetRomSize());
FreeMemory();
return false;
}
memcpy(m_Rom,g_Rom->GetRomAddress(),g_Rom->GetRomSize());
DWORD OldProtect;
VirtualProtect(m_Rom,g_Rom->GetRomSize(),PAGE_READONLY, &OldProtect);
}
else
{
m_RomMapped = false;
m_Rom = g_Rom->GetRomAddress();
m_RomSize = g_Rom->GetRomSize();
}
CPifRam::Reset();
m_TLB_ReadMap = (DWORD *)VirtualAlloc(NULL,0xFFFFF * sizeof(DWORD),MEM_RESERVE|MEM_COMMIT,PAGE_READWRITE);
if (m_TLB_ReadMap == NULL)
{
WriteTraceF(TraceError,__FUNCTION__ ": Failed to Allocate m_TLB_ReadMap (Size: 0x%X)",0xFFFFF * sizeof(DWORD));
FreeMemory();
return false;
}
m_TLB_WriteMap = (DWORD *)VirtualAlloc(NULL,0xFFFFF * sizeof(DWORD),MEM_RESERVE|MEM_COMMIT,PAGE_READWRITE);
if (m_TLB_WriteMap == NULL)
{
WriteTraceF(TraceError,__FUNCTION__ ": Failed to Allocate m_TLB_ReadMap (Size: 0x%X)",0xFFFFF * sizeof(DWORD));
FreeMemory();
return false;
}
Reset(false);
return true;
}
void CMipsMemoryVM::FreeMemory()
{
if (m_RDRAM)
{
if (VirtualFree( m_RDRAM, 0x20000000,MEM_DECOMMIT) != 0)
{
if (m_Reserve1 == NULL)
{
m_Reserve1 = m_RDRAM;
}
else if (m_Reserve2 == NULL)
{
m_Reserve2 = m_RDRAM;
}
else
{
VirtualFree( m_RDRAM, 0 , MEM_RELEASE);
}
} else {
VirtualFree( m_RDRAM, 0 , MEM_RELEASE);
}
m_RDRAM = NULL;
m_IMEM = NULL;
m_DMEM = NULL;
}
if (m_TLB_ReadMap)
{
VirtualFree( m_TLB_ReadMap, 0 , MEM_RELEASE);
m_TLB_ReadMap = NULL;
}
if (m_TLB_WriteMap)
{
VirtualFree( m_TLB_WriteMap, 0 , MEM_RELEASE);
m_TLB_WriteMap = NULL;
}
CPifRam::Reset();
}
BYTE * CMipsMemoryVM::Rdram()
{
return m_RDRAM;
}
DWORD CMipsMemoryVM::RdramSize()
{
return m_AllocatedRdramSize;
}
BYTE * CMipsMemoryVM::Dmem()
{
return m_DMEM;
}
BYTE * CMipsMemoryVM::Imem()
{
return m_IMEM;
}
BYTE * CMipsMemoryVM::PifRam()
{
return m_PifRam;
}
bool CMipsMemoryVM::LB_VAddr(DWORD VAddr, BYTE& Value)
{
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
Value = *(BYTE*)(m_TLB_ReadMap[VAddr >> 12] + (VAddr ^ 3));
return true;
}
bool CMipsMemoryVM::LH_VAddr(DWORD VAddr, WORD& Value)
{
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
Value = *(WORD*)(m_TLB_ReadMap[VAddr >> 12] + (VAddr ^ 2));
return true;
}
bool CMipsMemoryVM::LW_VAddr(DWORD VAddr, DWORD& Value)
{
if (VAddr >= 0xA3F00000 && VAddr < 0xC0000000)
{
if (VAddr < 0xA4000000 || VAddr >= 0xA4002000)
{
VAddr &= 0x1FFFFFFF;
LW_NonMemory(VAddr,&Value);
return true;
}
}
BYTE* BaseAddress = (BYTE*)m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == NULL)
{
return false;
}
Value = *(DWORD*)(BaseAddress + VAddr);
// if (LookUpMode == FuncFind_ChangeMemory)
// {
// g_Notify->BreakPoint(__FILEW__,__LINE__);
// if ( (Command.Hex >> 16) == 0x7C7C)
// {
// Command.Hex = OrigMem[(Command.Hex & 0xFFFF)].OriginalValue;
// }
// }
return true;
}
bool CMipsMemoryVM::LD_VAddr(DWORD VAddr, QWORD& Value)
{
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
*((DWORD*)(&Value) + 1) = *(DWORD*)(m_TLB_ReadMap[VAddr >> 12] + VAddr);
*((DWORD*)(&Value) + 0) = *(DWORD*)(m_TLB_ReadMap[VAddr >> 12] + VAddr + 4);
return true;
}
bool CMipsMemoryVM::LB_PAddr(DWORD PAddr, BYTE& Value)
{
if (PAddr < RdramSize())
{
Value = *(BYTE*)(m_RDRAM + (PAddr ^ 3));
return true;
}
if (PAddr > 0x18000000)
{
return false;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
return false;
}
bool CMipsMemoryVM::LH_PAddr(DWORD PAddr, WORD& Value)
{
if (PAddr < RdramSize())
{
Value = *(WORD*)(m_RDRAM + (PAddr ^ 2));
return true;
}
if (PAddr > 0x18000000)
{
return false;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
return false;
}
bool CMipsMemoryVM::LW_PAddr(DWORD PAddr, DWORD& Value)
{
if (PAddr < RdramSize())
{
Value = *(DWORD*)(m_RDRAM + PAddr);
return true;
}
if (PAddr > 0x18000000)
{
return false;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
return false;
}
bool CMipsMemoryVM::LD_PAddr(DWORD PAddr, QWORD& Value)
{
if (PAddr < RdramSize())
{
*((DWORD*)(&Value) + 1) = *(DWORD*)(m_RDRAM + PAddr);
*((DWORD*)(&Value) + 0) = *(DWORD*)(m_RDRAM + PAddr + 4);
return true;
}
if (PAddr > 0x18000000)
{
return false;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
return false;
}
bool CMipsMemoryVM::SB_VAddr(DWORD VAddr, BYTE Value)
{
if (m_TLB_WriteMap[VAddr >> 12] == 0)
{
return false;
}
*(BYTE*)(m_TLB_WriteMap[VAddr >> 12] + (VAddr ^ 3)) = Value;
return true;
}
bool CMipsMemoryVM::SH_VAddr(DWORD VAddr, WORD Value)
{
if (m_TLB_WriteMap[VAddr >> 12] == 0)
{
return false;
}
*(WORD*)(m_TLB_WriteMap[VAddr >> 12] + (VAddr ^ 2)) = Value;
return true;
}
bool CMipsMemoryVM::SW_VAddr(DWORD VAddr, DWORD Value)
{
if (VAddr >= 0xA3F00000 && VAddr < 0xC0000000)
{
if (VAddr < 0xA4000000 || VAddr >= 0xA4002000)
{
VAddr &= 0x1FFFFFFF;
SW_NonMemory(VAddr,Value);
return true;
}
}
if (m_TLB_WriteMap[VAddr >> 12] == 0)
{
return false;
}
*(DWORD*)(m_TLB_WriteMap[VAddr >> 12] + VAddr) = Value;
return true;
}
bool CMipsMemoryVM::SD_VAddr(DWORD VAddr, QWORD Value)
{
if (m_TLB_WriteMap[VAddr >> 12] == 0)
{
return false;
}
*(DWORD*)(m_TLB_WriteMap[VAddr >> 12] + VAddr + 0) = *((DWORD*)(&Value) + 1);
*(DWORD*)(m_TLB_WriteMap[VAddr >> 12] + VAddr + 4) = *((DWORD*)(&Value));
return true;
}
bool CMipsMemoryVM::SB_PAddr(DWORD PAddr, BYTE Value)
{
if (PAddr < RdramSize())
{
*(BYTE*)(m_RDRAM + (PAddr ^ 3)) = Value;
return true;
}
if (PAddr > 0x18000000)
{
return false;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
return false;
}
bool CMipsMemoryVM::SH_PAddr(DWORD PAddr, WORD Value)
{
if (PAddr < RdramSize())
{
*(WORD*)(m_RDRAM + (PAddr ^ 2)) = Value;
return true;
}
if (PAddr > 0x18000000)
{
return false;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
return false;
}
bool CMipsMemoryVM::SW_PAddr(DWORD PAddr, DWORD Value)
{
if (PAddr < RdramSize())
{
*(DWORD*)(m_RDRAM + PAddr) = Value;
return true;
}
if (PAddr > 0x18000000)
{
return false;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
return false;
}
bool CMipsMemoryVM::SD_PAddr(DWORD PAddr, QWORD Value)
{
if (PAddr < RdramSize())
{
*(DWORD*)(m_RDRAM + PAddr + 0) = *((DWORD*)(&Value) + 1);
*(DWORD*)(m_RDRAM + PAddr + 4) = *((DWORD*)(&Value));
return true;
}
if (PAddr > 0x18000000)
{
return false;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
return false;
}
bool CMipsMemoryVM::ValidVaddr ( DWORD VAddr ) const
{
return m_TLB_ReadMap[VAddr >> 12] != 0;
}
bool CMipsMemoryVM::VAddrToRealAddr ( DWORD VAddr, void * &RealAddress ) const
{
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
RealAddress = (BYTE *)(m_TLB_ReadMap[VAddr >> 12] + VAddr);
return true;
}
bool CMipsMemoryVM::TranslateVaddr ( DWORD VAddr, DWORD &PAddr) const
{
//Change the Virtual address to a Physical Address
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
PAddr = (DWORD)((BYTE *)(m_TLB_ReadMap[VAddr >> 12] + VAddr) - m_RDRAM);
return true;
}
void CMipsMemoryVM::Compile_LB(x86Reg Reg, DWORD VAddr, bool SignExtend)
{
DWORD PAddr;
char VarName[100];
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
if (!g_System->bUseTlb())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
return;
}
x86Reg TlbMappReg = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr >> 12,TlbMappReg);
x86Reg AddrReg = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr,AddrReg);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TlbMappReg,TlbMappReg,4);
CompileReadTLBMiss(AddrReg,TlbMappReg);
if (SignExtend)
{
MoveSxByteX86regPointerToX86reg(AddrReg, TlbMappReg,Reg);
}
else
{
MoveZxByteX86regPointerToX86reg(AddrReg, TlbMappReg,Reg);
}
return;
}
if (!TranslateVaddr(VAddr,PAddr))
{
MoveConstToX86reg(0,Reg);
CPU_Message("Compile_LB\nFailed to translate address %X",VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_LB\nFailed to translate address %X",VAddr);
}
return;
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
case 0x10000000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
if (SignExtend)
{
MoveSxVariableToX86regByte(PAddr + m_RDRAM,VarName,Reg);
}
else
{
MoveZxVariableToX86regByte(PAddr + m_RDRAM,VarName,Reg);
}
break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_LB\nFailed to compile address: %X",VAddr);
}
}
}
void CMipsMemoryVM::Compile_LH(x86Reg Reg, DWORD VAddr, bool SignExtend)
{
char VarName[100];
DWORD PAddr;
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
if (!g_System->bUseTlb())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
return;
}
x86Reg TlbMappReg = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr >> 12,TlbMappReg);
x86Reg AddrReg = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr,AddrReg);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TlbMappReg,TlbMappReg,4);
CompileReadTLBMiss(AddrReg,TlbMappReg);
if (SignExtend)
{
MoveSxHalfX86regPointerToX86reg(AddrReg, TlbMappReg,Reg);
}
else
{
MoveZxHalfX86regPointerToX86reg(AddrReg, TlbMappReg,Reg);
}
return;
}
if (!TranslateVaddr(VAddr, PAddr))
{
MoveConstToX86reg(0,Reg);
CPU_Message("Compile_LH\nFailed to translate address %X",VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_LH\nFailed to translate address %X",VAddr);
}
return;
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
case 0x10000000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
if (SignExtend)
{
MoveSxVariableToX86regHalf(PAddr + m_RDRAM,VarName,Reg);
}
else
{
MoveZxVariableToX86regHalf(PAddr + m_RDRAM,VarName,Reg);
}
break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_LHU\nFailed to compile address: %X",VAddr);
}
}
}
void CMipsMemoryVM::Compile_LW (x86Reg Reg, DWORD VAddr )
{
char VarName[100];
DWORD PAddr;
m_RegWorkingSet.SetX86Protected(Reg,true);
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
if (!g_System->bUseTlb())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
return;
}
x86Reg TlbMappReg = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr >> 12,TlbMappReg);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TlbMappReg,TlbMappReg,4);
CompileReadTLBMiss(VAddr,TlbMappReg);
AddConstToX86Reg(TlbMappReg,VAddr);
MoveX86PointerToX86reg(Reg,TlbMappReg);
}
else
{
if (!TranslateVaddr(VAddr, PAddr))
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveVariableToX86reg(PAddr + m_RDRAM,VarName,Reg);
break;
case 0x04000000:
if (PAddr < 0x04002000)
{
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveVariableToX86reg(PAddr + m_RDRAM,VarName,Reg);
break;
}
switch (PAddr)
{
case 0x04040010: MoveVariableToX86reg(&g_Reg->SP_STATUS_REG,"SP_STATUS_REG",Reg); break;
case 0x04040014: MoveVariableToX86reg(&g_Reg->SP_DMA_FULL_REG,"SP_DMA_FULL_REG",Reg); break;
case 0x04040018: MoveVariableToX86reg(&g_Reg->SP_DMA_BUSY_REG,"SP_DMA_BUSY_REG",Reg); break;
case 0x0404001C:
MoveVariableToX86reg(&g_Reg->SP_SEMAPHORE_REG,"SP_SEMAPHORE_REG",Reg);
MoveConstToVariable(1,&g_Reg->SP_SEMAPHORE_REG,"SP_SEMAPHORE_REG");
break;
case 0x04080000: MoveVariableToX86reg(&g_Reg->SP_PC_REG,"SP_PC_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(__FUNCTIONW__ L"\nFailed to translate address: %X",VAddr);
}
}
break;
case 0x04100000:
{
static DWORD TempValue = 0;
BeforeCallDirect(m_RegWorkingSet);
PushImm32("TempValue",(DWORD)&TempValue);
PushImm32(PAddr);
MoveConstToX86reg((ULONG)((CMipsMemoryVM *)this),x86_ECX);
Call_Direct(AddressOf(&CMipsMemoryVM::LW_NonMemory),"CMipsMemoryVM::LW_NonMemory");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&TempValue,"TempValue",Reg);
}
break;
case 0x04300000:
switch (PAddr)
{
case 0x04300000: MoveVariableToX86reg(&g_Reg->MI_MODE_REG,"MI_MODE_REG",Reg); break;
case 0x04300004: MoveVariableToX86reg(&g_Reg->MI_VERSION_REG,"MI_VERSION_REG",Reg); break;
case 0x04300008: MoveVariableToX86reg(&g_Reg->MI_INTR_REG,"MI_INTR_REG",Reg); break;
case 0x0430000C: MoveVariableToX86reg(&g_Reg->MI_INTR_MASK_REG,"MI_INTR_MASK_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(__FUNCTIONW__ L"\nFailed to translate address: %X",VAddr); }
}
break;
case 0x04400000:
switch (PAddr)
{
case 0x04400010:
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false, true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp());
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)this,x86_ECX);
Call_Direct(AddressOf(&CMipsMemoryVM::UpdateHalfLine),"CMipsMemoryVM::UpdateHalfLine");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&m_HalfLine,"m_HalfLine",Reg);
break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(__FUNCTIONW__ L"\nFailed to translate address: %X",VAddr);
}
}
break;
case 0x04500000: /* AI registers */
switch (PAddr)
{
case 0x04500004:
if (g_System->bFixedAudio())
{
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false, true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp());
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Audio,x86_ECX);
Call_Direct(AddressOf(&CAudio::GetLength),"CAudio::GetLength");
MoveX86regToVariable(x86_EAX,&m_TempValue,"m_TempValue");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&m_TempValue,"m_TempValue",Reg);
}
else
{
if (g_Plugins->Audio()->AiReadLength != NULL)
{
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(g_Plugins->Audio()->AiReadLength, "AiReadLength");
MoveX86regToVariable(x86_EAX,&m_TempValue,"m_TempValue");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&m_TempValue,"m_TempValue",Reg);
}
else
{
MoveConstToX86reg(0,Reg);
}
}
break;
case 0x0450000C:
if (g_System->bFixedAudio())
{
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Audio,x86_ECX);
Call_Direct(AddressOf(&CAudio::GetStatus),"GetStatus");
MoveX86regToVariable(x86_EAX,&m_TempValue,"m_TempValue");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&m_TempValue,"m_TempValue",Reg);
}
else
{
MoveVariableToX86reg(&g_Reg->AI_STATUS_REG,"AI_STATUS_REG",Reg);
}
break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(__FUNCTIONW__ L"\nFailed to translate address: %X",VAddr);
}
}
break;
case 0x04600000:
switch (PAddr)
{
case 0x04600010: MoveVariableToX86reg(&g_Reg->PI_STATUS_REG,"PI_STATUS_REG",Reg); break;
