/**************************************************************************** * * * Project64 - A Nintendo 64 emulator. * * http://www.pj64-emu.com/ * * Copyright (C) 2012 Project64. All rights reserved. * * * * License: * * GNU/GPLv2 http://www.gnu.org/licenses/gpl-2.0.html * * * ****************************************************************************/ #include "stdafx.h" #include "CodeSection.h" #include #include #include #include #include #include #include #include #include #include void InPermLoop(); bool DelaySlotEffectsCompare(uint32_t PC, uint32_t Reg1, uint32_t Reg2); static bool DelaySlotEffectsJump(uint32_t JumpPC) { OPCODE Command; if (!g_MMU->LW_VAddr(JumpPC, Command.Hex)) return true; switch (Command.op) { case R4300i_SPECIAL: switch (Command.funct) { case R4300i_SPECIAL_JR: return DelaySlotEffectsCompare(JumpPC, Command.rs, 0); case R4300i_SPECIAL_JALR: return DelaySlotEffectsCompare(JumpPC, Command.rs, 31); } break; case R4300i_REGIMM: switch (Command.rt) { case R4300i_REGIMM_BLTZ: case R4300i_REGIMM_BGEZ: case R4300i_REGIMM_BLTZL: case R4300i_REGIMM_BGEZL: case R4300i_REGIMM_BLTZAL: case R4300i_REGIMM_BGEZAL: return DelaySlotEffectsCompare(JumpPC, Command.rs, 0); } break; case R4300i_JAL: case R4300i_SPECIAL_JALR: return DelaySlotEffectsCompare(JumpPC, 31, 0); break; case R4300i_J: return false; case R4300i_BEQ: case R4300i_BNE: case R4300i_BLEZ: case R4300i_BGTZ: return DelaySlotEffectsCompare(JumpPC, Command.rs, Command.rt); case R4300i_CP1: switch (Command.fmt) { case R4300i_COP1_BC: switch (Command.ft) { case R4300i_COP1_BC_BCF: case R4300i_COP1_BC_BCT: case R4300i_COP1_BC_BCFL: case R4300i_COP1_BC_BCTL: { bool EffectDelaySlot = false; OPCODE NewCommand; if (!g_MMU->LW_VAddr(JumpPC + 4, NewCommand.Hex)) { return true; } if (NewCommand.op == R4300i_CP1) { if (NewCommand.fmt == R4300i_COP1_S && (NewCommand.funct & 0x30) == 0x30) { EffectDelaySlot = true; } if (NewCommand.fmt == R4300i_COP1_D && (NewCommand.funct & 0x30) == 0x30) { EffectDelaySlot = true; } } return EffectDelaySlot; } break; } break; } break; case R4300i_BEQL: case R4300i_BNEL: case R4300i_BLEZL: case R4300i_BGTZL: return DelaySlotEffectsCompare(JumpPC, Command.rs, Command.rt); } return true; } CCodeSection::CCodeSection(CCodeBlock * CodeBlock, uint32_t EnterPC, uint32_t ID, bool LinkAllowed) : m_BlockInfo(CodeBlock), m_SectionID(ID), m_EnterPC(EnterPC), m_EndPC((uint32_t)-1), m_ContinueSection(NULL), m_JumpSection(NULL), m_EndSection(false), m_LinkAllowed(LinkAllowed), m_Test(0), m_Test2(0), m_CompiledLocation(NULL), m_InLoop(false), m_DelaySlot(false) { CPU_Message(__FUNCTION__ ": ID %d EnterPC 0x%08X", ID, EnterPC); } CCodeSection::~CCodeSection() { } void CCodeSection::CompileExit(uint32_t JumpPC, uint32_t TargetPC, CRegInfo &ExitRegSet, CExitInfo::EXIT_REASON reason, bool CompileNow, void(*x86Jmp)(const char * Label, uint32_t Value)) { if (!CompileNow) { char String[100]; sprintf(String, "Exit_%d", m_BlockInfo->m_ExitInfo.size()); if (x86Jmp == NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } x86Jmp(String, 0); CExitInfo ExitInfo; ExitInfo.ID = m_BlockInfo->m_ExitInfo.size(); ExitInfo.TargetPC = TargetPC; ExitInfo.ExitRegSet = ExitRegSet; ExitInfo.reason = reason; ExitInfo.NextInstruction = m_NextInstruction; ExitInfo.JumpLoc = (uint32_t *)(m_RecompPos - 4); m_BlockInfo->m_ExitInfo.push_back(ExitInfo); return; } //CPU_Message("CompileExit: %d",reason); ExitRegSet.WriteBackRegisters(); if (TargetPC != (uint32_t)-1) { MoveConstToVariable(TargetPC, &g_Reg->m_PROGRAM_COUNTER, "PROGRAM_COUNTER"); UpdateCounters(ExitRegSet, TargetPC <= JumpPC && JumpPC != -1, reason == CExitInfo::Normal); } else { UpdateCounters(ExitRegSet, false, reason == CExitInfo::Normal); } switch (reason) { case CExitInfo::Normal: case CExitInfo::Normal_NoSysCheck: ExitRegSet.SetBlockCycleCount(0); if (TargetPC != (uint32_t)-1) { if (TargetPC <= JumpPC && reason == CExitInfo::Normal) { CPU_Message("CompileSystemCheck 1"); CompileSystemCheck((uint32_t)-1, ExitRegSet); } } else { if (reason == CExitInfo::Normal) { CPU_Message("CompileSystemCheck 2"); CompileSystemCheck((uint32_t)-1, ExitRegSet); } } if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } #ifdef LinkBlocks if (bSMM_ValidFunc == false) { if (LookUpMode() == FuncFind_ChangeMemory) { g_Notify->BreakPoint(__FILE__, __LINE__); // uint8_t * Jump, * Jump2; // if (TargetPC >= 0x80000000 && TargetPC < 0xC0000000) { // uint32_t pAddr = TargetPC & 0x1FFFFFFF; // // MoveVariableToX86reg((uint8_t *)RDRAM + pAddr,"RDRAM + pAddr",x86_EAX); // Jump2 = NULL; // } else { // MoveConstToX86reg((TargetPC >> 12),x86_ECX); // MoveConstToX86reg(TargetPC,x86_EBX); // MoveVariableDispToX86Reg(TLB_ReadMap,"TLB_ReadMap",x86_ECX,x86_ECX,4); // TestX86RegToX86Reg(x86_ECX,x86_ECX); // JeLabel8("NoTlbEntry",0); // Jump2 = m_RecompPos - 1; // MoveX86regPointerToX86reg(x86_ECX, x86_EBX,x86_EAX); // } // MoveX86RegToX86Reg(x86_EAX,x86_ECX); // AndConstToX86Reg(x86_ECX,0xFFFF0000); // CompConstToX86reg(x86_ECX,0x7C7C0000); // JneLabel8("NoCode",0); // Jump = m_RecompPos - 1; // AndConstToX86Reg(x86_EAX,0xFFFF); // ShiftLeftSignImmed(x86_EAX,4); // AddConstToX86Reg(x86_EAX,0xC); // MoveVariableDispToX86Reg(OrigMem,"OrigMem",x86_ECX,x86_EAX,1); // JmpDirectReg(x86_ECX); // CPU_Message(" NoCode:"); // *((uint8_t *)(Jump))=(uint8_t)(m_RecompPos - Jump - 1); // if (Jump2 != NULL) { // CPU_Message(" NoTlbEntry:"); // *((uint8_t *)(Jump2))=(uint8_t)(m_RecompPos - Jump2 - 1); // } } else if (LookUpMode() == FuncFind_VirtualLookup) { MoveConstToX86reg(TargetPC,x86_EDX); MoveConstToX86reg((uint32_t)&m_Functions,x86_ECX); Call_Direct(AddressOf(&CFunctionMap::CompilerFindFunction), "CFunctionMap::CompilerFindFunction"); MoveX86RegToX86Reg(x86_EAX,x86_ECX); JecxzLabel8("NullPointer",0); uint8_t * Jump = m_RecompPos - 1; MoveX86PointerToX86regDisp(x86_EBX,x86_ECX,0xC); JmpDirectReg(x86_EBX); CPU_Message(" NullPointer:"); *((uint8_t *)(Jump))=(uint8_t)(m_RecompPos - Jump - 1); } else if (LookUpMode() == FuncFind_PhysicalLookup) { uint8_t * Jump2 = NULL; if (TargetPC >= 0x80000000 && TargetPC < 0x90000000) { uint32_t pAddr = TargetPC & 0x1FFFFFFF; MoveVariableToX86reg((uint8_t *)JumpTable + pAddr,"JumpTable + pAddr",x86_ECX); } else if (TargetPC >= 0x90000000 && TargetPC < 0xC0000000) { } else { MoveConstToX86reg((TargetPC >> 12),x86_ECX); MoveConstToX86reg(TargetPC,x86_EBX); MoveVariableDispToX86Reg(TLB_ReadMap,"TLB_ReadMap",x86_ECX,x86_ECX,4); TestX86RegToX86Reg(x86_ECX,x86_ECX); JeLabel8("NoTlbEntry",0); Jump2 = m_RecompPos - 1; AddConstToX86Reg(x86_ECX,(uint32_t)JumpTable - (uint32_t)RDRAM); MoveX86regPointerToX86reg(x86_ECX, x86_EBX,x86_ECX); } if (TargetPC < 0x90000000 || TargetPC >= 0xC0000000) { JecxzLabel8("NullPointer",0); uint8_t * Jump = m_RecompPos - 1; MoveX86PointerToX86regDisp(x86_EAX,x86_ECX,0xC); JmpDirectReg(x86_EAX); CPU_Message(" NullPointer:"); *((uint8_t *)(Jump))=(uint8_t)(m_RecompPos - Jump - 1); if (Jump2 != NULL) { CPU_Message(" NoTlbEntry:"); *((uint8_t *)(Jump2))=(uint8_t)(m_RecompPos - Jump2 - 1); } } } } ExitCodeBlock(); #else ExitCodeBlock(); #endif break; case CExitInfo::DoCPU_Action: MoveConstToX86reg((uint32_t)g_SystemEvents, x86_ECX); Call_Direct(AddressOf(&CSystemEvents::ExecuteEvents), "CSystemEvents::ExecuteEvents"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } //g_System->SyncCPU(g_SyncSystem); ExitCodeBlock(); break; case