// Project64 - A Nintendo 64 emulator // https://www.pj64-emu.com/ // Copyright(C) 2001-2021 Project64 // Copyright(C) 2015 Bobby Smiles // GNU/GPLv2 licensed: https://gnu.org/licenses/gpl-2.0.html #include "stdafx.h" #include "GBCart.h" #include #include static void read_gb_cart_normal(struct gb_cart* gb_cart, uint16_t address, uint8_t* data) { uint16_t offset; if ((address >= 0x0000) && (address <= 0x7FFF)) { // Read Game Boy cart if (address >= gb_cart->rom_size) { // If address is larger then our ROM size, bail out return; } memcpy(data, &gb_cart->rom[address], 0x20); } else if ((address >= 0xA000) && (address <= 0xBFFF)) { // Read from RAM if (gb_cart->ram == nullptr) { // No RAM to write to return; } offset = address - 0xA000; if (offset >= gb_cart->ram_size) { // Offset is larger then our RAM size return; } memcpy(&gb_cart->ram[offset], data, 0x20); memcpy(data, &gb_cart->ram[offset], 0x20); } } static void write_gb_cart_normal(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data) { uint16_t offset; if ((address >= 0xA000) && (address <= 0xBFFF)) { // Write to RAM if (gb_cart->ram == nullptr) { // No RAM to write to return; } offset = address - 0xa000; if (offset >= gb_cart->ram_size) { // Offset is larger then our RAM size return; } memcpy(&gb_cart->ram[offset], data, 0x20); } } static void read_gb_cart_mbc1(struct gb_cart* gb_cart, uint16_t address, uint8_t* data) { size_t offset; if ((address >= 0x0000) && (address <= 0x3FFF)) // No unbanked memory { memcpy(data, &gb_cart->rom[address], 0x20); } else if ((address >= 0x4000) && (address <= 0x7FFF)) // Read from ROM { offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000); if (offset < gb_cart->rom_size) { memcpy(data, &gb_cart->rom[offset], 0x20); } } else if ((address >= 0xA000) && (address <= 0xBFFF)) // Read from RAM { if (gb_cart->ram != nullptr) { offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(data, &gb_cart->ram[offset], 0x20); } } } } static void write_gb_cart_mbc1(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data) { size_t offset; if ((address >= 0x0000) && (address <= 0x1FFF)) // RAM enable { // Enable/disable RAM gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A; } else if ((address >= 0x2000) && (address <= 0x3FFF)) // ROM bank select { gb_cart->rom_bank &= 0x60; // Keep MSB gb_cart->rom_bank |= data[0] & 0x1F; // Emulate quirk: 0x00 -> 0x01, 0x20 -> 0x21, 0x40->0x41, 0x60 -> 0x61 if ((gb_cart->rom_bank & 0x1F) == 0) { gb_cart->rom_bank |= 0x01; } } else if ((address >= 0x4000) && (address <= 0x5FFF)) // RAM bank select { if (gb_cart->ram_bank_mode) { gb_cart->ram_bank = data[0] & 0x03; } else { gb_cart->rom_bank &= 0x1F; gb_cart->rom_bank |= ((data[0] & 0x03) << 5); // Set bits 5 and 6 of ROM bank } } else if ((address >= 0x6000) && (address <= 0x7FFF)) // MBC1 mode select { // This is overly complicated, but it keeps us from having to do bitwise math later // Basically we shuffle the 2 "magic bits" between rom_bank and ram_bank as necessary if (gb_cart->ram_bank_mode != (data[0] & 0x01)) { // We should only alter the ROM and RAM bank numbers if we have changed modes gb_cart->ram_bank_mode = data[0] & 0x01; if (gb_cart->ram_bank_mode) { gb_cart->ram_bank = gb_cart->rom_bank >> 5; // Set the RAM bank to the "magic bits" gb_cart->rom_bank &= 0x1F; // Zero out bits 5 and 6 to keep consistency } else { gb_cart->rom_bank &= 0x1F; gb_cart->rom_bank |= (gb_cart->ram_bank << 5); gb_cart->ram_bank = 0x00; // We can only reach RAM page 0 } } } else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM { if (gb_cart->ram != nullptr) { offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(&gb_cart->ram[offset], data, 0x20); } } } } static void read_gb_cart_mbc2(struct gb_cart* gb_cart, uint16_t address, uint8_t* data) { size_t