case 0x04600014: MoveVariableToX86reg(&g_Reg->PI_DOMAIN1_REG,"PI_DOMAIN1_REG",Reg); break;
case 0x04600018: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM1_PWD_REG,"PI_BSD_DOM1_PWD_REG",Reg); break;
case 0x0460001C: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM1_PGS_REG,"PI_BSD_DOM1_PGS_REG",Reg); break;
case 0x04600020: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM1_RLS_REG,"PI_BSD_DOM1_RLS_REG",Reg); break;
case 0x04600024: MoveVariableToX86reg(&g_Reg->PI_DOMAIN2_REG,"PI_DOMAIN2_REG",Reg); break;
case 0x04600028: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM2_PWD_REG,"PI_BSD_DOM2_PWD_REG",Reg); break;
case 0x0460002C: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM2_PGS_REG,"PI_BSD_DOM2_PGS_REG",Reg); break;
case 0x04600030: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM2_RLS_REG,"PI_BSD_DOM2_RLS_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(__FUNCTIONW__ L"\nFailed to translate address: %X",VAddr);
}
}
break;
case 0x04700000:
switch (PAddr)
{
case 0x0470000C: MoveVariableToX86reg(&g_Reg->RI_SELECT_REG,"RI_SELECT_REG",Reg); break;
case 0x04700010: MoveVariableToX86reg(&g_Reg->RI_REFRESH_REG,"RI_REFRESH_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(__FUNCTIONW__ L"\nFailed to translate address: %X",VAddr);
}
}
break;
case 0x04800000:
switch (PAddr)
{
case 0x04800018: MoveVariableToX86reg(&g_Reg->SI_STATUS_REG,"SI_STATUS_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(__FUNCTIONW__ L"\nFailed to translate address: %X",VAddr);
}
}
break;
case 0x1FC00000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveVariableToX86reg(PAddr + m_RDRAM,VarName,Reg);
break;
default:
if ((PAddr & 0xF0000000) == 0x10000000 && (PAddr - 0x10000000) < m_RomSize)
{
// read from rom
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveVariableToX86reg(PAddr + m_RDRAM,VarName,Reg);
}
else
{
MoveConstToX86reg(((PAddr & 0xFFFF) << 16) | (PAddr & 0xFFFF),Reg);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
CPU_Message(__FUNCTION__ "\nFailed to translate address: %X",VAddr);
g_Notify->DisplayError(__FUNCTIONW__ L"\nFailed to translate address: %X",VAddr);
}
}
}
}
}
void CMipsMemoryVM::Compile_SB_Const ( BYTE Value, DWORD VAddr )
{
char VarName[100];
DWORD PAddr;
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false);
x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr, TempReg1);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
MoveConstByteToX86regPointer(Value,TempReg1, TempReg2);
return;
}
if (!TranslateVaddr(VAddr, PAddr))
{
CPU_Message("Compile_SB\nFailed to translate address %X",VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(L"Compile_SB\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstByteToVariable(Value,PAddr + m_RDRAM,VarName);
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SB_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
}
void CMipsMemoryVM::Compile_SB_Register ( x86Reg Reg, DWORD VAddr )
{
char VarName[100];
DWORD PAddr;
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
m_RegWorkingSet.SetX86Protected(Reg,true);
x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false);
x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr, TempReg1);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
MoveX86regByteToX86regPointer(Reg,TempReg1, TempReg2);
return;
}
if (!TranslateVaddr(VAddr, PAddr))
{
CPU_Message("Compile_SB\nFailed to translate address %X",VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SB\nFailed to translate address %X",VAddr);
}
return;
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regByteToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SB_Register\ntrying to store in %X?",VAddr);
}
}
}
void CMipsMemoryVM::Compile_SH_Const ( WORD Value, DWORD VAddr )
{
char VarName[100];
DWORD PAddr;
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false);
x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr, TempReg1);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
MoveConstHalfToX86regPointer(Value,TempReg1, TempReg2);
return;
}
if (!TranslateVaddr(VAddr, PAddr)) {
CPU_Message("Compile_SH\nFailed to translate address %X",VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SH\nFailed to translate address %X",VAddr);
}
return;
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstHalfToVariable(Value,PAddr + m_RDRAM,VarName);
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(__FUNCTIONW__ L"\ntrying to store %X in %X?",Value,VAddr);
}
}
}
void CMipsMemoryVM::Compile_SH_Register ( x86Reg Reg, DWORD VAddr )
{
char VarName[100];
DWORD PAddr;
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
m_RegWorkingSet.SetX86Protected(Reg,true);
x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false);
x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr, TempReg1);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
MoveX86regHalfToX86regPointer(Reg,TempReg1, TempReg2);
return;
}
if (!TranslateVaddr(VAddr, PAddr)) {
CPU_Message("Compile_SH\nFailed to translate address %X",VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SH\nFailed to translate address %X",VAddr);
}
return;
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regHalfToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(__FUNCTIONW__ L"\ntrying to store in %X?",PAddr);
}
}
}
void CMipsMemoryVM::Compile_SW_Const ( DWORD Value, DWORD VAddr )
{
char VarName[100];
BYTE * Jump;
DWORD PAddr;
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false);
x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr, TempReg1);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
MoveConstToX86regPointer(Value,TempReg1, TempReg2);
return;
}
if (!TranslateVaddr(VAddr, PAddr))
{
CPU_Message("Compile_SW\nFailed to translate address %X",VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW\nFailed to translate address %X",VAddr);
}
return;
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstToVariable(Value,PAddr + m_RDRAM,VarName);
break;
case 0x03F00000:
switch (PAddr)
{
case 0x03F00000: MoveConstToVariable(Value,&g_Reg->RDRAM_CONFIG_REG,"RDRAM_CONFIG_REG"); break;
case 0x03F00004: MoveConstToVariable(Value,&g_Reg->RDRAM_DEVICE_ID_REG,"RDRAM_DEVICE_ID_REG"); break;
case 0x03F00008: MoveConstToVariable(Value,&g_Reg->RDRAM_DELAY_REG,"RDRAM_DELAY_REG"); break;
case 0x03F0000C: MoveConstToVariable(Value,&g_Reg->RDRAM_MODE_REG,"RDRAM_MODE_REG"); break;
case 0x03F00010: MoveConstToVariable(Value,&g_Reg->RDRAM_REF_INTERVAL_REG,"RDRAM_REF_INTERVAL_REG"); break;
case 0x03F00014: MoveConstToVariable(Value,&g_Reg->RDRAM_REF_ROW_REG,"RDRAM_REF_ROW_REG"); break;
case 0x03F00018: MoveConstToVariable(Value,&g_Reg->RDRAM_RAS_INTERVAL_REG,"RDRAM_RAS_INTERVAL_REG"); break;
case 0x03F0001C: MoveConstToVariable(Value,&g_Reg->RDRAM_MIN_INTERVAL_REG,"RDRAM_MIN_INTERVAL_REG"); break;
case 0x03F00020: MoveConstToVariable(Value,&g_Reg->RDRAM_ADDR_SELECT_REG,"RDRAM_ADDR_SELECT_REG"); break;
case 0x03F00024: MoveConstToVariable(Value,&g_Reg->RDRAM_DEVICE_MANUF_REG,"RDRAM_DEVICE_MANUF_REG"); break;
case 0x03F04004: break;
case 0x03F08004: break;
case 0x03F80004: break;
case 0x03F80008: break;
case 0x03F8000C: break;
case 0x03F80014: break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
case 0x04000000:
if (PAddr < 0x04002000)
{
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstToVariable(Value,PAddr + m_RDRAM,VarName);
break;
}
switch (PAddr)
{
case 0x04040000: MoveConstToVariable(Value,&g_Reg->SP_MEM_ADDR_REG,"SP_MEM_ADDR_REG"); break;
case 0x04040004: MoveConstToVariable(Value,&g_Reg->SP_DRAM_ADDR_REG,"SP_DRAM_ADDR_REG"); break;
case 0x04040008:
MoveConstToVariable(Value,&g_Reg->SP_RD_LEN_REG,"SP_RD_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((ULONG)((CDMA *)this),x86_ECX);
Call_Direct(AddressOf(&CDMA::SP_DMA_READ),"CDMA::SP_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04040010:
{
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount()-g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false,true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount()+g_System->CountPerOp());
BeforeCallDirect(m_RegWorkingSet);
PushImm32(Value);
PushImm32(PAddr);
MoveConstToX86reg((ULONG)((CMipsMemoryVM *)this),x86_ECX);
Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory),"CMipsMemoryVM::SW_NonMemory");
AfterCallDirect(m_RegWorkingSet);
}
break;
case 0x0404001C: MoveConstToVariable(0,&g_Reg->SP_SEMAPHORE_REG,"SP_SEMAPHORE_REG"); break;
case 0x04080000: MoveConstToVariable(Value & 0xFFC,&g_Reg->SP_PC_REG,"SP_PC_REG"); break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
case 0x04100000:
switch (PAddr)
{
case 0x0410000C:
BeforeCallDirect(m_RegWorkingSet);
PushImm32(Value);
PushImm32(PAddr);
MoveConstToX86reg((ULONG)((CMipsMemoryVM *)this),x86_ECX);
Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory),"CMipsMemoryVM::SW_NonMemory");
AfterCallDirect(m_RegWorkingSet);
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
case 0x04300000:
switch (PAddr)
{
case 0x04300000:
{
DWORD ModValue;
ModValue = 0x7F;
if ( ( Value & MI_CLR_INIT ) != 0 )
{
ModValue |= MI_MODE_INIT;
}
if ( ( Value & MI_CLR_EBUS ) != 0 )
{
ModValue |= MI_MODE_EBUS;
}
if ( ( Value & MI_CLR_RDRAM ) != 0 )
{
ModValue |= MI_MODE_RDRAM;
}
if (ModValue != 0)
{
AndConstToVariable(~ModValue,&g_Reg->MI_MODE_REG,"MI_MODE_REG");
}
ModValue = (Value & 0x7F);
if ( ( Value & MI_SET_INIT ) != 0 )
{
ModValue |= MI_MODE_INIT;
}
if ( ( Value & MI_SET_EBUS ) != 0 )
{
ModValue |= MI_MODE_EBUS;
}
if ( ( Value & MI_SET_RDRAM ) != 0 )
{
ModValue |= MI_MODE_RDRAM;
}
if (ModValue != 0) {
OrConstToVariable(ModValue,&g_Reg->MI_MODE_REG,"MI_MODE_REG");
}
if ( ( Value & MI_CLR_DP_INTR ) != 0 )
{
AndConstToVariable((DWORD)~MI_INTR_DP,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
AndConstToVariable((DWORD)~MI_INTR_DP,&g_Reg->m_GfxIntrReg,"m_GfxIntrReg");
}
}
break;
case 0x0430000C:
{
DWORD ModValue;
ModValue = 0;
if ( ( Value & MI_INTR_MASK_CLR_SP ) != 0 )
{
ModValue |= MI_INTR_MASK_SP;
}
if ( ( Value & MI_INTR_MASK_CLR_SI ) != 0 )
{
ModValue |= MI_INTR_MASK_SI;
}
if ( ( Value & MI_INTR_MASK_CLR_AI ) != 0 )
{
ModValue |= MI_INTR_MASK_AI;
}
if ( ( Value & MI_INTR_MASK_CLR_VI ) != 0 )
{
ModValue |= MI_INTR_MASK_VI;
}
if ( ( Value & MI_INTR_MASK_CLR_PI ) != 0 )
{
ModValue |= MI_INTR_MASK_PI;
}
if ( ( Value & MI_INTR_MASK_CLR_DP ) != 0 )
{
ModValue |= MI_INTR_MASK_DP;
}
if (ModValue != 0)
{
AndConstToVariable(~ModValue,&g_Reg->MI_INTR_MASK_REG,"MI_INTR_MASK_REG");
}
ModValue = 0;
if ( ( Value & MI_INTR_MASK_SET_SP ) != 0 )
{
ModValue |= MI_INTR_MASK_SP;
}
if ( ( Value & MI_INTR_MASK_SET_SI ) != 0 )
{
ModValue |= MI_INTR_MASK_SI;
}
if ( ( Value & MI_INTR_MASK_SET_AI ) != 0 )
{
ModValue |= MI_INTR_MASK_AI;
}
if ( ( Value & MI_INTR_MASK_SET_VI ) != 0 )
{
ModValue |= MI_INTR_MASK_VI;
}
if ( ( Value & MI_INTR_MASK_SET_PI ) != 0 )
{
ModValue |= MI_INTR_MASK_PI;
}
if ( ( Value & MI_INTR_MASK_SET_DP ) != 0 )
{
ModValue |= MI_INTR_MASK_DP;
}
if (ModValue != 0)
{
OrConstToVariable(ModValue,&g_Reg->MI_INTR_MASK_REG,"MI_INTR_MASK_REG");
}
}
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
case 0x04400000:
switch (PAddr)
{
case 0x04400000:
if (g_Plugins->Gfx()->ViStatusChanged != NULL)
{
CompConstToVariable(Value,&g_Reg->VI_STATUS_REG,"VI_STATUS_REG");
JeLabel8("Continue",0);
Jump = m_RecompPos - 1;
MoveConstToVariable(Value,&g_Reg->VI_STATUS_REG,"VI_STATUS_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(g_Plugins->Gfx()->ViStatusChanged,"ViStatusChanged");
AfterCallDirect(m_RegWorkingSet);
CPU_Message("");
CPU_Message(" Continue:");
SetJump8(Jump,m_RecompPos);
}
break;
case 0x04400004: MoveConstToVariable((Value & 0xFFFFFF),&g_Reg->VI_ORIGIN_REG,"VI_ORIGIN_REG"); break;
case 0x04400008:
if (g_Plugins->Gfx()->ViWidthChanged != NULL)
{
CompConstToVariable(Value,&g_Reg->VI_WIDTH_REG,"VI_WIDTH_REG");
JeLabel8("Continue",0);
Jump = m_RecompPos - 1;
MoveConstToVariable(Value,&g_Reg->VI_WIDTH_REG,"VI_WIDTH_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(g_Plugins->Gfx()->ViWidthChanged,"ViWidthChanged");
AfterCallDirect(m_RegWorkingSet);
CPU_Message("");
CPU_Message(" Continue:");
SetJump8(Jump,m_RecompPos);
}
break;
case 0x0440000C: MoveConstToVariable(Value,&g_Reg->VI_INTR_REG,"VI_INTR_REG"); break;
case 0x04400010:
AndConstToVariable((DWORD)~MI_INTR_VI,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Reg,x86_ECX);
Call_Direct(AddressOf(&CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04400014: MoveConstToVariable(Value,&g_Reg->VI_BURST_REG,"VI_BURST_REG"); break;
case 0x04400018: MoveConstToVariable(Value,&g_Reg->VI_V_SYNC_REG,"VI_V_SYNC_REG"); break;
case 0x0440001C: MoveConstToVariable(Value,&g_Reg->VI_H_SYNC_REG,"VI_H_SYNC_REG"); break;
case 0x04400020: MoveConstToVariable(Value,&g_Reg->VI_LEAP_REG,"VI_LEAP_REG"); break;
case 0x04400024: MoveConstToVariable(Value,&g_Reg->VI_H_START_REG,"VI_H_START_REG"); break;
case 0x04400028: MoveConstToVariable(Value,&g_Reg->VI_V_START_REG,"VI_V_START_REG"); break;
case 0x0440002C: MoveConstToVariable(Value,&g_Reg->VI_V_BURST_REG,"VI_V_BURST_REG"); break;
case 0x04400030: MoveConstToVariable(Value,&g_Reg->VI_X_SCALE_REG,"VI_X_SCALE_REG"); break;
case 0x04400034: MoveConstToVariable(Value,&g_Reg->VI_Y_SCALE_REG,"VI_Y_SCALE_REG"); break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
case 0x04500000: /* AI registers */
switch (PAddr)
{
case 0x04500000: MoveConstToVariable(Value,&g_Reg->AI_DRAM_ADDR_REG,"AI_DRAM_ADDR_REG"); break;
case 0x04500004:
MoveConstToVariable(Value,&g_Reg->AI_LEN_REG,"AI_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
if (g_System->bFixedAudio())
{
X86BreakPoint(__FILEW__,__LINE__);
MoveConstToX86reg((DWORD)g_Audio,x86_ECX);
Call_Direct(AddressOf(&CAudio::LenChanged),"LenChanged");
}
else
{
Call_Direct(g_Plugins->Audio()->AiLenChanged,"AiLenChanged");
}
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04500008: MoveConstToVariable((Value & 1),&g_Reg->AI_CONTROL_REG,"AI_CONTROL_REG"); break;
case 0x0450000C:
/* Clear Interrupt */;
AndConstToVariable((DWORD)~MI_INTR_AI,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
AndConstToVariable((DWORD)~MI_INTR_AI,&g_Reg->m_AudioIntrReg,"m_AudioIntrReg");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Reg,x86_ECX);
Call_Direct(AddressOf(&CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04500010:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstToVariable(Value,PAddr + m_RDRAM,VarName);
break;
case 0x04500014: MoveConstToVariable(Value,&g_Reg->AI_BITRATE_REG,"AI_BITRATE_REG"); break;
default:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstToVariable(Value,PAddr + m_RDRAM,VarName);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
case 0x04600000:
switch (PAddr)
{
case 0x04600000: MoveConstToVariable(Value,&g_Reg->PI_DRAM_ADDR_REG,"PI_DRAM_ADDR_REG"); break;
case 0x04600004: MoveConstToVariable(Value,&g_Reg->PI_CART_ADDR_REG,"PI_CART_ADDR_REG"); break;
case 0x04600008:
MoveConstToVariable(Value,&g_Reg->PI_RD_LEN_REG,"PI_RD_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((ULONG)((CDMA *)this),x86_ECX);
Call_Direct(AddressOf(&CDMA::PI_DMA_READ),"CDMA::PI_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0460000C:
MoveConstToVariable(Value,&g_Reg->PI_WR_LEN_REG,"PI_WR_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((ULONG)((CDMA *)this),x86_ECX);
Call_Direct(AddressOf(&CDMA::PI_DMA_WRITE),"CDMA::PI_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04600010:
if ((Value & PI_CLR_INTR) != 0 )
{
AndConstToVariable((DWORD)~MI_INTR_PI,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Reg,x86_ECX);
Call_Direct(AddressOf(&CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
}
break;
case 0x04600014: MoveConstToVariable((Value & 0xFF),&g_Reg->PI_DOMAIN1_REG,"PI_DOMAIN1_REG"); break;
case 0x04600018: MoveConstToVariable((Value & 0xFF),&g_Reg->PI_BSD_DOM1_PWD_REG,"PI_BSD_DOM1_PWD_REG"); break;
case 0x0460001C: MoveConstToVariable((Value & 0xFF),&g_Reg->PI_BSD_DOM1_PGS_REG,"PI_BSD_DOM1_PGS_REG"); break;
case 0x04600020: MoveConstToVariable((Value & 0xFF),&g_Reg->PI_BSD_DOM1_RLS_REG,"PI_BSD_DOM1_RLS_REG"); break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
case 0x04700000:
switch (PAddr)
{
case 0x04700000: MoveConstToVariable(Value,&g_Reg->RI_MODE_REG,"RI_MODE_REG"); break;
case 0x04700004: MoveConstToVariable(Value,&g_Reg->RI_CONFIG_REG,"RI_CONFIG_REG"); break;
case 0x04700008: MoveConstToVariable(Value,&g_Reg->RI_CURRENT_LOAD_REG,"RI_CURRENT_LOAD_REG"); break;
case 0x0470000C: MoveConstToVariable(Value,&g_Reg->RI_SELECT_REG,"RI_SELECT_REG"); break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
case 0x04800000:
switch (PAddr)
{
case 0x04800000: MoveConstToVariable(Value,&g_Reg->SI_DRAM_ADDR_REG,"SI_DRAM_ADDR_REG"); break;
case 0x04800004:
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false, true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp());
MoveConstToVariable(Value,&g_Reg->SI_PIF_ADDR_RD64B_REG,"SI_PIF_ADDR_RD64B_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)((CPifRam *)this),x86_ECX);
Call_Direct(AddressOf(&CPifRam::SI_DMA_READ),"CPifRam::SI_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04800010:
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false, true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp());
MoveConstToVariable(Value,&g_Reg->SI_PIF_ADDR_WR64B_REG,"SI_PIF_ADDR_WR64B_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)((CPifRam *)this),x86_ECX);
Call_Direct(AddressOf(&CPifRam::SI_DMA_WRITE),"CPifRam::SI_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04800018:
AndConstToVariable((DWORD)~MI_INTR_SI,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
AndConstToVariable((DWORD)~SI_STATUS_INTERRUPT,&g_Reg->SI_STATUS_REG,"SI_STATUS_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Reg,x86_ECX);
Call_Direct(AddressOf(&CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr);
}
}
}
void CMipsMemoryVM::Compile_SW_Register (x86Reg Reg, DWORD VAddr )
{
if (VAddr < 0x80000000 || VAddr >= 0xC0000000)
{
m_RegWorkingSet.SetX86Protected(Reg,true);
x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false);
x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveConstToX86reg(VAddr, TempReg1);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
MoveX86regToX86regPointer(Reg,TempReg1, TempReg2);
return;
}
char VarName[100];
BYTE * Jump;
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr))
{
CPU_Message("Compile_SW_Register\nFailed to translate address %X",VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Register\nFailed to translate address %X",VAddr);
}
return;
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
case 0x04000000:
switch (PAddr)
{
case 0x04040000: MoveX86regToVariable(Reg,&g_Reg->SP_MEM_ADDR_REG,"SP_MEM_ADDR_REG"); break;
case 0x04040004: MoveX86regToVariable(Reg,&g_Reg->SP_DRAM_ADDR_REG,"SP_DRAM_ADDR_REG"); break;
case 0x04040008:
MoveX86regToVariable(Reg,&g_Reg->SP_RD_LEN_REG,"SP_RD_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((ULONG)((CDMA *)this),x86_ECX);
Call_Direct(AddressOf(&CDMA::SP_DMA_READ),"CDMA::SP_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0404000C:
MoveX86regToVariable(Reg,&g_Reg->SP_WR_LEN_REG,"SP_WR_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((ULONG)((CDMA *)this),x86_ECX);
Call_Direct(AddressOf(&CDMA::SP_DMA_WRITE),"CDMA::SP_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04040010:
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false, true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp());
MoveX86regToVariable(Reg,&RegModValue,"RegModValue");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(ChangeSpStatus,"ChangeSpStatus");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0404001C: MoveConstToVariable(0,&g_Reg->SP_SEMAPHORE_REG,"SP_SEMAPHORE_REG"); break;
case 0x04080000:
MoveX86regToVariable(Reg,&g_Reg->SP_PC_REG,"SP_PC_REG");
AndConstToVariable(0xFFC,&g_Reg->SP_PC_REG,"SP_PC_REG");
break;
default:
if (PAddr < 0x04002000)
{
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
}
else
{
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store at %X?",VAddr);
}
}
}
break;
case 0x04100000:
if (PAddr == 0x0410000C)
{
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount()-g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false,true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount()+g_System->CountPerOp());
}
BeforeCallDirect(m_RegWorkingSet);
Push(Reg);
PushImm32(PAddr);
MoveConstToX86reg((ULONG)((CMipsMemoryVM *)this),x86_ECX);
Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory),"CMipsMemoryVM::SW_NonMemory");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04300000:
switch (PAddr)
{
case 0x04300000:
MoveX86regToVariable(Reg,&RegModValue,"RegModValue");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(ChangeMiIntrMask,"ChangeMiModeReg");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0430000C:
MoveX86regToVariable(Reg,&RegModValue,"RegModValue");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(ChangeMiIntrMask,"ChangeMiIntrMask");
AfterCallDirect(m_RegWorkingSet);
break;
default:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store at %X?",VAddr);
}
}
break;
case 0x04400000:
switch (PAddr) {
case 0x04400000:
if (g_Plugins->Gfx()->ViStatusChanged != NULL)
{
CompX86regToVariable(Reg,&g_Reg->VI_STATUS_REG,"VI_STATUS_REG");
JeLabel8("Continue",0);
Jump = m_RecompPos - 1;
MoveX86regToVariable(Reg,&g_Reg->VI_STATUS_REG,"VI_STATUS_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(g_Plugins->Gfx()->ViStatusChanged,"ViStatusChanged");
AfterCallDirect(m_RegWorkingSet);
CPU_Message("");
CPU_Message(" Continue:");
SetJump8(Jump,m_RecompPos);
}
break;
case 0x04400004:
MoveX86regToVariable(Reg,&g_Reg->VI_ORIGIN_REG,"VI_ORIGIN_REG");
AndConstToVariable(0xFFFFFF,&g_Reg->VI_ORIGIN_REG,"VI_ORIGIN_REG");
break;
case 0x04400008:
if (g_Plugins->Gfx()->ViWidthChanged != NULL)
{
CompX86regToVariable(Reg,&g_Reg->VI_WIDTH_REG,"VI_WIDTH_REG");
JeLabel8("Continue",0);
Jump = m_RecompPos - 1;
MoveX86regToVariable(Reg,&g_Reg->VI_WIDTH_REG,"VI_WIDTH_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(g_Plugins->Gfx()->ViWidthChanged,"ViWidthChanged");
AfterCallDirect(m_RegWorkingSet);
CPU_Message("");
CPU_Message(" Continue:");
SetJump8(Jump,m_RecompPos);
}
break;
case 0x0440000C: MoveX86regToVariable(Reg,&g_Reg->VI_INTR_REG,"VI_INTR_REG"); break;
case 0x04400010:
AndConstToVariable((DWORD)~MI_INTR_VI,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Reg,x86_ECX);
Call_Direct(AddressOf(&CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04400014: MoveX86regToVariable(Reg,&g_Reg->VI_BURST_REG,"VI_BURST_REG"); break;
case 0x04400018: MoveX86regToVariable(Reg,&g_Reg->VI_V_SYNC_REG,"VI_V_SYNC_REG"); break;
case 0x0440001C: MoveX86regToVariable(Reg,&g_Reg->VI_H_SYNC_REG,"VI_H_SYNC_REG"); break;
case 0x04400020: MoveX86regToVariable(Reg,&g_Reg->VI_LEAP_REG,"VI_LEAP_REG"); break;
case 0x04400024: MoveX86regToVariable(Reg,&g_Reg->VI_H_START_REG,"VI_H_START_REG"); break;
case 0x04400028: MoveX86regToVariable(Reg,&g_Reg->VI_V_START_REG,"VI_V_START_REG"); break;
case 0x0440002C: MoveX86regToVariable(Reg,&g_Reg->VI_V_BURST_REG,"VI_V_BURST_REG"); break;
case 0x04400030: MoveX86regToVariable(Reg,&g_Reg->VI_X_SCALE_REG,"VI_X_SCALE_REG"); break;
case 0x04400034: MoveX86regToVariable(Reg,&g_Reg->VI_Y_SCALE_REG,"VI_Y_SCALE_REG"); break;
default:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store at %X?",VAddr);
}
}
break;
case 0x04500000: /* AI registers */
switch (PAddr) {
case 0x04500000: MoveX86regToVariable(Reg,&g_Reg->AI_DRAM_ADDR_REG,"AI_DRAM_ADDR_REG"); break;
case 0x04500004:
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false, true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp());
MoveX86regToVariable(Reg,&g_Reg->AI_LEN_REG,"AI_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
if (g_System->bFixedAudio())
{
MoveConstToX86reg((DWORD)g_Audio,x86_ECX);
Call_Direct(AddressOf(&CAudio::LenChanged),"LenChanged");
}
else
{
Call_Direct(g_Plugins->Audio()->AiLenChanged, "g_Plugins->Audio()->LenChanged");
}
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04500008:
MoveX86regToVariable(Reg,&g_Reg->AI_CONTROL_REG,"AI_CONTROL_REG");
AndConstToVariable(1,&g_Reg->AI_CONTROL_REG,"AI_CONTROL_REG");
case 0x0450000C:
/* Clear Interrupt */;
AndConstToVariable((DWORD)~MI_INTR_AI,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
AndConstToVariable((DWORD)~MI_INTR_AI,&g_Reg->m_AudioIntrReg,"m_AudioIntrReg");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Reg,x86_ECX);
Call_Direct(AddressOf(&CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04500010:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
case 0x04500014: MoveX86regToVariable(Reg,&g_Reg->AI_BITRATE_REG,"AI_BITRATE_REG"); break;
default:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store at %X?",VAddr); } }
break;
case 0x04600000:
switch (PAddr)
{
case 0x04600000: MoveX86regToVariable(Reg,&g_Reg->PI_DRAM_ADDR_REG,"PI_DRAM_ADDR_REG"); break;
case 0x04600004: MoveX86regToVariable(Reg,&g_Reg->PI_CART_ADDR_REG,"PI_CART_ADDR_REG"); break;
case 0x04600008:
MoveX86regToVariable(Reg,&g_Reg->PI_RD_LEN_REG,"PI_RD_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((ULONG)((CDMA *)this),x86_ECX);
Call_Direct(AddressOf(&CDMA::PI_DMA_READ),"CDMA::PI_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0460000C:
MoveX86regToVariable(Reg,&g_Reg->PI_WR_LEN_REG,"PI_WR_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((ULONG)((CDMA *)this),x86_ECX);
Call_Direct(AddressOf(&CDMA::PI_DMA_WRITE),"CDMA::PI_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04600010:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store at %X?",VAddr); }
AndConstToVariable((DWORD)~MI_INTR_PI,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Reg,x86_ECX);
Call_Direct(AddressOf(&CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04600014:
MoveX86regToVariable(Reg,&g_Reg->PI_DOMAIN1_REG,"PI_DOMAIN1_REG");
AndConstToVariable(0xFF,&g_Reg->PI_DOMAIN1_REG,"PI_DOMAIN1_REG");
break;
case 0x04600018:
MoveX86regToVariable(Reg,&g_Reg->PI_BSD_DOM1_PWD_REG,"PI_BSD_DOM1_PWD_REG");
AndConstToVariable(0xFF,&g_Reg->PI_BSD_DOM1_PWD_REG,"PI_BSD_DOM1_PWD_REG");
break;
case 0x0460001C:
MoveX86regToVariable(Reg,&g_Reg->PI_BSD_DOM1_PGS_REG,"PI_BSD_DOM1_PGS_REG");
AndConstToVariable(0xFF,&g_Reg->PI_BSD_DOM1_PGS_REG,"PI_BSD_DOM1_PGS_REG");
break;
case 0x04600020:
MoveX86regToVariable(Reg,&g_Reg->PI_BSD_DOM1_RLS_REG,"PI_BSD_DOM1_RLS_REG");
AndConstToVariable(0xFF,&g_Reg->PI_BSD_DOM1_RLS_REG,"PI_BSD_DOM1_RLS_REG");
break;
default:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store at %X?",VAddr);
}
}
break;
case 0x04700000:
switch (PAddr)
{
case 0x04700010: MoveX86regToVariable(Reg,&g_Reg->RI_REFRESH_REG,"RI_REFRESH_REG"); break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store at %X?",VAddr);
}
}
break;
case 0x04800000:
switch (PAddr)
{
case 0x04800000: MoveX86regToVariable(Reg,&g_Reg->SI_DRAM_ADDR_REG,"SI_DRAM_ADDR_REG"); break;
case 0x04800004:
MoveX86regToVariable(Reg,&g_Reg->SI_PIF_ADDR_RD64B_REG,"SI_PIF_ADDR_RD64B_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)((CPifRam *)this),x86_ECX);
Call_Direct(AddressOf(&CPifRam::SI_DMA_READ),"CPifRam::SI_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04800010:
MoveX86regToVariable(Reg,&g_Reg->SI_PIF_ADDR_WR64B_REG,"SI_PIF_ADDR_WR64B_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)((CPifRam *)this),x86_ECX);