offset; if ((address < 0x4000)) // ROM bank 0 { memcpy(data, &gb_cart->rom[address], 0x20); } else if ((address >= 0x4000) && (address < 0x8000)) // Switchable ROM bank { offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000); if (offset < gb_cart->rom_size) { memcpy(data, &gb_cart->rom[offset], 0x20); } } else if ((address >= 0xA000) && (address <= 0xC000)) // Upper bounds of memory map { if (gb_cart->ram != nullptr) { offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(data, &gb_cart->ram[offset], 0x20); } } } } static void write_gb_cart_mbc2(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data) { size_t offset; if ((address >= 0x0000) && (address <= 0x1FFF)) // We shouldn't be able to read/write to RAM unless this is toggled on { gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A; } else if ((address >= 0x2000) && (address <= 0x3FFF)) // ROM bank select { gb_cart->rom_bank = data[0] & 0x0F; if (gb_cart->rom_bank == 0) { gb_cart->rom_bank = 1; } } else if ((address >= 0x4000) && (address <= 0x5FFF)) // RAM bank select { if (gb_cart->ram != nullptr) { gb_cart->ram_bank = data[0] & 0x07; } } else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM { if (gb_cart->ram != nullptr) { offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(&gb_cart->ram[offset], data, 0x20); } } } } void memoryUpdateMBC3Clock(struct gb_cart* gb_cart) { time_t now = time(nullptr); time_t diff = now - gb_cart->rtc_last_time; if (diff > 0) { // Update the clock according to the last update time gb_cart->rtc_data[0] += (int)(diff % 60); if (gb_cart->rtc_data[0] > 59) { gb_cart->rtc_data[0] -= 60; gb_cart->rtc_data[1]++; } diff /= 60; gb_cart->rtc_data[1] += (int)(diff % 60); if (gb_cart->rtc_data[1] > 59) { gb_cart->rtc_data[1] -= 60; gb_cart->rtc_data[2]++; } diff /= 60; gb_cart->rtc_data[2] += (int)(diff % 24); if (gb_cart->rtc_data[2] > 23) { gb_cart->rtc_data[2] -= 24; gb_cart->rtc_data[3]++; } diff /= 24; gb_cart->rtc_data[3] += (int)(diff & 0xFFFFFFFF); if (gb_cart->rtc_data[3] > 255) { if (gb_cart->rtc_data[3] > 511) { gb_cart->rtc_data[3] %= 512; gb_cart->rtc_data[3] |= 0x80; } gb_cart->rtc_data[4] = (gb_cart->rtc_data[4] & 0xFE) | (gb_cart->rtc_data[3] > 255 ? 1 : 0); } } gb_cart->rtc_last_time = now; } static void read_gb_cart_mbc3(struct gb_cart* gb_cart, uint16_t address, uint8_t* data) { size_t offset; if ((address < 0x4000)) // ROM bank 0 { memcpy(data, &gb_cart->rom[address], 0x20); } else if ((address >= 0x4000) && (address < 0x8000)) // Switchable ROM bank { offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000); if (offset < gb_cart->rom_size) { memcpy(data, &gb_cart->rom[offset], 0x20); } } else if ((address >= 0xA000) && (address <= 0xC000)) // Upper bounds of memory map { if (gb_cart->ram != nullptr) { if (gb_cart->ram_bank <= 0x03) { offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(data, &gb_cart->ram[offset], 0x20); } } else if (gb_cart->has_rtc) { if (gb_cart->rtc_latch) { for (int i = 0; i < 32; i++) { data[i] = (uint8_t)(gb_cart->rtc_latch_data[gb_cart->ram_bank - 0x08]); } } else { memoryUpdateMBC3Clock(gb_cart); for (int i = 0; i < 32; i++) { data[i] = (uint8_t)(gb_cart->rtc_data[gb_cart->ram_bank - 0x08]); } } } } } } static void write_gb_cart_mbc3(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data) { uint8_t bank; size_t offset; if ((address >= 0x0000) && (address <= 0x1FFF)) // We shouldn't be able to read/write to RAM unless this is toggled on { // Enable / Disable RAM -- NOT WORKING -- gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A; } else if ((address >= 0x2000) && (address <= 0x3FFF)) // ROM bank select { bank = data[0] & 0x7F; gb_cart->rom_bank = (bank == 0) ? 