Call_Direct(AddressOf(&CPifRam::SI_DMA_WRITE),"CPifRam::SI_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04800018:
AndConstToVariable((DWORD)~MI_INTR_SI,&g_Reg->MI_INTR_REG,"MI_INTR_REG");
AndConstToVariable((DWORD)~SI_STATUS_INTERRUPT,&g_Reg->SI_STATUS_REG,"SI_STATUS_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)g_Reg,x86_ECX);
Call_Direct(AddressOf(&CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
default:
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store at %X?",VAddr); }
}
break;
case 0x1FC00000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
default:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Compile_SW_Register\ntrying to store in %X?",VAddr);
}
}
}
void CMipsMemoryVM::ResetMemoryStack()
{
x86Reg Reg, TempReg;
int MipsReg = 29;
CPU_Message(" ResetMemoryStack");
Reg = Get_MemoryStack();
if (Reg == x86_Unknown)
{
Reg = Map_TempReg(x86_Any, MipsReg, false);
}
else
{
if (IsUnknown(MipsReg))
{
MoveVariableToX86reg(&_GPR[MipsReg].UW[0],CRegName::GPR_Lo[MipsReg],Reg);
}
else if (IsMapped(MipsReg))
{
MoveX86RegToX86Reg(GetMipsRegMapLo(MipsReg),Reg);
}
else
{
MoveConstToX86reg(GetMipsRegLo(MipsReg),Reg);
}
}
if (g_System->bUseTlb())
{
TempReg = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(Reg,TempReg);
ShiftRightUnsignImmed(TempReg,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg,TempReg,4);
AddX86RegToX86Reg(Reg,TempReg);
}
else
{
AndConstToX86Reg(Reg,0x1FFFFFFF);
AddConstToX86Reg(Reg,(DWORD)m_RDRAM);
}
MoveX86regToVariable(Reg,&(g_Recompiler->MemoryStackPos()), "MemoryStack");
}
int CMipsMemoryVM::MemoryFilter( DWORD dwExptCode, void * lpExceptionPointer )
{
#ifdef _M_IX86
if (dwExptCode != EXCEPTION_ACCESS_VIOLATION)
{
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
//convert the pointer since we are not having win32 structures in headers
LPEXCEPTION_POINTERS lpEP = (LPEXCEPTION_POINTERS)lpExceptionPointer;
DWORD MemAddress = (char *)lpEP->ExceptionRecord->ExceptionInformation[1] - (char *)g_MMU->Rdram();
if ((int)(MemAddress) < 0 || MemAddress > 0x1FFFFFFF)
{
// if (bHaveDebugger())
// {
// g_Notify->BreakPoint(__FILEW__,__LINE__);
// }
return EXCEPTION_EXECUTE_HANDLER;
}
DWORD * Reg = NULL;
BYTE * TypePos = (unsigned char *)lpEP->ContextRecord->Eip;
EXCEPTION_RECORD exRec = *lpEP->ExceptionRecord;
if (*TypePos == 0xF3 && (*(TypePos + 1) == 0xA4 || *(TypePos + 1) == 0xA5))
{
DWORD Start = (lpEP->ContextRecord->Edi - (DWORD)m_RDRAM);
DWORD End = Start + lpEP->ContextRecord->Ecx;
if ((int)Start < 0)
{
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
#ifdef CFB_READ
DWORD count, OldProtect;
if (Start >= CFBStart && End < CFBEnd)
{
for ( count = Start; count < End; count += 0x1000 )
{
VirtualProtect(m_RDRAM+count,4,PAGE_READONLY, &OldProtect);
if (FrameBufferRead)
{
FrameBufferRead(count & ~0xFFF);
}
}
return EXCEPTION_CONTINUE_EXECUTION;
}
#endif
if (End < RdramSize())
{
for (DWORD count = (Start & ~0xFFF); count < End; count += 0x1000 )
{
g_Recompiler->ClearRecompCode_Phys(count,0x1000,CRecompiler::Remove_ProtectedMem);
}
return EXCEPTION_CONTINUE_EXECUTION;
}
if (Start >= 0x04000000 && End < 0x04002000)
{
g_Recompiler->ClearRecompCode_Phys(Start & ~0xFFF,0x1000,CRecompiler::Remove_ProtectedMem);
return EXCEPTION_CONTINUE_EXECUTION;
}
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
BYTE * ReadPos;
if (*TypePos == 0x0F && *(TypePos + 1) == 0xB6)
{
ReadPos = TypePos + 2;
}
else if (*TypePos == 0x0F && *(TypePos + 1) == 0xB7)
{
ReadPos = TypePos + 2;
}
else if (*TypePos == 0x0F && *(TypePos + 1) == 0xBE)
{
ReadPos = TypePos + 2;
}
else if (*TypePos == 0x0F && *(TypePos + 1) == 0xBF)
{
ReadPos = TypePos + 2;
}
else if (*TypePos == 0x66)
{
ReadPos = TypePos + 2;
}
else
{
ReadPos = TypePos + 1;
}
switch ((*ReadPos & 0x38))
{
case 0x00: Reg = &lpEP->ContextRecord->Eax; break;
case 0x08: Reg = &lpEP->ContextRecord->Ecx; break;
case 0x10: Reg = &lpEP->ContextRecord->Edx; break;
case 0x18: Reg = &lpEP->ContextRecord->Ebx; break;
case 0x20: Reg = &lpEP->ContextRecord->Esp; break;
case 0x28: Reg = &lpEP->ContextRecord->Ebp; break;
case 0x30: Reg = &lpEP->ContextRecord->Esi; break;
case 0x38: Reg = &lpEP->ContextRecord->Edi; break;
}
switch ((*ReadPos & 0xC7))
{
case 0: ReadPos += 1; break;
case 1: ReadPos += 1; break;
case 2: ReadPos += 1; break;
case 3: ReadPos += 1; break;
case 4:
ReadPos += 1;
switch ((*ReadPos & 0xC7))
{
case 0: ReadPos += 1; break;
case 1: ReadPos += 1; break;
case 2: ReadPos += 1; break;
case 3: ReadPos += 1; break;
case 6: ReadPos += 1; break;
case 7: ReadPos += 1; break;
case 0x80: ReadPos += 1; break;
default:
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
break;
case 5: ReadPos += 5; break;
case 6: ReadPos += 1; break;
case 7: ReadPos += 1; break;
case 0x40: ReadPos += 2; break;
case 0x41: ReadPos += 2; break;
case 0x42: ReadPos += 2; break;
case 0x43: ReadPos += 2; break;
case 0x44: ReadPos += 3; break;
case 0x46: ReadPos += 2; break;
case 0x47: ReadPos += 2; break;
case 0x80: ReadPos += 5; break;
case 0x81: ReadPos += 5; break;
case 0x82: ReadPos += 5; break;
case 0x83: ReadPos += 5; break;
case 0x86: ReadPos += 5; break;
case 0x87: ReadPos += 5; break;
default:
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
if (Reg == NULL)
{
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
switch (*TypePos)
{
case 0x0F:
switch (*(TypePos + 1))
{
case 0xB6:
if (!LB_NonMemory(MemAddress, (DWORD *)Reg, false))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to load byte\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xB7:
if (!LH_NonMemory(MemAddress, (DWORD *)Reg, false))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to load half word\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xBE:
if (!LB_NonMemory(MemAddress, Reg, true))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to load byte\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xBF:
if (!LH_NonMemory(MemAddress, Reg, true))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to load half word\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
default:
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
break;
case 0x66:
switch (*(TypePos + 1))
{
case 0x8B:
if (!LH_NonMemory(MemAddress, Reg, false))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to half word\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0x89:
if (!SH_NonMemory(MemAddress,*(WORD *)Reg))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to store half word\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xC7:
if (Reg != &lpEP->ContextRecord->Eax)
{
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
if (!SH_NonMemory(MemAddress,*(WORD *)ReadPos)) {
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to store half word\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)(ReadPos + 2);
return EXCEPTION_CONTINUE_EXECUTION;
default:
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
break;
case 0x88:
if (!SB_NonMemory(MemAddress,*(BYTE *)Reg))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to store byte\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0x8A:
if (!LB_NonMemory(MemAddress, Reg, false))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to load byte\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0x8B:
if (!LW_NonMemory(MemAddress,Reg))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to load word\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0x89:
if (!SW_NonMemory(MemAddress,*(DWORD *)Reg))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to store word\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xC6:
if (Reg != &lpEP->ContextRecord->Eax)
{
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
if (!SB_NonMemory(MemAddress,*(BYTE *)ReadPos))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to store byte\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)(ReadPos + 1);
return EXCEPTION_CONTINUE_EXECUTION;
case 0xC7:
if (Reg != &lpEP->ContextRecord->Eax)
{
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
return EXCEPTION_EXECUTE_HANDLER;
}
if (!SW_NonMemory(MemAddress,*(DWORD *)ReadPos))
{
if (g_Settings->LoadDword(Debugger_ShowUnhandledMemory))
{
g_Notify->DisplayError(L"Failed to store word\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)(ReadPos + 4);
return EXCEPTION_CONTINUE_EXECUTION;
}
if (bHaveDebugger())
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
#else
g_Notify->BreakPoint(__FILEW__,__LINE__);
#endif
return EXCEPTION_EXECUTE_HANDLER;
}
bool CMipsMemoryVM::LB_NonMemory(DWORD PAddr, DWORD* Value, bool /*SignExtend*/)
{
if (PAddr < 0x800000)
{
*Value = 0;
return true;
}
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
#ifdef tofix
if (WrittenToRom)
{
return false;
}
if ((PAddr & 2) == 0)
{
PAddr = (PAddr + 4) ^ 2;
}
if ((PAddr - 0x10000000) < RomFileSize)
{
if (SignExtend)
{
*Value = (int)((char)ROM[PAddr - 0x10000000]);
}
else
{
*Value = ROM[PAddr - 0x10000000];
}
return true;
}
else
{
*Value = 0;
return false;
}
#endif
}
// switch (PAddr & 0xFFF00000)
//{
// default:
*Value = 0;
// return false;
// break;
// }
return true;
}
bool CMipsMemoryVM::LH_NonMemory(DWORD PAddr, DWORD* Value, bool/* SignExtend*/)
{
if (PAddr < 0x800000)
{
*Value = 0;
return true;
}
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
// switch (PAddr & 0xFFF00000)
// {
// default:
*Value = 0;
return false;
// }
// return true;
}
bool CMipsMemoryVM::LW_NonMemory(DWORD PAddr, DWORD* Value)
{
#ifdef CFB_READ
if (PAddr >= CFBStart && PAddr < CFBEnd)
{
DWORD OldProtect;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READONLY, &OldProtect);
if (FrameBufferRead)
{
FrameBufferRead(PAddr & ~0xFFF);
}
*Value = *(DWORD *)(m_RDRAM+PAddr);
return true;
}
#endif
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
if (m_RomWrittenTo)
{
*Value = m_RomWroteValue;
//LogMessage("%X: Read crap from Rom %X from %X",PROGRAM_COUNTER,*Value,PAddr);
m_RomWrittenTo = false;
#ifdef ROM_IN_MAPSPACE
{
DWORD OldProtect;
VirtualProtect(ROM,RomFileSize,PAGE_READONLY, &OldProtect);
}
#endif
return true;
}
if ((PAddr - 0x10000000) < m_RomSize)
{
*Value = *(DWORD *)&m_Rom[PAddr - 0x10000000];
return true;
}
else
{
*Value = PAddr & 0xFFFF;
*Value = (*Value << 16) | *Value;
return false;
}
}
switch (PAddr & 0xFFF00000)
{
case 0x03F00000:
switch (PAddr)
{
case 0x03F00000: * Value = g_Reg->RDRAM_CONFIG_REG; break;
case 0x03F00004: * Value = g_Reg->RDRAM_DEVICE_ID_REG; break;
case 0x03F00008: * Value = g_Reg->RDRAM_DELAY_REG; break;
case 0x03F0000C: * Value = g_Reg->RDRAM_MODE_REG; break;
case 0x03F00010: * Value = g_Reg->RDRAM_REF_INTERVAL_REG; break;
case 0x03F00014: * Value = g_Reg->RDRAM_REF_ROW_REG; break;
case 0x03F00018: * Value = g_Reg->RDRAM_RAS_INTERVAL_REG; break;
case 0x03F0001C: * Value = g_Reg->RDRAM_MIN_INTERVAL_REG; break;
case 0x03F00020: * Value = g_Reg->RDRAM_ADDR_SELECT_REG; break;
case 0x03F00024: * Value = g_Reg->RDRAM_DEVICE_MANUF_REG; break;
default:
*Value = 0;
return false;
}
break;
case 0x04000000:
switch (PAddr)
{
case 0x04040010: *Value = g_Reg->SP_STATUS_REG; break;
case 0x04040014: *Value = g_Reg->SP_DMA_FULL_REG; break;
case 0x04040018: *Value = g_Reg->SP_DMA_BUSY_REG; break;
case 0x0404001C:
*Value = g_Reg->SP_SEMAPHORE_REG;
g_Reg->SP_SEMAPHORE_REG = 1;
break;
case 0x04080000: *Value = g_Reg->SP_PC_REG; break;
default:
* Value = 0;
return false;
}
break;
case 0x04100000:
switch (PAddr)
{
case 0x0410000C: *Value = g_Reg->DPC_STATUS_REG; break;
case 0x04100010: *Value = g_Reg->DPC_CLOCK_REG; break;
case 0x04100014: *Value = g_Reg->DPC_BUFBUSY_REG; break;
case 0x04100018: *Value = g_Reg->DPC_PIPEBUSY_REG; break;
case 0x0410001C: *Value = g_Reg->DPC_TMEM_REG; break;
default:
*Value = 0;
return false;
}
break;
case 0x04300000:
switch (PAddr)
{
case 0x04300000: *Value = g_Reg->MI_MODE_REG; break;
case 0x04300004: *Value = g_Reg->MI_VERSION_REG; break;
case 0x04300008: *Value = g_Reg->MI_INTR_REG; break;
case 0x0430000C: *Value = g_Reg->MI_INTR_MASK_REG; break;
default:
*Value = 0;
return false;
}
break;
case 0x04400000:
switch (PAddr)
{
case 0x04400000: *Value = g_Reg->VI_STATUS_REG; break;
case 0x04400004: *Value = g_Reg->VI_ORIGIN_REG; break;
case 0x04400008: *Value = g_Reg->VI_WIDTH_REG; break;
case 0x0440000C: *Value = g_Reg->VI_INTR_REG; break;
case 0x04400010:
UpdateHalfLine();
*Value = m_HalfLine;
break;
case 0x04400014: *Value = g_Reg->VI_BURST_REG; break;
case 0x04400018: *Value = g_Reg->VI_V_SYNC_REG; break;
case 0x0440001C: *Value = g_Reg->VI_H_SYNC_REG; break;
case 0x04400020: *Value = g_Reg->VI_LEAP_REG; break;
case 0x04400024: *Value = g_Reg->VI_H_START_REG; break;
case 0x04400028: *Value = g_Reg->VI_V_START_REG ; break;
case 0x0440002C: *Value = g_Reg->VI_V_BURST_REG; break;
case 0x04400030: *Value = g_Reg->VI_X_SCALE_REG; break;
case 0x04400034: *Value = g_Reg->VI_Y_SCALE_REG; break;
default:
*Value = 0;
return false;
}
break;
case 0x04500000:
switch (PAddr)
{
case 0x04500004:
if (g_System->bFixedAudio())
{
*Value = g_Audio->GetLength();
}
else
{
if (g_Plugins->Audio()->AiReadLength != NULL)
{
*Value = g_Plugins->Audio()->AiReadLength();
}
else
{
*Value = 0;
}
}
break;
case 0x0450000C:
if (g_System->bFixedAudio())
{
*Value = g_Audio->GetStatus();
}
else
{
*Value = g_Reg->AI_STATUS_REG;
}
break;
default:
*Value = 0;
return false;
}
break;
case 0x04600000:
switch (PAddr)
{
case 0x04600010: *Value = g_Reg->PI_STATUS_REG; break;
case 0x04600014: *Value = g_Reg->PI_DOMAIN1_REG; break;
case 0x04600018: *Value = g_Reg->PI_BSD_DOM1_PWD_REG; break;
case 0x0460001C: *Value = g_Reg->PI_BSD_DOM1_PGS_REG; break;
case 0x04600020: *Value = g_Reg->PI_BSD_DOM1_RLS_REG; break;
case 0x04600024: *Value = g_Reg->PI_DOMAIN2_REG; break;
case 0x04600028: *Value = g_Reg->PI_BSD_DOM2_PWD_REG; break;
case 0x0460002C: *Value = g_Reg->PI_BSD_DOM2_PGS_REG; break;
case 0x04600030: *Value = g_Reg->PI_BSD_DOM2_RLS_REG; break;
default:
*Value = 0;
return false;
}
break;
case 0x04700000:
switch (PAddr)
{
case 0x04700000: *Value = g_Reg->RI_MODE_REG; break;
case 0x04700004: *Value = g_Reg->RI_CONFIG_REG; break;
case 0x04700008: *Value = g_Reg->RI_CURRENT_LOAD_REG; break;
case 0x0470000C: *Value = g_Reg->RI_SELECT_REG; break;
case 0x04700010: *Value = g_Reg->RI_REFRESH_REG; break;
case 0x04700014: *Value = g_Reg->RI_LATENCY_REG; break;
case 0x04700018: *Value = g_Reg->RI_RERROR_REG; break;
case 0x0470001C: *Value = g_Reg->RI_WERROR_REG; break;
default:
*Value = 0;
return false;
}
break;
case 0x04800000:
switch (PAddr)
{
case 0x04800018: *Value = g_Reg->SI_STATUS_REG; break;
default:
*Value = 0;
return false;
}
break;
case 0x05000000:
*Value = PAddr & 0xFFFF;
*Value = (*Value << 16) | *Value;
return false;
case 0x08000000:
if (g_System->m_SaveUsing == SaveChip_Auto)
{
g_System->m_SaveUsing = SaveChip_FlashRam;
}
if (g_System->m_SaveUsing != SaveChip_FlashRam)
{
*Value = PAddr & 0xFFFF;
*Value = (*Value << 16) | *Value;
return false;
}
*Value = ReadFromFlashStatus(PAddr);
break;
case 0x1FC00000:
if (PAddr < 0x1FC007C0)
{
/* DWORD ToSwap = *(DWORD *)(&PifRom[PAddr - 0x1FC00000]);
_asm
{
mov eax,ToSwap
bswap eax
mov ToSwap,eax
}
* Value = ToSwap;*/
g_Notify->BreakPoint(__FILEW__,__LINE__);
return true;
}
else if (PAddr < 0x1FC00800)
{
#ifdef _M_IX86
BYTE * PIF_Ram = g_MMU->PifRam();
DWORD ToSwap = *(DWORD *)(&PIF_Ram[PAddr - 0x1FC007C0]);
_asm
{
mov eax,ToSwap
bswap eax
mov ToSwap,eax
}
*Value = ToSwap;
#else
g_Notify->BreakPoint(__FILEW__,__LINE__);
#endif
return true;
}
else
{
*Value = 0;
return false;
}
break;
default:
*Value = PAddr & 0xFFFF;
*Value = (*Value << 16) | *Value;
return false;
break;
}
return true;
}
bool CMipsMemoryVM::SB_NonMemory(DWORD PAddr, BYTE Value)
{
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
#ifdef CFB_READ
if (PAddr >= CFBStart && PAddr < CFBEnd)
{
DWORD OldProtect;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(BYTE *)(m_RDRAM+PAddr) = Value;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,OldProtect, &OldProtect);
g_Notify->DisplayError(L"FrameBufferWrite");
if (FrameBufferWrite) { FrameBufferWrite(PAddr,1); }
break;
}
#endif
if (PAddr < RdramSize())
{
DWORD OldProtect;
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF,0xFFC,CRecompiler::Remove_ProtectedMem);
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(BYTE *)(m_RDRAM+PAddr) = Value;
}
break;
default:
return false;
}
return true;
}
bool CMipsMemoryVM::SH_NonMemory(DWORD PAddr, WORD Value)
{
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
#ifdef CFB_READ
if (PAddr >= CFBStart && PAddr < CFBEnd)
{
DWORD OldProtect;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(WORD *)(m_RDRAM+PAddr) = Value;
if (FrameBufferWrite) { FrameBufferWrite(PAddr & ~0xFFF,2); }
//*(WORD *)(m_RDRAM+PAddr) = 0xFFFF;
//VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_NOACCESS, &OldProtect);
g_Notify->DisplayError(L"PAddr = %x",PAddr);
break;
}
#endif
if (PAddr < RdramSize())
{
DWORD OldProtect;
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF,0x1000,CRecompiler::Remove_ProtectedMem);
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(WORD *)(m_RDRAM+PAddr) = Value;
}
break;
default:
return false;
}
return true;
}
bool CMipsMemoryVM::SW_NonMemory(DWORD PAddr, DWORD Value)
{
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
if ((PAddr - 0x10000000) < g_Rom->GetRomSize())
{
m_RomWrittenTo = true;
m_RomWroteValue = Value;
#ifdef ROM_IN_MAPSPACE
{
DWORD OldProtect;
VirtualProtect(ROM,RomFileSize,PAGE_NOACCESS, &OldProtect);
}
#endif
//LogMessage("%X: Wrote To Rom %X from %X",PROGRAM_COUNTER,Value,PAddr);
}
else
{
return false;
}
}
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
#ifdef CFB_READ
if (PAddr >= CFBStart && PAddr < CFBEnd)
{
DWORD OldProtect;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(DWORD *)(m_RDRAM+PAddr) = Value;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,OldProtect, &OldProtect);
g_Notify->DisplayError(L"FrameBufferWrite %X",PAddr);
if (FrameBufferWrite) { FrameBufferWrite(PAddr,4); }
break;
}
#endif
if (PAddr < RdramSize())
{
DWORD OldProtect;
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF,0x1000,CRecompiler::Remove_ProtectedMem);
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(DWORD *)(m_RDRAM+PAddr) = Value;
}
break;
case 0x03F00000:
switch (PAddr)
{
case 0x03F00000: g_Reg->RDRAM_CONFIG_REG = Value; break;
case 0x03F00004: g_Reg->RDRAM_DEVICE_ID_REG = Value; break;
case 0x03F00008: g_Reg->RDRAM_DELAY_REG = Value; break;
case 0x03F0000C: g_Reg->RDRAM_MODE_REG = Value; break;
case 0x03F00010: g_Reg->RDRAM_REF_INTERVAL_REG = Value; break;
case 0x03F00014: g_Reg->RDRAM_REF_ROW_REG = Value; break;
case 0x03F00018: g_Reg->RDRAM_RAS_INTERVAL_REG = Value; break;
case 0x03F0001C: g_Reg->RDRAM_MIN_INTERVAL_REG = Value; break;
case 0x03F00020: g_Reg->RDRAM_ADDR_SELECT_REG = Value; break;
case 0x03F00024: g_Reg->RDRAM_DEVICE_MANUF_REG = Value; break;
case 0x03F04004: break;
case 0x03F08004: break;
case 0x03F80004: break;
case 0x03F80008: break;
case 0x03F8000C: break;
case 0x03F80014: break;
default:
return false;
}
break;
case 0x04000000:
if (PAddr < 0x04002000)
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF,0xFFF,CRecompiler::Remove_ProtectedMem);
*(DWORD *)(m_RDRAM+PAddr) = Value;
}
else
{
switch (PAddr)
{
case 0x04040000: g_Reg->SP_MEM_ADDR_REG = Value; break;
case 0x04040004: g_Reg->SP_DRAM_ADDR_REG = Value; break;
case 0x04040008:
g_Reg->SP_RD_LEN_REG = Value;
SP_DMA_READ();
break;
case 0x0404000C:
g_Reg->SP_WR_LEN_REG = Value;
SP_DMA_WRITE();
break;
case 0x04040010:
if ( ( Value & SP_CLR_HALT ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_HALT;
}
if ( ( Value & SP_SET_HALT ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_HALT;
}
if ( ( Value & SP_CLR_BROKE ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_BROKE;
}
if ( ( Value & SP_CLR_INTR ) != 0)
{
g_Reg->MI_INTR_REG &= ~MI_INTR_SP;
g_Reg->m_RspIntrReg &= ~MI_INTR_SP;
g_Reg->CheckInterrupts();
}
if ( ( Value & SP_SET_INTR ) != 0)
{
g_Notify->DisplayError(L"SP_SET_INTR");
}
if ( ( Value & SP_CLR_SSTEP ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SSTEP;
}
if ( ( Value & SP_SET_SSTEP ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SSTEP;
}
if ( ( Value & SP_CLR_INTR_BREAK ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_INTR_BREAK;
}
if ( ( Value & SP_SET_INTR_BREAK ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_INTR_BREAK;
}
if ( ( Value & SP_CLR_SIG0 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG0;
}
if ( ( Value & SP_SET_SIG0 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG0;
}
if ( ( Value & SP_CLR_SIG1 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG1;
}
if ( ( Value & SP_SET_SIG1 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG1;
}
if ( ( Value & SP_CLR_SIG2 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG2;
}
if ( ( Value & SP_SET_SIG2 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG2;
}
if ( ( Value & SP_CLR_SIG3 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG3;
}
if ( ( Value & SP_SET_SIG3 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG3;
}
if ( ( Value & SP_CLR_SIG4 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG4;
}
if ( ( Value & SP_SET_SIG4 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG4;
}
if ( ( Value & SP_CLR_SIG5 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG5;
}
if ( ( Value & SP_SET_SIG5 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG5;
}
if ( ( Value & SP_CLR_SIG6 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG6;
}
if ( ( Value & SP_SET_SIG6 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG6;
}
if ( ( Value & SP_CLR_SIG7 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG7;
}
if ( ( Value & SP_SET_SIG7 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG7;
}
if ( ( Value & SP_SET_SIG0 ) != 0 && g_System->RspAudioSignal())
{
g_Reg->MI_INTR_REG |= MI_INTR_SP;
g_Reg->CheckInterrupts();
}
//if (*( DWORD *)(DMEM + 0xFC0) == 1)
//{
// ChangeTimer(RspTimer,0x30000);
//}
//else
//{
try
{
g_System->RunRSP();
}
catch (...)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
//}
break;
case 0x0404001C: g_Reg->SP_SEMAPHORE_REG = 0; break;
case 0x04080000: g_Reg->SP_PC_REG = Value & 0xFFC; break;
default:
return false;
}
}
break;
case 0x04100000:
switch (PAddr)
{
case 0x04100000:
g_Reg->DPC_START_REG = Value;
g_Reg->DPC_CURRENT_REG = Value;
break;
case 0x04100004:
g_Reg->DPC_END_REG = Value;
if (g_Plugins->Gfx()->ProcessRDPList)
{
g_Plugins->Gfx()->ProcessRDPList();
}
break;
//case 0x04100008: g_Reg->DPC_CURRENT_REG = Value; break;
case 0x0410000C:
if ( ( Value & DPC_CLR_XBUS_DMEM_DMA ) != 0)
{
g_Reg->DPC_STATUS_REG &= ~DPC_STATUS_XBUS_DMEM_DMA;
}
if ( ( Value & DPC_SET_XBUS_DMEM_DMA ) != 0)
{
g_Reg->DPC_STATUS_REG |= DPC_STATUS_XBUS_DMEM_DMA;
}
if ( ( Value & DPC_CLR_FREEZE ) != 0)
{
g_Reg->DPC_STATUS_REG &= ~DPC_STATUS_FREEZE;
}
if ( ( Value & DPC_SET_FREEZE ) != 0)
{
g_Reg->DPC_STATUS_REG |= DPC_STATUS_FREEZE;
}
if ( ( Value & DPC_CLR_FLUSH ) != 0)
{
g_Reg->DPC_STATUS_REG &= ~DPC_STATUS_FLUSH;
}
if ( ( Value & DPC_SET_FLUSH ) != 0)
{
g_Reg->DPC_STATUS_REG |= DPC_STATUS_FLUSH;
}
if ( ( Value & DPC_CLR_FREEZE ) != 0)
{
if ( ( g_Reg->SP_STATUS_REG & SP_STATUS_HALT ) == 0)
{
if ( ( g_Reg->SP_STATUS_REG & SP_STATUS_BROKE ) == 0 )
{
try
{
g_System->RunRSP();
}
catch (...)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
}
}
}
#ifdef tofix
if (ShowUnhandledMemory)
{
//if ( ( Value & DPC_CLR_TMEM_CTR ) != 0)
//{
// g_Notify->DisplayError(L"RSP: DPC_STATUS_REG: DPC_CLR_TMEM_CTR");
//}
//if ( ( Value & DPC_CLR_PIPE_CTR ) != 0)
//{
// g_Notify->DisplayError(L"RSP: DPC_STATUS_REG: DPC_CLR_PIPE_CTR");
//}
//if ( ( Value & DPC_CLR_CMD_CTR ) != 0)
//{
// g_Notify->DisplayError(L"RSP: DPC_STATUS_REG: DPC_CLR_CMD_CTR");
//}
//if ( ( Value & DPC_CLR_CLOCK_CTR ) != 0)
//{
// g_Notify->DisplayError(L"RSP: DPC_STATUS_REG: DPC_CLR_CLOCK_CTR");
//}
}
#endif
break;
default:
return false;
}
break;
case 0x04300000:
switch (PAddr)
{
case 0x04300000:
g_Reg->MI_MODE_REG &= ~0x7F;
g_Reg->MI_MODE_REG |= (Value & 0x7F);
if ( ( Value & MI_CLR_INIT ) != 0 )
{
g_Reg->MI_MODE_REG &= ~MI_MODE_INIT;
}
if ( ( Value & MI_SET_INIT ) != 0 )
{
g_Reg->MI_MODE_REG |= MI_MODE_INIT;
}
if ( ( Value & MI_CLR_EBUS ) != 0 )
{
g_Reg->MI_MODE_REG &= ~MI_MODE_EBUS;
}
if ( ( Value & MI_SET_EBUS ) != 0 )
{
g_Reg->MI_MODE_REG |= MI_MODE_EBUS;
}
if ( ( Value & MI_CLR_DP_INTR ) != 0 )
{
g_Reg->MI_INTR_REG &= ~MI_INTR_DP;
g_Reg->m_GfxIntrReg &= ~MI_INTR_DP;
g_Reg->CheckInterrupts();
}
if ( ( Value & MI_CLR_RDRAM ) != 0 )
{
g_Reg->MI_MODE_REG &= ~MI_MODE_RDRAM;
}
if ( ( Value & MI_SET_RDRAM ) != 0 )
{
g_Reg->MI_MODE_REG |= MI_MODE_RDRAM;
}
break;
case 0x0430000C:
if ( ( Value & MI_INTR_MASK_CLR_SP ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SP;
}
if ( ( Value & MI_INTR_MASK_SET_SP ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SP;
}
if ( ( Value & MI_INTR_MASK_CLR_SI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SI;
}
if ( ( Value & MI_INTR_MASK_SET_SI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SI;
}
if ( ( Value & MI_INTR_MASK_CLR_AI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_AI;
}
if ( ( Value & MI_INTR_MASK_SET_AI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_AI;
}
if ( ( Value & MI_INTR_MASK_CLR_VI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_VI;
}
if ( ( Value & MI_INTR_MASK_SET_VI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_VI;
}
if ( ( Value & MI_INTR_MASK_CLR_PI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_PI;
}
if ( ( Value & MI_INTR_MASK_SET_PI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_PI;
}
if ( ( Value & MI_INTR_MASK_CLR_DP ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_DP;
}
if ( ( Value & MI_INTR_MASK_SET_DP ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_DP;
}
break;
default:
return false;
}
break;
case 0x04400000:
switch (PAddr)
{
case 0x04400000:
if (g_Reg->VI_STATUS_REG != Value)
{
g_Reg->VI_STATUS_REG = Value;
if (g_Plugins->Gfx()->ViStatusChanged != NULL )
{
g_Plugins->Gfx()->ViStatusChanged();
}
}
break;
case 0x04400004:
#ifdef CFB_READ
if (g_Reg->VI_ORIGIN_REG > 0x280)
{
SetFrameBuffer(g_Reg->VI_ORIGIN_REG, (DWORD)(VI_WIDTH_REG * (VI_WIDTH_REG *.75)));
}
#endif
g_Reg->VI_ORIGIN_REG = (Value & 0xFFFFFF);
//if (UpdateScreen != NULL )
//{
// UpdateScreen();
//}
break;
case 0x04400008:
if (g_Reg->VI_WIDTH_REG != Value)
{
g_Reg->VI_WIDTH_REG = Value;
if (g_Plugins->Gfx()->ViWidthChanged != NULL )
{
g_Plugins->Gfx()->ViWidthChanged();
}
}
break;
case 0x0440000C: g_Reg->VI_INTR_REG = Value; break;
case 0x04400010:
g_Reg->MI_INTR_REG &= ~MI_INTR_VI;
g_Reg->CheckInterrupts();
break;
case 0x04400014: g_Reg->VI_BURST_REG = Value; break;
case 0x04400018: g_Reg->VI_V_SYNC_REG = Value; break;
case 0x0440001C: g_Reg->VI_H_SYNC_REG = Value; break;
case 0x04400020: g_Reg->VI_LEAP_REG = Value; break;
case 0x04400024: g_Reg->VI_H_START_REG = Value; break;
case 0x04400028: g_Reg->VI_V_START_REG = Value; break;
case 0x0440002C: g_Reg->VI_V_BURST_REG = Value; break;
case 0x04400030: g_Reg->VI_X_SCALE_REG = Value; break;
case 0x04400034: g_Reg->VI_Y_SCALE_REG = Value; break;
default:
return false;
}
break;
case 0x04500000:
switch (PAddr)
{
case 0x04500000: g_Reg->AI_DRAM_ADDR_REG = Value; break;
case 0x04500004:
g_Reg->AI_LEN_REG = Value;
if (g_System->bFixedAudio())
{
g_Audio->LenChanged();
}
else
{
if (g_Plugins->Audio()->AiLenChanged != NULL)
{
g_Plugins->Audio()->AiLenChanged();
}
}
break;
case 0x04500008: g_Reg->AI_CONTROL_REG = (Value & 1); break;
case 0x0450000C:
/* Clear Interrupt */;