1 : bank; } else if ((address >= 0x4000) && (address <= 0x5FFF)) // RAM/clock bank select { if (gb_cart->ram != nullptr) { bank = data[0]; if (gb_cart->has_rtc && (bank >= 0x8 && bank <= 0xc)) { // Set the bank for the timer gb_cart->ram_bank = bank; } else { gb_cart->ram_bank = bank & 0x03; } } } else if ((address >= 0x6000) && (address <= 0x7FFF)) // Latch timer data { // Implement RTC timer / latch if (gb_cart->rtc_latch == 0 && data[0] == 1) { // Update time memoryUpdateMBC3Clock(gb_cart); for (int i = 0; i < 4; i++) { gb_cart->rtc_latch_data[i] = gb_cart->rtc_data[i]; } } gb_cart->rtc_latch = data[0]; } else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM { if (gb_cart->ram != nullptr) { if (gb_cart->ram_bank <= 0x03) { offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(&gb_cart->ram[offset], data, 0x20); } } else if (gb_cart->has_rtc) { // RTC write gb_cart->rtc_data[gb_cart->ram_bank - 0x08] = data[0]; } } } } static void read_gb_cart_mbc4(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void write_gb_cart_mbc4(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void read_gb_cart_mbc5(struct gb_cart * gb_cart, uint16_t address, uint8_t * data) { size_t offset; if ((address < 0x4000)) // ROM bank 0 { memcpy(data, &gb_cart->rom[address], 0x20); } else if ((address >= 0x4000) && (address < 0x8000)) // Switchable ROM bank { offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000); if (offset < gb_cart->rom_size) { memcpy(data, &gb_cart->rom[offset], 0x20); } } else if ((address >= 0xA000) && (address <= 0xC000)) // Upper bounds of memory map { if (gb_cart->ram != nullptr) { offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(data, &gb_cart->ram[offset], 0x20); } } } } static void write_gb_cart_mbc5(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data) { size_t offset; if ((address >= 0x0000) && (address <= 0x1FFF)) // We shouldn't be able to read/write to RAM unless this is toggled on { // Enable / Disable RAM -- NOT WORKING -- gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A; } else if ((address >= 0x2000) && (address <= 0x2FFF)) // ROM bank select, low bits { gb_cart->rom_bank &= 0xff00; gb_cart->rom_bank |= data[0]; } else if ((address >= 0x3000) && (address <= 0x3FFF)) // ROM bank select, high bit { gb_cart->rom_bank &= 0x00ff; gb_cart->rom_bank |= (data[0] & 0x01) << 8; } else if ((address >= 0x4000) && (address <= 0x5FFF)) // RAM bank select { if (gb_cart->ram != nullptr) { gb_cart->ram_bank = data[0] & 0x0f; } } else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM { if (gb_cart->ram != nullptr) { offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(&gb_cart->ram[offset], data, 0x20); } } } } static void read_gb_cart_mmm01(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void write_gb_cart_mmm01(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void read_gb_cart_pocket_cam(struct gb_cart * gb_cart, uint16_t address, uint8_t * data) { size_t offset; if ((address < 0x4000)) // ROM bank 0 { memcpy(data, &gb_cart->rom[address], 0x20); } else if ((address >= 0x4000) && (address < 0x8000)) // Switchable ROM bank { offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000); if (offset < gb_cart->rom_size) { memcpy(data, &gb_cart->rom[offset], 0x20); } } else if ((address >= 0xA000) && (address <= 0xC000)) // Upper bounds of memory map { // Check to see if where currently in register mode if (gb_cart->ram != nullptr) { if (gb_cart->ram_bank & 0x10) { // When in register mode, based off of N-Rage code we just fill the memory with zeroes // Seems to be incorrect behavior, but need to find more documentation memset(data, 0x00, 0x20); } else { // Read RAM normally offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(data, &gb_cart->ram[offset], 0x20); } } } } } static void write_gb_cart_pocket_cam(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data) { size_t offset; if ((address >= 0x0000) && (address <= 0x1FFF)) // We shouldn't be able to read/write to RAM unless this is toggled on { // Enable / Disable RAM gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A; } else if ((address >= 0x2000) && (address <= 0x2FFF)) // ROM bank select, low bits { gb_cart->rom_bank &= 0xFF00; gb_cart->rom_bank |= data[0]; } else if ((address >= 0x4000) && (address <= 0x4FFF)) // Camera register and RAM bank select { if (gb_cart->ram != nullptr) { if (data[0] & 0x10) { // Register mode gb_cart->ram_bank = data[0]; } else { // RAM mode gb_cart->ram_bank = data[0] & 0x0F; } } } else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM { if (gb_cart->ram != nullptr) { if (gb_cart->ram_bank & 0x10) { // Register mode (do nothing) } else { // RAM mode offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000); if (offset < gb_cart->ram_size) { memcpy(&gb_cart->ram[offset], data, 0x20); } } } } } static void read_gb_cart_bandai_tama5(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void write_gb_cart_bandai_tama5(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void read_gb_cart_huc1(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void write_gb_cart_huc1(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void read_gb_cart_huc3(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } static void write_gb_cart_huc3(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/) { g_Notify->BreakPoint(__FILE__, __LINE__); } enum gbcart_extra_devices { GED_NONE = 0x00, GED_RAM = 0x01, GED_BATTERY = 0x02, GED_RTC = 0x04, GED_RUMBLE = 0x08 }; struct parsed_cart_type { void(*read_gb_cart)(struct gb_cart*, uint16_t, uint8_t*); void(*write_gb_cart)(struct gb_cart*, uint16_t, const uint8_t*); unsigned int extra_devices; }; static const struct parsed_cart_type* parse_cart_type(uint8_t cart_type) { #define MBC(x) read_gb_cart_ ## x, write_gb_cart_ ## x static const struct parsed_cart_type GB_CART_TYPES[] = { { MBC(normal), GED_NONE }, { MBC(mbc1), GED_NONE }, { MBC(mbc1), GED_RAM }, { MBC(mbc1), GED_RAM | GED_BATTERY }, { MBC(mbc2), GED_NONE }, { MBC(mbc2), GED_BATTERY }, { MBC(normal), GED_RAM }, { MBC(normal), GED_RAM | GED_BATTERY }, { MBC(mmm01), GED_NONE }, { MBC(mmm01), GED_RAM }, { MBC(mmm01), GED_RAM | GED_BATTERY }, { MBC(mbc3), GED_BATTERY | GED_RTC }, { MBC(mbc3), GED_RAM | GED_BATTERY | GED_RTC }, { MBC(mbc3), GED_NONE }, { MBC(mbc3), GED_RAM }, { MBC(mbc3), GED_RAM | GED_BATTERY }, { MBC(mbc4), GED_NONE }, { MBC(mbc4), GED_RAM }, { MBC(mbc4), GED_RAM | GED_BATTERY }, { MBC(mbc5), GED_NONE }, { MBC(mbc5), GED_RAM }, { MBC(mbc5), GED_RAM | GED_BATTERY }, { MBC(mbc5), GED_RUMBLE }, { MBC(mbc5), GED_RAM | GED_RUMBLE }, { MBC(mbc5), GED_RAM | GED_BATTERY | GED_RUMBLE }, { MBC(pocket_cam), GED_NONE }, { MBC(bandai_tama5), GED_NONE }, { MBC(huc3), GED_NONE }, { MBC(huc1), GED_RAM | GED_BATTERY } }; #undef MBC switch (cart_type) { case 0x00: return &GB_CART_TYPES[0]; case 0x01: return &GB_CART_TYPES[1]; case 0x02: return &GB_CART_TYPES[2]; case 0x03: return &GB_CART_TYPES[3]; case 0x05: return &GB_CART_TYPES[4]; case 0x06: return &GB_CART_TYPES[5]; case 0x08: return &GB_CART_TYPES[6]; case 0x09: return &GB_CART_TYPES[7]; case 0x0B: return &GB_CART_TYPES[8]; case 0x0C: return &GB_CART_TYPES[9]; case 0x0D: return &GB_CART_TYPES[10]; case 0x0F: return &GB_CART_TYPES[11]; case 0x10: return &GB_CART_TYPES[12]; case 0x11: return &GB_CART_TYPES[13]; case 0x12: return &GB_CART_TYPES[14]; case 0x13: return &GB_CART_TYPES[15]; case 0x15: return &GB_CART_TYPES[16]; case 0x16: return &GB_CART_TYPES[17]; case 0x17: return &GB_CART_TYPES[18]; case 0x19: return &GB_CART_TYPES[19]; case 0x1A: return &GB_CART_TYPES[20]; case 0x1B: return &GB_CART_TYPES[21]; case 0x1C: return &GB_CART_TYPES[22]; case 0x1D: return &GB_CART_TYPES[23]; case 0x1E: return &GB_CART_TYPES[24]; case 0xFC: return &GB_CART_TYPES[25]; case 0xFD: return &GB_CART_TYPES[26]; case 0xFE: return &GB_CART_TYPES[27]; case 0xFF: return &GB_CART_TYPES[28]; default: return nullptr; } } bool GBCart::init_gb_cart(struct gb_cart* gb_cart, const char* gb_file) { const struct parsed_cart_type* type; std::unique_ptr rom; size_t rom_size = 0; std::unique_ptr ram; size_t ram_size = 0; CFile tempFile; // Load Game Boy cart ROM if (!tempFile.Open(gb_file, CFileBase::modeRead)) { g_Notify->DisplayError("Failed to open Transfer Pak ROM"); return false; } rom_size = tempFile.GetLength(); rom.reset(new uint8_t[rom_size]); tempFile.Read(rom.get(), (uint32_t)rom_size); tempFile.Close(); if (rom_size < 0x8000) { return false; } // Get and parse cart type uint8_t cart_type = rom.get()[0x147]; type = parse_cart_type(cart_type); if (type == nullptr) { return false; } // Load RAM (if present) if (type->extra_devices & GED_RAM) { ram_size = 0; switch (rom.get()[0x149]) { case 0x01: ram_size = 1 * 0x800; break; case 0x02: ram_size = 4 * 0x800; break; case 0x03: ram_size = 16 * 0x800; break; case 0x04: ram_size = 64 * 0x800; break; case 0x05: ram_size = 32 * 0x800; break; } if (ram_size != 0) { ram.reset(new uint8_t[ram_size]); if (ram.get() == nullptr) { return false; } if (!tempFile.Open(g_Settings->LoadStringVal(Game_Transferpak_Sav).c_str(), CFileBase::modeRead)) { g_Notify->DisplayError("Failed to open Transfer Pak SAV file"); return false; } tempFile.Read(ram.get(), (uint32_t)ram_size); } // If we have RTC we need to load in the data, we assume the save will use the VBA-M format if (type->extra_devices & GED_RTC) { tempFile.Read(&gb_cart->rtc_data[0], 4); tempFile.Read(&gb_cart->rtc_data[1], 4); tempFile.Read(&gb_cart->rtc_data[2], 4); tempFile.Read(&gb_cart->rtc_data[3], 4); tempFile.Read(&gb_cart->rtc_data[4], 4); tempFile.Read(&gb_cart->rtc_latch_data[0], 4); tempFile.Read(&gb_cart->rtc_latch_data[1], 4); tempFile.Read(&gb_cart->rtc_latch_data[2], 4); tempFile.Read(&gb_cart->rtc_latch_data[3], 4); tempFile.Read(&gb_cart->rtc_latch_data[4], 4); tempFile.Read(&gb_cart->rtc_last_time, 8); memoryUpdateMBC3Clock(gb_cart); } tempFile.Close(); } // Update gb_cart gb_cart->rom = rom.release(); gb_cart->ram = ram.release(); gb_cart->rom_size = rom_size; gb_cart->ram_size = ram_size; gb_cart->rom_bank = 1; gb_cart->ram_bank = 0; gb_cart->has_rtc = (type->extra_devices & GED_RTC) ? 1 : 0; gb_cart->read_gb_cart = type->read_gb_cart; gb_cart->write_gb_cart = type->write_gb_cart; return true; } void GBCart::save_gb_cart(struct gb_cart* gb_cart) { CFile ramFile; ramFile.Open(g_Settings->LoadStringVal(Game_Transferpak_Sav).c_str(), CFileBase::modeWrite | CFileBase::modeCreate); ramFile.Write(gb_cart->ram, (uint32_t)gb_cart->ram_size); if (gb_cart->has_rtc) { ramFile.Write(&gb_cart->rtc_data[0], 4); ramFile.Write(&gb_cart->rtc_data[1], 4); ramFile.Write(&gb_cart->rtc_data[2], 4); ramFile.Write(&gb_cart->rtc_data[3], 4); ramFile.Write(&gb_cart->rtc_data[4], 4); ramFile.Write(&gb_cart->rtc_latch_data[0], 4); ramFile.Write(&gb_cart->rtc_latch_data[1], 4); ramFile.Write(&gb_cart->rtc_latch_data[2], 4); ramFile.Write(&gb_cart->rtc_latch_data[3], 4); ramFile.Write(&gb_cart->rtc_latch_data[4], 4); ramFile.Write(&gb_cart->rtc_last_time, 8); } ramFile.Close(); } void GBCart::release_gb_cart(struct gb_cart* gb_cart) { if (gb_cart->rom != nullptr) delete gb_cart->rom; if (gb_cart->ram != nullptr) delete gb_cart->ram; memset(gb_cart, 0, sizeof(*gb_cart)); } void GBCart::read_gb_cart(struct gb_cart* gb_cart, uint16_t address, uint8_t* data) { gb_cart->read_gb_cart(gb_cart, address, data); } void GBCart::write_gb_cart(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data) { gb_cart->write_gb_cart(gb_cart, address, data); }