g_Reg->MI_INTR_REG &= ~MI_INTR_AI;
g_Reg->m_AudioIntrReg &= ~MI_INTR_AI;
g_Reg->CheckInterrupts();
break;
case 0x04500010:
g_Reg->AI_DACRATE_REG = Value;
g_Plugins->Audio()->DacrateChanged(g_System->SystemType());
if (g_System->bFixedAudio())
{
g_Audio->SetFrequency(Value,g_System->SystemType());
}
break;
case 0x04500014: g_Reg->AI_BITRATE_REG = Value; break;
default:
return false;
}
break;
case 0x04600000:
switch (PAddr)
{
case 0x04600000: g_Reg->PI_DRAM_ADDR_REG = Value; break;
case 0x04600004: g_Reg->PI_CART_ADDR_REG = Value; break;
case 0x04600008:
g_Reg->PI_RD_LEN_REG = Value;
PI_DMA_READ();
break;
case 0x0460000C:
g_Reg->PI_WR_LEN_REG = Value;
PI_DMA_WRITE();
break;
case 0x04600010:
//if ((Value & PI_SET_RESET) != 0 )
//{
// g_Notify->DisplayError(L"reset Controller");
//}
if ((Value & PI_CLR_INTR) != 0 )
{
g_Reg->MI_INTR_REG &= ~MI_INTR_PI;
g_Reg->CheckInterrupts();
}
break;
case 0x04600014: g_Reg->PI_DOMAIN1_REG = (Value & 0xFF); break;
case 0x04600018: g_Reg->PI_BSD_DOM1_PWD_REG = (Value & 0xFF); break;
case 0x0460001C: g_Reg->PI_BSD_DOM1_PGS_REG = (Value & 0xFF); break;
case 0x04600020: g_Reg->PI_BSD_DOM1_RLS_REG = (Value & 0xFF); break;
case 0x04600024: g_Reg->PI_DOMAIN2_REG = (Value & 0xFF); break;
case 0x04600028: g_Reg->PI_BSD_DOM2_PWD_REG = (Value & 0xFF); break;
case 0x0460002C: g_Reg->PI_BSD_DOM2_PGS_REG = (Value & 0xFF); break;
case 0x04600030: g_Reg->PI_BSD_DOM2_RLS_REG = (Value & 0xFF); break;
default:
return false;
}
break;
case 0x04700000:
switch (PAddr)
{
case 0x04700000: g_Reg->RI_MODE_REG = Value; break;
case 0x04700004: g_Reg->RI_CONFIG_REG = Value; break;
case 0x04700008: g_Reg->RI_CURRENT_LOAD_REG = Value; break;
case 0x0470000C: g_Reg->RI_SELECT_REG = Value; break;
case 0x04700010: g_Reg->RI_REFRESH_REG = Value; break;
case 0x04700014: g_Reg->RI_LATENCY_REG = Value; break;
case 0x04700018: g_Reg->RI_RERROR_REG = Value; break;
case 0x0470001C: g_Reg->RI_WERROR_REG = Value; break;
default:
return false;
}
break;
case 0x04800000:
switch (PAddr)
{
case 0x04800000: g_Reg->SI_DRAM_ADDR_REG = Value; break;
case 0x04800004:
g_Reg->SI_PIF_ADDR_RD64B_REG = Value;
SI_DMA_READ ();
break;
case 0x04800010:
g_Reg->SI_PIF_ADDR_WR64B_REG = Value;
SI_DMA_WRITE();
break;
case 0x04800018:
g_Reg->MI_INTR_REG &= ~MI_INTR_SI;
g_Reg->SI_STATUS_REG &= ~SI_STATUS_INTERRUPT;
g_Reg->CheckInterrupts();
break;
default:
return false;
}
break;
case 0x08000000:
if (PAddr != 0x08010000)
{
return false;
}
if (g_System->m_SaveUsing == SaveChip_Auto)
{
g_System->m_SaveUsing = SaveChip_FlashRam;
}
if (g_System->m_SaveUsing != SaveChip_FlashRam)
{
return true;
}
WriteToFlashCommand(Value);
return true;
break;
case 0x1FC00000:
if (PAddr < 0x1FC007C0)
{
return false;
}
else if (PAddr < 0x1FC00800)
{
#ifdef _M_IX86
_asm
{
mov eax,Value
bswap eax
mov Value,eax
}
#else
g_Notify->BreakPoint(__FILEW__,__LINE__);
#endif
*(DWORD *)(&m_PifRam[PAddr - 0x1FC007C0]) = Value;
if (PAddr == 0x1FC007FC)
{
PifRamWrite();
}
return true;
}
return false;
break;
default:
return false;
break;
}
return true;
}
void CMipsMemoryVM::UpdateHalfLine()
{
DWORD NextViTimer = g_SystemTimer->GetTimer(CSystemTimer::ViTimer);
if (*g_NextTimer < 0)
{
m_HalfLine = 0;
return;
}
int check_value = (int)(m_HalfLineCheck - NextViTimer);
if (check_value > 0 && check_value < 40)
{
*g_NextTimer -= g_System->ViRefreshRate();
if (*g_NextTimer < 0)
{
*g_NextTimer = 0 - g_System->CountPerOp();
}
g_SystemTimer->UpdateTimers();
NextViTimer = g_SystemTimer->GetTimer(CSystemTimer::ViTimer);
}
m_HalfLine = (DWORD)(NextViTimer / g_System->ViRefreshRate());
m_HalfLine &= ~1;
m_HalfLine |= m_FieldSerration;
m_HalfLineCheck = NextViTimer;
}
void CMipsMemoryVM::UpdateFieldSerration (unsigned int interlaced)
{
m_FieldSerration ^= 1;
m_FieldSerration &= interlaced;
}
void CMipsMemoryVM::ProtectMemory( DWORD StartVaddr, DWORD EndVaddr )
{
WriteTraceF(TraceProtectedMem,__FUNCTION__ ": StartVaddr: %X EndVaddr: %X",StartVaddr,EndVaddr);
if (!ValidVaddr(StartVaddr) || !ValidVaddr(EndVaddr))
{
return;
}
//Get Physical Addresses passed
DWORD StartPAddr, EndPAddr;
if (!TranslateVaddr(StartVaddr,StartPAddr))
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
if (!TranslateVaddr(EndVaddr,EndPAddr))
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
//Get Length of memory being protected
int Length = ((EndPAddr + 3) - StartPAddr) & ~3;
if (Length < 0)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
//Protect that memory address space
DWORD OldProtect;
BYTE * MemLoc = Rdram() + StartPAddr;
WriteTraceF(TraceProtectedMem, __FUNCTION__ ": Paddr: %X Length: %X",StartPAddr,Length);
VirtualProtect(MemLoc, Length, PAGE_READONLY, &OldProtect);
}
void CMipsMemoryVM::UnProtectMemory( DWORD StartVaddr, DWORD EndVaddr )
{
WriteTraceF(TraceProtectedMem,__FUNCTION__ ": StartVaddr: %X EndVaddr: %X",StartVaddr,EndVaddr);
if (!ValidVaddr(StartVaddr) || !ValidVaddr(EndVaddr)) { return; }
//Get Physical Addresses passed
DWORD StartPAddr, EndPAddr;
if (!TranslateVaddr(StartVaddr,StartPAddr))
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
if (!TranslateVaddr(EndVaddr,EndPAddr))
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
//Get Length of memory being protected
int Length = ((EndPAddr + 3) - StartPAddr) & ~3;
if (Length < 0)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
//Protect that memory address space
DWORD OldProtect;
BYTE * MemLoc = Rdram() + StartPAddr;
VirtualProtect(MemLoc, Length, PAGE_READWRITE, &OldProtect);
}
void CMipsMemoryVM::Compile_LB()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0)
{
return;
}
if (IsConst(Opcode.base))
{
DWORD Address = (GetMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 3;
Map_GPR_32bit(Opcode.rt, true, -1);
Compile_LB(GetMipsRegMapLo(Opcode.rt), Address, true);
return;
}
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,3);
Map_GPR_32bit(Opcode.rt, true, -1);
MoveSxByteX86regPointerToX86reg(TempReg1, TempReg2,GetMipsRegMapLo(Opcode.rt));
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,3);
Map_GPR_32bit(Opcode.rt, true, -1);
MoveSxN64MemToX86regByte(GetMipsRegMapLo(Opcode.rt), TempReg1);
}
}
void CMipsMemoryVM::Compile_LBU()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0)
{
return;
}
if (IsConst(Opcode.base))
{
DWORD Address = (GetMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 3;
Map_GPR_32bit(Opcode.rt, false, -1);
Compile_LB(GetMipsRegMapLo(Opcode.rt), Address, false);
return;
}
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,3);
Map_GPR_32bit(Opcode.rt, false, -1);
MoveZxByteX86regPointerToX86reg(TempReg1, TempReg2,GetMipsRegMapLo(Opcode.rt));
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,3);
Map_GPR_32bit(Opcode.rt, false, -1);
MoveZxN64MemToX86regByte(GetMipsRegMapLo(Opcode.rt), TempReg1);
}
}
void CMipsMemoryVM::Compile_LH()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
if (IsConst(Opcode.base))
{
DWORD Address = (GetMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 2;
Map_GPR_32bit(Opcode.rt, true, -1);
Compile_LH(GetMipsRegMapLo(Opcode.rt), Address, true);
return;
}
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,2);
Map_GPR_32bit(Opcode.rt, true, -1);
MoveSxHalfX86regPointerToX86reg(TempReg1, TempReg2,GetMipsRegMapLo(Opcode.rt));
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,2);
Map_GPR_32bit(Opcode.rt, true, -1);
MoveSxN64MemToX86regHalf(GetMipsRegMapLo(Opcode.rt), TempReg1);
}
}
void CMipsMemoryVM::Compile_LHU()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0)
{
return;
}
if (IsConst(Opcode.base))
{
DWORD Address = (GetMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 2;
Map_GPR_32bit(Opcode.rt, false, -1);
Compile_LH(GetMipsRegMapLo(Opcode.rt), Address, false);
return;
}
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,2);
Map_GPR_32bit(Opcode.rt, false, -1);
MoveZxHalfX86regPointerToX86reg(TempReg1, TempReg2,GetMipsRegMapLo(Opcode.rt));
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,2);
Map_GPR_32bit(Opcode.rt, true, -1);
MoveZxN64MemToX86regHalf(GetMipsRegMapLo(Opcode.rt), TempReg1);
}
}
void CMipsMemoryVM::Compile_LW()
{
Compile_LW(true,false);
}
void CMipsMemoryVM::Compile_LL()
{
Compile_LW(true,true);
}
void CMipsMemoryVM::Compile_LW (bool ResultSigned, bool bRecordLLBit)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
x86Reg TempReg1, TempReg2;
if (Opcode.base == 29 && g_System->bFastSP())
{
char String[100];
Map_GPR_32bit(Opcode.rt,ResultSigned,-1);
TempReg1 = Map_MemoryStack(x86_Any,true);
sprintf(String,"%Xh",(short)Opcode.offset);
MoveVariableDispToX86Reg((void *)((DWORD)(short)Opcode.offset),String,GetMipsRegMapLo(Opcode.rt),TempReg1,1);
if (bRecordLLBit)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
}
else
{
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
Map_GPR_32bit(Opcode.rt,ResultSigned,-1);
Compile_LW(GetMipsRegMapLo(Opcode.rt),Address);
if (bRecordLLBit)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
}
else
{
if (g_System->bUseTlb())
{
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base) && Opcode.offset == 0)
{
ProtectGPR(Opcode.base);
TempReg1 = GetMipsRegMapLo(Opcode.base);
}
else
{
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
Map_GPR_32bit(Opcode.rt,ResultSigned,-1);
MoveX86regPointerToX86reg(TempReg1, TempReg2,GetMipsRegMapLo(Opcode.rt));
if (bRecordLLBit)
{
MoveConstToVariable(1,_LLBit,"LLBit");
}
}
else
{
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
Map_GPR_32bit(Opcode.rt,ResultSigned,-1);
LeaSourceAndOffset(GetMipsRegMapLo(Opcode.rt),GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
Map_GPR_32bit(Opcode.rt,ResultSigned,Opcode.base);
}
}
else
{
Map_GPR_32bit(Opcode.rt,ResultSigned,Opcode.base);
AddConstToX86Reg(GetMipsRegMapLo(Opcode.rt),(short)Opcode.immediate);
}
AndConstToX86Reg(GetMipsRegMapLo(Opcode.rt),0x1FFFFFFF);
MoveN64MemToX86reg(GetMipsRegMapLo(Opcode.rt),GetMipsRegMapLo(Opcode.rt));
if (bRecordLLBit)
{
MoveConstToVariable(1,_LLBit,"LLBit");
}
}
}
}
if (g_System->bFastSP() && Opcode.rt == 29)
{
ResetX86Protection();
ResetMemoryStack();
}
}
void CMipsMemoryVM::Compile_LWC1()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, TempReg3;
char Name[50];
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
m_Section->CompileCop1Test();
if ((Opcode.ft & 1) != 0)
{
if (RegInStack(Opcode.ft-1,CRegInfo::FPU_Double) || RegInStack(Opcode.ft-1,CRegInfo::FPU_Qword))
{
UnMap_FPR(Opcode.ft - 1, true);
}
}
if (RegInStack(Opcode.ft,CRegInfo::FPU_Double) || RegInStack(Opcode.ft,CRegInfo::FPU_Qword))
{
UnMap_FPR(Opcode.ft, true);
}
else
{
UnMap_FPR(Opcode.ft, false);
}
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
TempReg1 = Map_TempReg(x86_Any, -1, false);
Compile_LW(TempReg1,Address);
TempReg2 = Map_TempReg(x86_Any, -1, false);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg1,TempReg2);
return;
}
if (IsMapped(Opcode.base) && Opcode.offset == 0)
{
if (g_System->bUseTlb())
{
ProtectGPR(Opcode.base);
TempReg1 = GetMipsRegMapLo(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
if (Opcode.immediate == 0)
{
}
else if (Opcode.immediate == 1)
{
IncX86reg(TempReg1);
}
else if (Opcode.immediate == 0xFFFF)
{
DecX86reg(TempReg1);
}
else
{
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
}
TempReg2 = Map_TempReg(x86_Any, -1, false);
if (g_System->bUseTlb())
{
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
TempReg3 = Map_TempReg(x86_Any, -1, false);
MoveX86regPointerToX86reg(TempReg1, TempReg2,TempReg3);
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
TempReg3 = Map_TempReg(x86_Any, -1, false);
MoveN64MemToX86reg(TempReg3,TempReg1);
}
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg3,TempReg2);
}
void CMipsMemoryVM::Compile_LWL()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1 = x86_Unknown, TempReg2 = x86_Unknown, OffsetReg = x86_Unknown, shift = x86_Unknown;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0)
{
return;
}
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
DWORD Offset = Address & 3;
Map_GPR_32bit(Opcode.rt, true, Opcode.rt);
x86Reg Value = Map_TempReg(x86_Any, -1, false);
Compile_LW(Value,(Address & ~3));
AndConstToX86Reg(GetMipsRegMapLo(Opcode.rt),LWL_MASK[Offset]);
ShiftLeftSignImmed(Value,(BYTE)LWL_SHIFT[Offset]);
AddX86RegToX86Reg(GetMipsRegMapLo(Opcode.rt),Value);
return;
}
shift = Map_TempReg(x86_ECX, -1, false);
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
}
OffsetReg = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, OffsetReg);
AndConstToX86Reg(OffsetReg,3);
AndConstToX86Reg(TempReg1,(DWORD)~3);
Map_GPR_32bit(Opcode.rt, true, Opcode.rt);
AndVariableDispToX86Reg((void *)LWL_MASK,"LWL_MASK",GetMipsRegMapLo(Opcode.rt),OffsetReg,Multip_x4);
MoveVariableDispToX86Reg((void *)LWL_SHIFT,"LWL_SHIFT",shift,OffsetReg,4);
if (g_System->bUseTlb())
{
MoveX86regPointerToX86reg(TempReg1, TempReg2,TempReg1);
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveN64MemToX86reg(TempReg1,TempReg1);
}
ShiftLeftSign(TempReg1);
AddX86RegToX86Reg(GetMipsRegMapLo(Opcode.rt),TempReg1);
}
void CMipsMemoryVM::Compile_LWR()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1 = x86_Unknown, TempReg2 = x86_Unknown, OffsetReg = x86_Unknown, shift = x86_Unknown;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0)
{
return;
}
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
DWORD Offset = Address & 3;
Map_GPR_32bit(Opcode.rt, true, Opcode.rt);
x86Reg Value = Map_TempReg(x86_Any, -1, false);
Compile_LW(Value,(Address & ~3));
AndConstToX86Reg(GetMipsRegMapLo(Opcode.rt),LWR_MASK[Offset]);
ShiftRightUnsignImmed(Value,(BYTE)LWR_SHIFT[Offset]);
AddX86RegToX86Reg(GetMipsRegMapLo(Opcode.rt),Value);
return;
}
shift = Map_TempReg(x86_ECX, -1, false);
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
}
OffsetReg = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, OffsetReg);
AndConstToX86Reg(OffsetReg,3);
AndConstToX86Reg(TempReg1,(DWORD)~3);
Map_GPR_32bit(Opcode.rt, true, Opcode.rt);
AndVariableDispToX86Reg((void *)LWR_MASK,"LWR_MASK",GetMipsRegMapLo(Opcode.rt),OffsetReg,Multip_x4);
MoveVariableDispToX86Reg((void *)LWR_SHIFT,"LWR_SHIFT",shift,OffsetReg,4);
if (g_System->bUseTlb())
{
MoveX86regPointerToX86reg(TempReg1, TempReg2,TempReg1);
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveN64MemToX86reg(TempReg1,TempReg1);
}
ShiftRightUnsign(TempReg1);
AddX86RegToX86Reg(GetMipsRegMapLo(Opcode.rt),TempReg1);
}
void CMipsMemoryVM::Compile_LWU()
{
Compile_LW(false,false);
}
void CMipsMemoryVM::Compile_LD()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0)
{
return;
}
x86Reg TempReg1, TempReg2;
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
Map_GPR_64bit(Opcode.rt,-1);
Compile_LW(GetMipsRegMapHi(Opcode.rt),Address);
Compile_LW(GetMipsRegMapLo(Opcode.rt),Address + 4);
if (g_System->bFastSP() && Opcode.rt == 29)
{
ResetMemoryStack();
}
return;
}
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base) && Opcode.offset == 0)
{
if (g_System->bUseTlb())
{
ProtectGPR(Opcode.base);
TempReg1 = GetMipsRegMapLo(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any,Opcode.base,false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
Map_GPR_64bit(Opcode.rt,-1);
MoveX86regPointerToX86reg(TempReg1, TempReg2,GetMipsRegMapHi(Opcode.rt));
MoveX86regPointerToX86regDisp8(TempReg1, TempReg2,GetMipsRegMapLo(Opcode.rt),4);
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
Map_GPR_64bit(Opcode.rt,-1);
MoveN64MemToX86reg(GetMipsRegMapHi(Opcode.rt),TempReg1);
MoveN64MemDispToX86reg(GetMipsRegMapLo(Opcode.rt),TempReg1,4);
}
if (g_System->bFastSP() && Opcode.rt == 29)
{
ResetX86Protection();
g_MMU->ResetMemoryStack();
}
}
void CMipsMemoryVM::Compile_LDC1()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, TempReg3;
char Name[50];
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
m_Section->CompileCop1Test();
UnMap_FPR(Opcode.ft, false);
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
TempReg1 = Map_TempReg(x86_Any, -1, false);
Compile_LW(TempReg1,Address);
TempReg2 = Map_TempReg(x86_Any, -1, false);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
AddConstToX86Reg(TempReg2,4);
MoveX86regToX86Pointer(TempReg1,TempReg2);
Compile_LW(TempReg1,Address + 4);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg1,TempReg2);
return;
}
if (IsMapped(Opcode.base) && Opcode.offset == 0)
{
if (g_System->bUseTlb())
{
ProtectGPR(Opcode.base);
TempReg1 = GetMipsRegMapLo(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
if (Opcode.immediate == 0)
{
}
else if (Opcode.immediate == 1)
{
IncX86reg(TempReg1);
}
else if (Opcode.immediate == 0xFFFF)
{
DecX86reg(TempReg1);
}
else
{
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
}
TempReg2 = Map_TempReg(x86_Any, -1, false);
if (g_System->bUseTlb())
{
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
TempReg3 = Map_TempReg(x86_Any, -1, false);
MoveX86regPointerToX86reg(TempReg1, TempReg2,TempReg3);
Push(TempReg2);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
AddConstToX86Reg(TempReg2,4);
MoveX86regToX86Pointer(TempReg3,TempReg2);
Pop(TempReg2);
MoveX86regPointerToX86regDisp8(TempReg1, TempReg2,TempReg3,4);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg3,TempReg2);
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
TempReg3 = Map_TempReg(x86_Any, -1, false);
MoveN64MemToX86reg(TempReg3,TempReg1);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
AddConstToX86Reg(TempReg2,4);
MoveX86regToX86Pointer(TempReg3,TempReg2);
MoveN64MemDispToX86reg(TempReg3,TempReg1,4);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg3,TempReg2);
}
}
void CMipsMemoryVM::Compile_LDL()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.base != 0)
{
UnMap_GPR(Opcode.base, true);
}
if (Opcode.rt != 0)
{
UnMap_GPR(Opcode.rt, true);
}
BeforeCallDirect(m_RegWorkingSet);
MoveConstToVariable(Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex");
Call_Direct(R4300iOp::LDL, "R4300iOp::LDL");
AfterCallDirect(m_RegWorkingSet);
}
void CMipsMemoryVM::Compile_LDR()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.base != 0)
{
UnMap_GPR(Opcode.base, true);
}
if (Opcode.rt != 0)
{
UnMap_GPR(Opcode.rt, true);
}
BeforeCallDirect(m_RegWorkingSet);
MoveConstToVariable(Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex");
Call_Direct(R4300iOp::LDR, "R4300iOp::LDR");
AfterCallDirect(m_RegWorkingSet);
}
void CMipsMemoryVM::Compile_SB()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base))
{
DWORD Address = (GetMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 3;
if (IsConst(Opcode.rt))
{
Compile_SB_Const((BYTE)(GetMipsRegLo(Opcode.rt) & 0xFF), Address);
}
else if (IsMapped(Opcode.rt) && Is8BitReg(GetMipsRegMapLo(Opcode.rt)))
{
Compile_SB_Register(GetMipsRegMapLo(Opcode.rt), Address);
}
else
{
Compile_SB_Register(Map_TempReg(x86_Any8Bit, Opcode.rt, false), Address);
}
return;
}
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
Compile_StoreInstructClean(TempReg1,4);
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,3);
if (IsConst(Opcode.rt))
{
MoveConstByteToX86regPointer((BYTE)(GetMipsRegLo(Opcode.rt) & 0xFF),TempReg1, TempReg2);
}
else if (IsMapped(Opcode.rt) && Is8BitReg(GetMipsRegMapLo(Opcode.rt)))
{
MoveX86regByteToX86regPointer(GetMipsRegMapLo(Opcode.rt),TempReg1, TempReg2);
}
else
{
UnProtectGPR(Opcode.rt);
MoveX86regByteToX86regPointer(Map_TempReg(x86_Any8Bit, Opcode.rt, false), TempReg1, TempReg2);
}
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,3);
if (IsConst(Opcode.rt))
{
MoveConstByteToN64Mem((BYTE)(GetMipsRegLo(Opcode.rt) & 0xFF),TempReg1);
}
else if (IsMapped(Opcode.rt) && Is8BitReg(GetMipsRegMapLo(Opcode.rt)))
{
MoveX86regByteToN64Mem(GetMipsRegMapLo(Opcode.rt),TempReg1);
}
else
{
UnProtectGPR(Opcode.rt);
MoveX86regByteToN64Mem(Map_TempReg(x86_Any8Bit, Opcode.rt, false), TempReg1);
}
}
}
void CMipsMemoryVM::Compile_SH()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base))
{
DWORD Address = (GetMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 2;
if (IsConst(Opcode.rt))
{
Compile_SH_Const((WORD)(GetMipsRegLo(Opcode.rt) & 0xFFFF), Address);
}
else if (IsMapped(Opcode.rt))
{
Compile_SH_Register(GetMipsRegMapLo(Opcode.rt), Address);
}
else
{
Compile_SH_Register(Map_TempReg(x86_Any, Opcode.rt, false), Address);
}
return;
}
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,2);
if (IsConst(Opcode.rt))
{
MoveConstHalfToX86regPointer((WORD)(GetMipsRegLo(Opcode.rt) & 0xFFFF),TempReg1, TempReg2);
}
else if (IsMapped(Opcode.rt))
{
MoveX86regHalfToX86regPointer(GetMipsRegMapLo(Opcode.rt),TempReg1, TempReg2);
}
else
{
MoveX86regHalfToX86regPointer(Map_TempReg(x86_Any, Opcode.rt, false), TempReg1, TempReg2);
}
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,2);
if (IsConst(Opcode.rt))
{
MoveConstHalfToN64Mem((WORD)(GetMipsRegLo(Opcode.rt) & 0xFFFF),TempReg1);
}
else if (IsMapped(Opcode.rt))
{
MoveX86regHalfToN64Mem(GetMipsRegMapLo(Opcode.rt),TempReg1);
}
else
{
MoveX86regHalfToN64Mem(Map_TempReg(x86_Any, Opcode.rt, false), TempReg1);
}
}
}
void CMipsMemoryVM::Compile_SW()
{
Compile_SW(false);
}
void CMipsMemoryVM::Compile_SC()
{
Compile_SW(true);
}
void CMipsMemoryVM::Compile_SW (bool bCheckLLbit)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
x86Reg TempReg1, TempReg2;
if (Opcode.base == 29 && g_System->bFastSP())
{
if (bCheckLLbit)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
TempReg1 = Map_MemoryStack(x86_Any, true);
if (IsConst(Opcode.rt))
{
MoveConstToMemoryDisp (GetMipsRegLo(Opcode.rt),TempReg1, (DWORD)((short)Opcode.offset));
}
else if (IsMapped(Opcode.rt))
{
MoveX86regToMemory(GetMipsRegMapLo(Opcode.rt),TempReg1,(DWORD)((short)Opcode.offset));
}
else
{
TempReg2 = Map_TempReg(x86_Any, Opcode.rt, false);
MoveX86regToMemory(TempReg2,TempReg1,(DWORD)((short)Opcode.offset));
}
}
else
{
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
if (bCheckLLbit)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
if (IsConst(Opcode.rt))
{
Compile_SW_Const(GetMipsRegLo(Opcode.rt), Address);
}
else if (IsMapped(Opcode.rt))
{
Compile_SW_Register(GetMipsRegMapLo(Opcode.rt), Address);
}
else
{
Compile_SW_Register(Map_TempReg(x86_Any, Opcode.rt, false), Address);
}
return;
}
if (IsMapped(Opcode.rt))
ProtectGPR(Opcode.rt);
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (g_System->bDelaySI() || g_System->bDelayDP())
{
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp());
UpdateCounters(m_RegWorkingSet,false, true);
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp());
}
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
Compile_StoreInstructClean(TempReg1,4);
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
BYTE * Jump = NULL;
if (bCheckLLbit)
{
CompConstToVariable(1,_LLBit,"_LLBit");
JneLabel8("LLBit_Continue",0);
Jump = m_RecompPos - 1;
}
if (IsConst(Opcode.rt))
{
MoveConstToX86regPointer(GetMipsRegLo(Opcode.rt),TempReg1, TempReg2);
} else if (IsMapped(Opcode.rt))
{
MoveX86regToX86regPointer(GetMipsRegMapLo(Opcode.rt),TempReg1, TempReg2);
}
else
{
MoveX86regToX86regPointer(Map_TempReg(x86_Any, Opcode.rt, false), TempReg1, TempReg2);
}
if (bCheckLLbit)
{
CPU_Message(" ");
CPU_Message(" LLBit_Continue:");
SetJump8(Jump,m_RecompPos);
Map_GPR_32bit(Opcode.rt,false,-1);
MoveVariableToX86reg(_LLBit,"_LLBit",GetMipsRegMapLo(Opcode.rt));
}
}
else
{
if (bCheckLLbit)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
if (IsConst(Opcode.rt))
{
MoveConstToN64Mem(GetMipsRegLo(Opcode.rt),TempReg1);
}
else if (IsMapped(Opcode.rt))
{
MoveX86regToN64Mem(GetMipsRegMapLo(Opcode.rt),TempReg1);
}
else
{
MoveX86regToN64Mem(Map_TempReg(x86_Any, Opcode.rt, false), TempReg1);
}
}
}
}
void CMipsMemoryVM::Compile_SWC1()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, TempReg3;
char Name[50];
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
m_Section->CompileCop1Test();
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
UnMap_FPR(Opcode.ft, true);
TempReg1 = Map_TempReg(x86_Any, -1, false);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg1);
MoveX86PointerToX86reg(TempReg1,TempReg1);
Compile_SW_Register(TempReg1, Address);
return;
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
if (Opcode.immediate == 0)
{
}
else if (Opcode.immediate == 1)
{
IncX86reg(TempReg1);
}
else if (Opcode.immediate == 0xFFFF)
{
DecX86reg(TempReg1);
}
else
{
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
UnMap_FPR(Opcode.ft, true);
TempReg3 = Map_TempReg(x86_Any, -1, false);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg3);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToX86regPointer(TempReg3,TempReg1, TempReg2);
}
else
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
UnMap_FPR(Opcode.ft, true);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg2);
MoveX86PointerToX86reg(TempReg2,TempReg2);
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveX86regToN64Mem(TempReg2, TempReg1);
}
}
void CMipsMemoryVM::Compile_SWL()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1 = x86_Unknown, TempReg2 = x86_Unknown, Value = x86_Unknown,
shift = x86_Unknown, OffsetReg = x86_Unknown;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base))
{
DWORD Address;
Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
DWORD Offset = Address & 3;
Value = Map_TempReg(x86_Any, -1, false);
Compile_LW(Value,(Address & ~3));
AndConstToX86Reg(Value,R4300iOp::SWL_MASK[Offset]);
TempReg1 = Map_TempReg(x86_Any, Opcode.rt, false);
ShiftRightUnsignImmed(TempReg1,(BYTE)SWL_SHIFT[Offset]);
AddX86RegToX86Reg(Value,TempReg1);
Compile_SW_Register(Value, (Address & ~3));
return;
}
shift = Map_TempReg(x86_ECX, -1, false);
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
}
OffsetReg = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, OffsetReg);
AndConstToX86Reg(OffsetReg,3);
AndConstToX86Reg(TempReg1,(DWORD)~3);
Value = Map_TempReg(x86_Any, -1, false);
if (g_System->bUseTlb())
{
MoveX86regPointerToX86reg(TempReg1, TempReg2,Value);
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveN64MemToX86reg(Value,TempReg1);
}
AndVariableDispToX86Reg((void *)SWL_MASK,"SWL_MASK",Value,OffsetReg,Multip_x4);
if (!IsConst(Opcode.rt) || GetMipsRegLo(Opcode.rt) != 0)
{
MoveVariableDispToX86Reg((void *)SWL_SHIFT,"SWL_SHIFT",shift,OffsetReg,4);
if (IsConst(Opcode.rt))
{
MoveConstToX86reg(GetMipsRegLo(Opcode.rt),OffsetReg);
}
else if (IsMapped(Opcode.rt))
{
MoveX86RegToX86Reg(GetMipsRegMapLo(Opcode.rt),OffsetReg);
}
else
{
MoveVariableToX86reg(&_GPR[Opcode.rt].UW[0],CRegName::GPR_Lo[Opcode.rt],OffsetReg);
}
ShiftRightUnsign(OffsetReg);
AddX86RegToX86Reg(Value,OffsetReg);
}
if (g_System->bUseTlb())
{
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
MoveX86regToX86regPointer(Value,TempReg1, TempReg2);
}
else
{
MoveX86regToN64Mem(Value,TempReg1);
}
}
void CMipsMemoryVM::Compile_SWR()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1 = x86_Unknown, TempReg2 = x86_Unknown, Value = x86_Unknown,
OffsetReg = x86_Unknown, shift = x86_Unknown;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
DWORD Offset = Address & 3;
Value = Map_TempReg(x86_Any, -1, false);
Compile_LW(Value,(Address & ~3));
AndConstToX86Reg(Value,SWR_MASK[Offset]);
TempReg1 = Map_TempReg(x86_Any, Opcode.rt, false);
ShiftLeftSignImmed(TempReg1,(BYTE)SWR_SHIFT[Offset]);
AddX86RegToX86Reg(Value,TempReg1);
Compile_SW_Register(Value, (Address & ~3));
return;
}
shift = Map_TempReg(x86_ECX, -1, false);
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
}
OffsetReg = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, OffsetReg);
AndConstToX86Reg(OffsetReg,3);
AndConstToX86Reg(TempReg1,(DWORD)~3);
Value = Map_TempReg(x86_Any, -1, false);
if (g_System->bUseTlb())
{
MoveX86regPointerToX86reg(TempReg1, TempReg2,Value);
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveN64MemToX86reg(Value,TempReg1);
}
AndVariableDispToX86Reg((void *)SWR_MASK,"SWR_MASK",Value,OffsetReg,Multip_x4);
if (!IsConst(Opcode.rt) || GetMipsRegLo(Opcode.rt) != 0)
{
MoveVariableDispToX86Reg((void *)SWR_SHIFT,"SWR_SHIFT",shift,OffsetReg,4);
if (IsConst(Opcode.rt))
{
MoveConstToX86reg(GetMipsRegLo(Opcode.rt),OffsetReg);
}
else if (IsMapped(Opcode.rt))
{
MoveX86RegToX86Reg(GetMipsRegMapLo(Opcode.rt),OffsetReg);
}
else
{
MoveVariableToX86reg(&_GPR[Opcode.rt].UW[0],CRegName::GPR_Lo[Opcode.rt],OffsetReg);
}
ShiftLeftSign(OffsetReg);
AddX86RegToX86Reg(Value,OffsetReg);
}
if (g_System->bUseTlb())
{
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
MoveX86regToX86regPointer(Value,TempReg1, TempReg2);
}
else
{
MoveX86regToN64Mem(Value,TempReg1);
}
}
void CMipsMemoryVM::Compile_StoreInstructClean (x86Reg AddressReg, int Length )
{
if (!g_System->bSMM_StoreInstruc())
{
return;
}
g_Notify->BreakPoint(__FILEW__,__LINE__);
/*
stdstr_f strLen("%d",Length);
UnMap_AllFPRs();
/*x86Reg StoreTemp1 = Map_TempReg(x86_Any,-1,false);
MoveX86RegToX86Reg(AddressReg, StoreTemp1);
AndConstToX86Reg(StoreTemp1,0xFFC);*/
BeforeCallDirect(m_RegWorkingSet);
PushImm32("CRecompiler::Remove_StoreInstruc",CRecompiler::Remove_StoreInstruc);
PushImm32(Length);
Push(AddressReg);
MoveConstToX86reg((DWORD)g_Recompiler,x86_ECX);
Call_Direct(AddressOf(&CRecompiler::ClearRecompCode_Virt), "CRecompiler::ClearRecompCode_Virt");
AfterCallDirect(m_RegWorkingSet);
/*JmpLabel8("MemCheckDone",0);
BYTE * MemCheckDone = m_RecompPos - 1;
CPU_Message(" ");
CPU_Message(" NotDelaySlot:");
SetJump8(NotDelaySlotJump,m_RecompPos);
MoveX86RegToX86Reg(AddressReg, StoreTemp1);
ShiftRightUnsignImmed(StoreTemp1,12);
LeaRegReg(StoreTemp1,StoreTemp1,(ULONG)&(g_Recompiler->FunctionTable()[0]),Multip_x4);
CompConstToX86regPointer(StoreTemp1,0);
JeLabel8("MemCheckDone",0);
BYTE * MemCheckDone2 = m_RecompPos - 1;
BeforeCallDirect(m_RegWorkingSet);
PushImm32("CRecompiler::Remove_StoreInstruc",CRecompiler::Remove_StoreInstruc);
PushImm32(strLen.c_str(),Length);
Push(AddressReg);
MoveConstToX86reg((DWORD)g_Recompiler,x86_ECX);
Call_Direct(AddressOf(&CRecompiler::ClearRecompCode_Virt), "CRecompiler::ClearRecompCode_Virt");
AfterCallDirect(m_RegWorkingSet);
CPU_Message(" ");
CPU_Message(" MemCheckDone:");
SetJump8(MemCheckDone,m_RecompPos);
SetJump8(MemCheckDone2,m_RecompPos);
X86Protected(StoreTemp1) = false;*/
}
void CMipsMemoryVM::Compile_SD()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
if (IsConst(Opcode.rt))
{
Compile_SW_Const(Is64Bit(Opcode.rt) ? GetMipsRegHi(Opcode.rt) : (GetMipsRegLo_S(Opcode.rt) >> 31), Address);
Compile_SW_Const(GetMipsRegLo(Opcode.rt), Address + 4);
}
else if (IsMapped(Opcode.rt))
{
Compile_SW_Register(Is64Bit(Opcode.rt) ? GetMipsRegMapHi(Opcode.rt) : Map_TempReg(x86_Any, Opcode.rt, true), Address);
Compile_SW_Register(GetMipsRegMapLo(Opcode.rt), Address + 4);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.rt, true);
Compile_SW_Register(TempReg1, Address);
Compile_SW_Register(Map_TempReg(TempReg1,Opcode.rt,false), Address + 4);
}
}
else
{
if (IsMapped(Opcode.rt))
{
ProtectGPR(Opcode.rt);
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
UnProtectGPR(Opcode.base);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
Compile_StoreInstructClean(TempReg1,8);
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
if (IsConst(Opcode.rt))
{
if (Is64Bit(Opcode.rt))
{
MoveConstToX86regPointer(GetMipsRegHi(Opcode.rt),TempReg1, TempReg2);
}
else
{
MoveConstToX86regPointer((GetMipsRegLo_S(Opcode.rt) >> 31),TempReg1, TempReg2);
}
AddConstToX86Reg(TempReg1,4);
MoveConstToX86regPointer(GetMipsRegLo(Opcode.rt),TempReg1, TempReg2);
}
else if (IsMapped(Opcode.rt))
{
if (Is64Bit(Opcode.rt))
{
MoveX86regToX86regPointer(GetMipsRegMapHi(Opcode.rt),TempReg1, TempReg2);
}
else
{
MoveX86regToX86regPointer(Map_TempReg(x86_Any, Opcode.rt, true), TempReg1, TempReg2);
}
AddConstToX86Reg(TempReg1,4);
MoveX86regToX86regPointer(GetMipsRegMapLo(Opcode.rt),TempReg1, TempReg2);
}
else
{
x86Reg Reg = Map_TempReg(x86_Any, Opcode.rt, true);
MoveX86regToX86regPointer(Reg,TempReg1, TempReg2);
AddConstToX86Reg(TempReg1,4);
MoveX86regToX86regPointer(Map_TempReg(Reg, Opcode.rt, false), TempReg1, TempReg2);
}
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
if (IsConst(Opcode.rt))
{
if (Is64Bit(Opcode.rt))
{
MoveConstToN64Mem(GetMipsRegHi(Opcode.rt),TempReg1);
}
else if (IsSigned(Opcode.rt))
{
MoveConstToN64Mem((GetMipsRegLo_S(Opcode.rt) >> 31),TempReg1);
}
else
{
MoveConstToN64Mem(0,TempReg1);
}
MoveConstToN64MemDisp(GetMipsRegLo(Opcode.rt),TempReg1,4);
}
else if (IsKnown(Opcode.rt) && IsMapped(Opcode.rt))
{
if (Is64Bit(Opcode.rt))
{
MoveX86regToN64Mem(GetMipsRegMapHi(Opcode.rt),TempReg1);
}
else if (IsSigned(Opcode.rt))
{
MoveX86regToN64Mem(Map_TempReg(x86_Any, Opcode.rt, true), TempReg1);
}
else
{
MoveConstToN64Mem(0,TempReg1);
}
MoveX86regToN64MemDisp(GetMipsRegMapLo(Opcode.rt),TempReg1, 4);
}
else
{
x86Reg Reg;
MoveX86regToN64Mem(Reg = Map_TempReg(x86_Any, Opcode.rt, true), TempReg1);
MoveX86regToN64MemDisp(Map_TempReg(Reg, Opcode.rt, false), TempReg1, 4);
}
}
}
}
void CMipsMemoryVM::Compile_SDC1()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, TempReg3;
char Name[50];
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
m_Section->CompileCop1Test();
if (IsConst(Opcode.base))
{
DWORD Address = GetMipsRegLo(Opcode.base) + (short)Opcode.offset;
TempReg1 = Map_TempReg(x86_Any, -1, false);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg1);
AddConstToX86Reg(TempReg1,4);
MoveX86PointerToX86reg(TempReg1,TempReg1);
Compile_SW_Register(TempReg1, Address);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg1);
MoveX86PointerToX86reg(TempReg1,TempReg1);
Compile_SW_Register(TempReg1, Address + 4);
return;
}
if (IsMapped(Opcode.base))
{
ProtectGPR(Opcode.base);
if (Opcode.offset != 0)
{
TempReg1 = Map_TempReg(x86_Any, -1, false);
LeaSourceAndOffset(TempReg1,GetMipsRegMapLo(Opcode.base),(short)Opcode.offset);
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
}
}
else
{
TempReg1 = Map_TempReg(x86_Any, Opcode.base, false);
if (Opcode.immediate == 0)
{
}
else if (Opcode.immediate == 1)
{
IncX86reg(TempReg1);
}
else if (Opcode.immediate == 0xFFFF)
{
DecX86reg(TempReg1);
}
else
{
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
if (g_System->bUseTlb())
{
TempReg2 = Map_TempReg(x86_Any, -1, false);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
CompileWriteTLBMiss(TempReg1,TempReg2);
TempReg3 = Map_TempReg(x86_Any, -1, false);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg3);
AddConstToX86Reg(TempReg3,4);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToX86regPointer(TempReg3,TempReg1, TempReg2);
AddConstToX86Reg(TempReg1,4);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg3);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToX86regPointer(TempReg3,TempReg1, TempReg2);
}
else
{
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
TempReg3 = Map_TempReg(x86_Any, -1, false);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg3);
AddConstToX86Reg(TempReg3,4);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToN64Mem(TempReg3, TempReg1);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg3);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToN64MemDisp(TempReg3, TempReg1,4);
}
}
void CMipsMemoryVM::Compile_SDL()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.base != 0)
{
UnMap_GPR(Opcode.base, true);
}
if (Opcode.rt != 0)
{
UnMap_GPR(Opcode.rt, true);
}
BeforeCallDirect(m_RegWorkingSet);
MoveConstToVariable(Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex");
Call_Direct(R4300iOp::SDL, "R4300iOp::SDL");
AfterCallDirect(m_RegWorkingSet);
}
void CMipsMemoryVM::Compile_SDR()
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.base != 0)
{
UnMap_GPR(Opcode.base, true);
}
if (Opcode.rt != 0)
{
UnMap_GPR(Opcode.rt, true);
}
BeforeCallDirect(m_RegWorkingSet);
MoveConstToVariable(Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex");
Call_Direct(R4300iOp::SDR, "R4300iOp::SDR");
AfterCallDirect(m_RegWorkingSet);
}
LPCTSTR CMipsMemoryVM::LabelName ( DWORD Address ) const
{
//StringMap::iterator theIterator = m_LabelList.find(Address);
//if (theIterator != m_LabelList.end())
//{
// return (*theIterator).second;
//}
sprintf(m_strLabelName,"0x%08X",Address);
return m_strLabelName;
}
void CMipsMemoryVM::TLB_Mapped( DWORD VAddr, DWORD Len, DWORD PAddr, bool bReadOnly )
{
for (DWORD count = VAddr, VEnd = VAddr + Len; count < VEnd; count += 0x1000)
{
DWORD Index = count >> 12;
m_TLB_ReadMap[Index] = ((DWORD)m_RDRAM + (count - VAddr + PAddr)) - count;
if (!bReadOnly)
{
m_TLB_WriteMap[Index] = ((DWORD)m_RDRAM + (count - VAddr + PAddr)) - count;
}
}
}
void CMipsMemoryVM::TLB_Unmaped( DWORD Vaddr, DWORD Len )
{
for (DWORD count = Vaddr, End = Vaddr + Len; count < End; count += 0x1000)
{
DWORD Index = count >> 12;
m_TLB_ReadMap[Index] = NULL;
m_TLB_WriteMap[Index] = NULL;
}
}
void CMipsMemoryVM::RdramChanged ( CMipsMemoryVM * _this )
{
if (_this->m_AllocatedRdramSize == g_Settings->LoadDword(Game_RDRamSize))
{
return;
}
if (_this->m_AllocatedRdramSize == 0x400000)
{
if (VirtualAlloc(_this->m_RDRAM + 0x400000, 0x400000, MEM_COMMIT, PAGE_READWRITE)==NULL)
{
WriteTrace(TraceError,__FUNCTION__ ": failed to allocate extended memory");
g_Notify->FatalError(GS(MSG_MEM_ALLOC_ERROR));
}
_this->m_AllocatedRdramSize = 0x800000;
}
else
{
VirtualFree(_this->m_RDRAM + 0x400000, 0x400000,MEM_DECOMMIT);
_this->m_AllocatedRdramSize = 0x400000;
}
}
void CMipsMemoryVM::ChangeSpStatus()
{
if ( ( RegModValue & SP_CLR_HALT ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_HALT;
}
if ( ( RegModValue & SP_SET_HALT ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_HALT;
}
if ( ( RegModValue & SP_CLR_BROKE ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_BROKE;
}
if ( ( RegModValue & SP_CLR_INTR ) != 0)
{
g_Reg->MI_INTR_REG &= ~MI_INTR_SP;
g_Reg->m_RspIntrReg &= ~MI_INTR_SP;
g_Reg->CheckInterrupts();
}
if ( ( RegModValue & SP_SET_INTR ) != 0 && bHaveDebugger())
{
g_Notify->DisplayError(L"SP_SET_INTR");
}
if ( ( RegModValue & SP_CLR_SSTEP ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SSTEP;
}
if ( ( RegModValue & SP_SET_SSTEP ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SSTEP;
}
if ( ( RegModValue & SP_CLR_INTR_BREAK ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_INTR_BREAK;
}
if ( ( RegModValue & SP_SET_INTR_BREAK ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_INTR_BREAK;
}
if ( ( RegModValue & SP_CLR_SIG0 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG0;
}
if ( ( RegModValue & SP_SET_SIG0 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG0;
}
if ( ( RegModValue & SP_CLR_SIG1 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG1;
}
if ( ( RegModValue & SP_SET_SIG1 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG1;
}
if ( ( RegModValue & SP_CLR_SIG2 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG2;
}
if ( ( RegModValue & SP_SET_SIG2 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG2;
}
if ( ( RegModValue & SP_CLR_SIG3 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG3;
}
if ( ( RegModValue & SP_SET_SIG3 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG3;
}
if ( ( RegModValue & SP_CLR_SIG4 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG4;
}
if ( ( RegModValue & SP_SET_SIG4 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG4;
}
if ( ( RegModValue & SP_CLR_SIG5 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG5;
}
if ( ( RegModValue & SP_SET_SIG5 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG5;
}
if ( ( RegModValue & SP_CLR_SIG6 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG6;
}
if ( ( RegModValue & SP_SET_SIG6 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG6;
}
if ( ( RegModValue & SP_CLR_SIG7 ) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG7;
}
if ( ( RegModValue & SP_SET_SIG7 ) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG7;
}
if ( ( RegModValue & SP_SET_SIG0 ) != 0 && g_System->RspAudioSignal())
{
g_Reg->MI_INTR_REG |= MI_INTR_SP;
g_Reg->CheckInterrupts();
}
//if (*( DWORD *)(DMEM + 0xFC0) == 1)
//{
// ChangeTimer(RspTimer,0x40000);
//}
//else
//{
try
{
g_System->RunRSP();
}
catch (...)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
//}
}
void CMipsMemoryVM::ChangeMiIntrMask()
{
if ( ( RegModValue & MI_INTR_MASK_CLR_SP ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SP;
}
if ( ( RegModValue & MI_INTR_MASK_SET_SP ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SP;
}
if ( ( RegModValue & MI_INTR_MASK_CLR_SI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SI;
}
if ( ( RegModValue & MI_INTR_MASK_SET_SI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SI;
}
if ( ( RegModValue & MI_INTR_MASK_CLR_AI ) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_AI;
}
if ( ( RegModValue & MI_INTR_MASK_SET_AI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_AI;
}
if ( ( RegModValue & MI_INTR_MASK_CLR_VI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_VI;
}
if ( ( RegModValue & MI_INTR_MASK_SET_VI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_VI;
}
if ( ( RegModValue & MI_INTR_MASK_CLR_PI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_PI;
}
if ( ( RegModValue & MI_INTR_MASK_SET_PI ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_PI;
}
if ( ( RegModValue & MI_INTR_MASK_CLR_DP ) != 0 )
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_DP;
}
if ( ( RegModValue & MI_INTR_MASK_SET_DP ) != 0 )
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_DP;
}
}