CExitInfo::DoSysCall: { bool bDelay = m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT; PushImm32(bDelay ? "true" : "false", bDelay); MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::DoSysCallException), "CRegisters::DoSysCallException"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } ExitCodeBlock(); } break; case CExitInfo::COP1_Unuseable: { bool bDelay = m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT; PushImm32("1", 1); PushImm32(bDelay ? "true" : "false", bDelay); MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::DoCopUnusableException), "CRegisters::DoCopUnusableException"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } ExitCodeBlock(); } break; case CExitInfo::ExitResetRecompCode: g_Notify->BreakPoint(__FILE__, __LINE__); #ifdef legacycode if (m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT) { X86BreakPoint(__FILEW__,__LINE__); } if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } X86BreakPoint(__FILEW__,__LINE__); MoveVariableToX86reg(this,"this",x86_ECX); Call_Direct(AddressOf(ResetRecompCode), "ResetRecompCode"); #endif ExitCodeBlock(); break; case CExitInfo::TLBReadMiss: MoveVariableToX86reg(g_TLBLoadAddress, "g_TLBLoadAddress", x86_EDX); Push(x86_EDX); PushImm32(m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT); MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::DoTLBReadMiss), "CRegisters::DoTLBReadMiss"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } ExitCodeBlock(); break; case CExitInfo::TLBWriteMiss: X86BreakPoint(__FILE__, __LINE__); ExitCodeBlock(); break; case CExitInfo::DivByZero: AddConstToVariable(4, _PROGRAM_COUNTER, "PROGRAM_COUNTER"); if (!g_System->b32BitCore()) { MoveConstToVariable(0, &_RegHI->UW[1], "_RegHI->UW[1]"); MoveConstToVariable(0, &_RegLO->UW[1], "_RegLO->UW[1]"); } MoveConstToVariable(0, &_RegHI->UW[0], "_RegHI->UW[0]"); MoveConstToVariable(0, &_RegLO->UW[0], "_RegLO->UW[0]"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } ExitCodeBlock(); break; default: WriteTrace(TraceRecompiler, TraceError, "how did you want to exit on reason (%d) ???", reason); g_Notify->BreakPoint(__FILE__, __LINE__); } } void CCodeSection::GenerateSectionLinkage() { CCodeSection * TargetSection[] = { m_ContinueSection, m_JumpSection }; CJumpInfo * JumpInfo[] = { &m_Cont, &m_Jump }; int i; for (i = 0; i < 2; i++) { if (JumpInfo[i]->LinkLocation == NULL && JumpInfo[i]->FallThrough == false) { JumpInfo[i]->TargetPC = (uint32_t)-1; } } if ((CompilePC() & 0xFFC) == 0xFFC) { g_Notify->BreakPoint(__FILE__, __LINE__); #ifdef legacycode //Handle Fall througth uint8_t * Jump = NULL; for (i = 0; i < 2; i ++) { if (!JumpInfo[i]->FallThrough) { continue; } JumpInfo[i]->FallThrough = false; if (JumpInfo[i]->LinkLocation != NULL) { SetJump32(JumpInfo[i]->LinkLocation,(uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation = NULL; if (JumpInfo[i]->LinkLocation2 != NULL) { SetJump32(JumpInfo[i]->LinkLocation2,(uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation2 = NULL; } } PushImm32(stdstr_f("0x%08X",JumpInfo[i]->TargetPC).c_str(),JumpInfo[i]->TargetPC); if (JumpInfo[(i + 1) & 1]->LinkLocation == NULL) { break; } JmpLabel8("FinishBlock",0); Jump = m_RecompPos - 1; } for (i = 0; i < 2; i ++) { if (JumpInfo[i]->LinkLocation == NULL) { continue; } JumpInfo[i]->FallThrough = false; if (JumpInfo[i]->LinkLocation != NULL) { SetJump32(JumpInfo[i]->LinkLocation,(uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation = NULL; if (JumpInfo[i]->LinkLocation2 != NULL) { SetJump32(JumpInfo[i]->LinkLocation2,(uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation2 = NULL; } } PushImm32(stdstr_f("0x%08X",JumpInfo[i]->TargetPC).c_str(),JumpInfo[i]->TargetPC); if (JumpInfo[(i + 1) & 1]->LinkLocation == NULL) { break; } JmpLabel8("FinishBlock",0); Jump = m_RecompPos - 1; } if (Jump != NULL) { CPU_Message(" $FinishBlock:"); SetJump8(Jump,m_RecompPos); } //MoveConstToVariable(CompilePC() + 4,_PROGRAM_COUNTER,"PROGRAM_COUNTER"); m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); // WriteBackRegisters(Section); // if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); //} // MoveConstToVariable(DELAY_SLOT,&m_NextInstruction,"m_NextInstruction"); PushImm32(stdstr_f("0x%08X",CompilePC() + 4).c_str(),CompilePC() + 4); // check if there is an existing section MoveConstToX86reg((uint32_t)g_Recompiler,x86_ECX); Call_Direct(AddressOf(&CRecompiler::CompileDelaySlot), "CRecompiler::CompileDelaySlot"); JmpDirectReg(x86_EAX); ExitCodeBlock(); return; #endif } // Handle Perm Loop if (CRecompilerOps::m_CompilePC == m_Jump.TargetPC && (m_Cont.FallThrough == false)) { if (!DelaySlotEffectsJump(CompilePC())) { MoveConstToVariable(CompilePC(), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); m_Jump.RegSet.WriteBackRegisters(); UpdateCounters(m_Jump.RegSet, false, true); Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop"); MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::TimerDone), "CSystemTimer::TimerDone"); CPU_Message("CompileSystemCheck 3"); CompileSystemCheck((uint32_t)-1, m_Jump.RegSet); } } if (TargetSection[0] != TargetSection[1] || TargetSection[0] == NULL) { for (i = 0; i < 2; i++) { if (JumpInfo[i]->LinkLocation == NULL && JumpInfo[i]->FallThrough == false) { if (TargetSection[i]) { TargetSection[i]->UnlinkParent(this, i == 0); TargetSection[i] = NULL; } } else if (TargetSection[i] == NULL && JumpInfo[i]->FallThrough) { if (JumpInfo[i]->LinkLocation != NULL) { SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation = NULL; if (JumpInfo[i]->LinkLocation2 != NULL) { SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation2 = NULL; } } CompileExit(JumpInfo[i]->JumpPC, JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet, JumpInfo[i]->ExitReason, true, NULL); JumpInfo[i]->FallThrough = false; } else if (TargetSection[i] != NULL && JumpInfo[i] != NULL) { if (!JumpInfo[i]->FallThrough) { continue; } if (JumpInfo[i]->TargetPC == TargetSection[i]->m_EnterPC) { continue; } if (JumpInfo[i]->LinkLocation != NULL) { SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation = NULL; if (JumpInfo[i]->LinkLocation2 != NULL) { SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation2 = NULL; } } CompileExit(JumpInfo[i]->JumpPC, JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet, JumpInfo[i]->ExitReason, true, NULL); //FreeSection(TargetSection[i],Section); } } } else { if (m_Cont.LinkLocation == NULL && m_Cont.FallThrough == false) { m_ContinueSection = NULL; } if (m_Jump.LinkLocation == NULL && m_Jump.FallThrough == false) { m_JumpSection = NULL; } if (m_JumpSection == NULL && m_ContinueSection == NULL) { //FreeSection(TargetSection[0],Section); } } TargetSection[0] = m_ContinueSection; TargetSection[1] = m_JumpSection; for (i = 0; i < 2; i++) { if (TargetSection[i] == NULL) { continue; } if (!JumpInfo[i]->FallThrough) { continue; } if (TargetSection[i]->m_CompiledLocation != NULL) { char Label[100]; sprintf(Label, "Section_%d", TargetSection[i]->m_SectionID); JumpInfo[i]->FallThrough = false; if (JumpInfo[i]->LinkLocation != NULL) { SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation = NULL; if (JumpInfo[i]->LinkLocation2 != NULL) { SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation2 = NULL; } } if (JumpInfo[i]->TargetPC <= CompilePC()) { if (JumpInfo[i]->PermLoop) { CPU_Message("PermLoop *** 1"); MoveConstToVariable(JumpInfo[i]->TargetPC, _PROGRAM_COUNTER, "PROGRAM_COUNTER"); UpdateCounters(JumpInfo[i]->RegSet, false, true); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } //JumpInfo[i]->RegSet.BlockCycleCount() -= g_System->CountPerOp(); Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop"); //JumpInfo[i]->RegSet.BlockCycleCount() += g_System->CountPerOp(); UpdateCounters(JumpInfo[i]->RegSet, true, true); CPU_Message("CompileSystemCheck 4"); CompileSystemCheck((uint32_t)-1, JumpInfo[i]->RegSet); } else { UpdateCounters(JumpInfo[i]->RegSet, true, true); CPU_Message("CompileSystemCheck 5"); CompileSystemCheck(JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet); } } else { UpdateCounters(JumpInfo[i]->RegSet, false, true); } JumpInfo[i]->RegSet.SetBlockCycleCount(0); m_RegWorkingSet = JumpInfo[i]->RegSet; SyncRegState(TargetSection[i]->m_RegEnter); JmpLabel32(Label, 0); SetJump32((uint32_t *)m_RecompPos - 1, (uint32_t *)(TargetSection[i]->m_CompiledLocation)); } } for (i = 0; i < 2; i++) { if (TargetSection[i] == NULL) { continue; } if (TargetSection[i]->m_ParentSection.empty()) { continue; } for (SECTION_LIST::iterator iter = TargetSection[i]->m_ParentSection.begin(); iter != TargetSection[i]->m_ParentSection.end(); iter++) { CCodeSection * Parent = *iter; if (Parent->m_CompiledLocation != NULL) { continue; } if (Parent->m_InLoop) { continue; } if (JumpInfo[i]->PermLoop) { CPU_Message("PermLoop *** 2"); MoveConstToVariable(JumpInfo[i]->TargetPC, _PROGRAM_COUNTER, "PROGRAM_COUNTER"); UpdateCounters(JumpInfo[i]->RegSet, false, true); Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop"); UpdateCounters(JumpInfo[i]->RegSet, true, true); CPU_Message("CompileSystemCheck 6"); CompileSystemCheck((uint32_t)-1, JumpInfo[i]->RegSet); } if (JumpInfo[i]->FallThrough) { JumpInfo[i]->FallThrough = false; JmpLabel32(JumpInfo[i]->BranchLabel.c_str(), 0); JumpInfo[i]->LinkLocation = (uint32_t*)(m_RecompPos - 4); } } } for (i = 0; i < 2; i++) { if (JumpInfo[i]->FallThrough) { if (JumpInfo[i]->TargetPC < CompilePC()) { UpdateCounters(JumpInfo[i]->RegSet, true, true); CPU_Message("CompileSystemCheck 7"); CompileSystemCheck(JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet); } } } CPU_Message("====== End of Section %d ======", m_SectionID); for (i = 0; i < 2; i++) { if (JumpInfo[i]->FallThrough && !TargetSection[i]->GenerateX86Code(m_BlockInfo->NextTest())) { JumpInfo[i]->FallThrough = false; JmpLabel32(JumpInfo[i]->BranchLabel.c_str(), 0); JumpInfo[i]->LinkLocation = (uint32_t *)(m_RecompPos - 4); } } //CPU_Message("Section %d",m_SectionID); for (i = 0; i < 2; i++) { if (JumpInfo[i]->LinkLocation == NULL) { continue; } if (TargetSection[i] == NULL) { CPU_Message("ExitBlock (from %d):", m_SectionID); SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation = NULL; if (JumpInfo[i]->LinkLocation2 != NULL) { SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation2 = NULL; } CompileExit(JumpInfo[i]->JumpPC, JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet, JumpInfo[i]->ExitReason, true, NULL); continue; } if (JumpInfo[i]->TargetPC != TargetSection[i]->m_EnterPC) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (TargetSection[i]->m_CompiledLocation == NULL) { TargetSection[i]->GenerateX86Code(m_BlockInfo->NextTest()); } else { stdstr_f Label("Section_%d (from %d):", TargetSection[i]->m_SectionID, m_SectionID); CPU_Message(Label.c_str()); SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation = NULL; if (JumpInfo[i]->LinkLocation2 != NULL) { SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos); JumpInfo[i]->LinkLocation2 = NULL; } m_RegWorkingSet = JumpInfo[i]->RegSet; if (JumpInfo[i]->TargetPC <= JumpInfo[i]->JumpPC) { UpdateCounters(JumpInfo[i]->RegSet, true, true); if (JumpInfo[i]->PermLoop) { CPU_Message("PermLoop *** 3"); MoveConstToVariable(JumpInfo[i]->TargetPC, _PROGRAM_COUNTER, "PROGRAM_COUNTER"); Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop"); CPU_Message("CompileSystemCheck 8"); CompileSystemCheck((uint32_t)-1, JumpInfo[i]->RegSet); } else { CPU_Message("CompileSystemCheck 9"); CompileSystemCheck(JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet); } } else { UpdateCounters(m_RegWorkingSet, false, true); } m_RegWorkingSet = JumpInfo[i]->RegSet; SyncRegState(TargetSection[i]->m_RegEnter); JmpLabel32(Label.c_str(), 0); SetJump32((uint32_t *)m_RecompPos - 1, (uint32_t *)(TargetSection[i]->m_CompiledLocation)); } } } void CCodeSection::SyncRegState(const CRegInfo & SyncTo) { ResetX86Protection(); bool changed = false; UnMap_AllFPRs(); if (m_RegWorkingSet.GetRoundingModel() != SyncTo.GetRoundingModel()) { m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); } x86Reg MemStackReg = Get_MemoryStack(); x86Reg TargetStackReg = SyncTo.Get_MemoryStack(); //CPU_Message("MemoryStack for Original State = %s",MemStackReg > 0?x86_Name(MemStackReg):"Not Mapped"); if (MemStackReg != TargetStackReg) { if (TargetStackReg == x86_Unknown) { UnMap_X86reg(MemStackReg); } else if (MemStackReg == x86_Unknown) { UnMap_X86reg(TargetStackReg); CPU_Message(" regcache: allocate %s as Memory Stack", x86_Name(TargetStackReg)); m_RegWorkingSet.SetX86Mapped(TargetStackReg, CRegInfo::Stack_Mapped); MoveVariableToX86reg(&g_Recompiler->MemoryStackPos(), "MemoryStack", TargetStackReg); } else { UnMap_X86reg(TargetStackReg); CPU_Message(" regcache: change allocation of Memory Stack from %s to %s", x86_Name(MemStackReg), x86_Name(TargetStackReg)); m_RegWorkingSet.SetX86Mapped(TargetStackReg, CRegInfo::Stack_Mapped); m_RegWorkingSet.SetX86Mapped(MemStackReg, CRegInfo::NotMapped); MoveX86RegToX86Reg(MemStackReg, TargetStackReg); } } for (int i = 1; i < 32; i++) { if (GetMipsRegState(i) == SyncTo.GetMipsRegState(i) || (g_System->b32BitCore() && GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_ZERO && SyncTo.GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_SIGN) || (g_System->b32BitCore() && GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_SIGN && SyncTo.GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_ZERO)) { switch (GetMipsRegState(i)) { case CRegInfo::STATE_UNKNOWN: continue; case CRegInfo::STATE_MAPPED_64: if (GetMipsRegMapHi(i) == SyncTo.GetMipsRegMapHi(i) && GetMipsRegMapLo(i) == SyncTo.GetMipsRegMapLo(i)) { continue; } break; case CRegInfo::STATE_MAPPED_32_ZERO: case CRegInfo::STATE_MAPPED_32_SIGN: if (GetMipsRegMapLo(i) == SyncTo.GetMipsRegMapLo(i)) { continue; } break; case CRegInfo::STATE_CONST_64: if (GetMipsReg(i) != SyncTo.GetMipsReg(i)) { g_Notify->BreakPoint(__FILE__, __LINE__); } continue; case CRegInfo::STATE_CONST_32_SIGN: if (GetMipsRegLo(i) != SyncTo.GetMipsRegLo(i)) { CPU_Message("Value of const is different Reg %d (%s) Value: 0x%08X to 0x%08X", i, CRegName::GPR[i], GetMipsRegLo(i), SyncTo.GetMipsRegLo(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } continue; default: CPU_Message("Unhandled Reg state %d\nin SyncRegState", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } } changed = true; switch (SyncTo.GetMipsRegState(i)) { case CRegInfo::STATE_UNKNOWN: UnMap_GPR(i, true); break; case CRegInfo::STATE_MAPPED_64: { x86Reg Reg = SyncTo.GetMipsRegMapLo(i); x86Reg x86RegHi = SyncTo.GetMipsRegMapHi(i); UnMap_X86reg(Reg); UnMap_X86reg(x86RegHi); switch (GetMipsRegState(i)) { case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg); MoveVariableToX86reg(&_GPR[i].UW[1], CRegName::GPR_Hi[i], x86RegHi); break; case CRegInfo::STATE_MAPPED_64: MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); MoveX86RegToX86Reg(GetMipsRegMapHi(i), x86RegHi); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapHi(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_MAPPED_32_SIGN: MoveX86RegToX86Reg(GetMipsRegMapLo(i), x86RegHi); ShiftRightSignImmed(x86RegHi, 31); MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_MAPPED_32_ZERO: XorX86RegToX86Reg(x86RegHi, x86RegHi); MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_CONST_64: MoveConstToX86reg(GetMipsRegHi(i), x86RegHi); MoveConstToX86reg(GetMipsRegLo(i), Reg); break; case CRegInfo::STATE_CONST_32_SIGN: MoveConstToX86reg(GetMipsRegLo_S(i) >> 31, x86RegHi); MoveConstToX86reg(GetMipsRegLo(i), Reg); break; default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); continue; } m_RegWorkingSet.SetMipsRegMapLo(i, Reg); m_RegWorkingSet.SetMipsRegMapHi(i, x86RegHi); m_RegWorkingSet.SetMipsRegState(i, CRegInfo::STATE_MAPPED_64); m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped); m_RegWorkingSet.SetX86Mapped(x86RegHi, CRegInfo::GPR_Mapped); m_RegWorkingSet.SetX86MapOrder(Reg, 1); m_RegWorkingSet.SetX86MapOrder(x86RegHi, 1); } break; case CRegInfo::STATE_MAPPED_32_SIGN: { x86Reg Reg = SyncTo.GetMipsRegMapLo(i); UnMap_X86reg(Reg); switch (GetMipsRegState(i)) { case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg); break; case CRegInfo::STATE_CONST_32_SIGN: MoveConstToX86reg(GetMipsRegLo(i), Reg); break; case CRegInfo::STATE_MAPPED_32_SIGN: MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_MAPPED_32_ZERO: if (GetMipsRegMapLo(i) != Reg) { MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); } break; case CRegInfo::STATE_MAPPED_64: MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapHi(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_CONST_64: CPU_Message("hi %X\nLo %X", GetMipsRegHi(i), GetMipsRegLo(i)); default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } m_RegWorkingSet.SetMipsRegMapLo(i, Reg); m_RegWorkingSet.SetMipsRegState(i, CRegInfo::STATE_MAPPED_32_SIGN); m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped); m_RegWorkingSet.SetX86MapOrder(Reg, 1); } break; case CRegInfo::STATE_MAPPED_32_ZERO: { x86Reg Reg = SyncTo.GetMipsRegMapLo(i); UnMap_X86reg(Reg); switch (GetMipsRegState(i)) { case CRegInfo::STATE_MAPPED_64: case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg); break; case CRegInfo::STATE_MAPPED_32_ZERO: MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_MAPPED_32_SIGN: if (g_System->b32BitCore()) { MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); } else { CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } break; case CRegInfo::STATE_CONST_32_SIGN: if (!g_System->b32BitCore() && GetMipsRegLo_S(i) < 0) { CPU_Message("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO"); CPU_Message("%s: %X", CRegName::GPR[i], GetMipsRegLo_S(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } MoveConstToX86reg(GetMipsRegLo(i), Reg); break; default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } m_RegWorkingSet.SetMipsRegMapLo(i, Reg); m_RegWorkingSet.SetMipsRegState(i, SyncTo.GetMipsRegState(i)); m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped); m_RegWorkingSet.SetX86MapOrder(Reg, 1); } break; default: CPU_Message("%d - %d reg: %s (%d)", SyncTo.GetMipsRegState(i), GetMipsRegState(i), CRegName::GPR[i], i); g_Notify->BreakPoint(__FILE__, __LINE__); changed = false; } } } void CCodeSection::SetDelaySlot() { m_DelaySlot = true; } void CCodeSection::SetJumpAddress(uint32_t JumpPC, uint32_t TargetPC, bool PermLoop) { m_Jump.JumpPC = JumpPC; m_Jump.TargetPC = TargetPC; m_Jump.BranchLabel.Format("0x%08X", TargetPC); m_Jump.PermLoop = PermLoop; } void CCodeSection::SetContinueAddress(uint32_t JumpPC, uint32_t TargetPC) { m_Cont.JumpPC = JumpPC; m_Cont.TargetPC = TargetPC; m_Cont.BranchLabel.Format("0x%08X", TargetPC); } void CCodeSection::CompileCop1Test() { if (m_RegWorkingSet.FpuBeenUsed()) return; TestVariable(STATUS_CU1, &g_Reg->STATUS_REGISTER, "STATUS_REGISTER"); CompileExit(m_CompilePC, m_CompilePC, m_RegWorkingSet, CExitInfo::COP1_Unuseable, false, JeLabel32); m_RegWorkingSet.FpuBeenUsed() = true; } bool CCodeSection::ParentContinue() { if (m_ParentSection.size() > 0) { for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++) { CCodeSection * Parent = *iter; if (Parent->m_CompiledLocation != NULL) { continue; } if (IsAllParentLoops(Parent, true, m_BlockInfo->NextTest())) { continue; } return false; } if (!InheritParentInfo()) { return false; } } return true; } /*int TestValue = 0; void TestFunc() { TestValue += 1; if (TestValue >= 4) { g_Notify->BreakPoint(__FILE__, __LINE__); } }*/ bool CCodeSection::GenerateX86Code(uint32_t Test) { if (this == NULL) { return false; } if (m_CompiledLocation != NULL) { if (m_Test == Test) { return false; } m_Test = Test; if (m_ContinueSection->GenerateX86Code(Test)) { return true; } if (m_JumpSection->GenerateX86Code(Test)) { return true; } return false; } if (!ParentContinue()) { return false; } m_CompiledLocation = m_RecompPos; m_RegWorkingSet = m_RegEnter; m_CompilePC = m_EnterPC; m_NextInstruction = m_DelaySlot ? JUMP : NORMAL; m_Section = this; if (m_CompilePC < m_BlockInfo->VAddrFirst()) { m_BlockInfo->SetVAddrFirst(m_CompilePC); } uint32_t ContinueSectionPC = m_ContinueSection ? m_ContinueSection->m_EnterPC : (uint32_t)-1; do { __try { if (!g_MMU->LW_VAddr(m_CompilePC, m_Opcode.Hex)) { g_Notify->FatalError(GS(MSG_FAIL_LOAD_WORD)); } } __except (g_MMU->MemoryFilter(GetExceptionCode(), GetExceptionInformation())) { g_Notify->FatalError(GS(MSG_UNKNOWN_MEM_ACTION)); } if (m_CompilePC > m_BlockInfo->VAddrLast()) { m_BlockInfo->SetVAddrLast(m_CompilePC); } /*if (m_CompilePC == 0x803245C4) { X86BreakPoint(__FILEW__,__LINE__); //m_RegWorkingSet.UnMap_AllFPRs(); }*/ /*if (m_CompilePC >= 0x80000000 && m_CompilePC <= 0x80400000 && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } }*/ /*if ((m_CompilePC == 0x8031C0E4 || m_CompilePC == 0x8031C118 || m_CompilePC == 0x8031CD88 || m_CompilePC == 0x8031CE24 || m_CompilePC == 0x8031CE30 || m_CompilePC == 0x8031CE40) && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } }*/ /*if (m_CompilePC == 0x801C1B88) { BeforeCallDirect(m_RegWorkingSet); Call_Direct(AddressOf(TestFunc), "TestFunc"); AfterCallDirect(m_RegWorkingSet); }*/ /*if (m_CompilePC >= 0x801C1AF8 && m_CompilePC <= 0x801C1C00 && m_NextInstruction == NORMAL) { UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { BeforeCallDirect(m_RegWorkingSet); MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystemPC), "CN64System::SyncSystemPC"); AfterCallDirect(m_RegWorkingSet); } }*/ /*if ((m_CompilePC == 0x80263900) && m_NextInstruction == NORMAL) { X86BreakPoint(__FILEW__,__LINE__); }*/ /*if ((m_CompilePC >= 0x80325D80 && m_CompilePC <= 0x80325DF0) && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } }*/ /*if ((m_CompilePC == 0x80324E14) && m_NextInstruction == NORMAL) { X86BreakPoint(__FILEW__,__LINE__); }*/ /*if (m_CompilePC == 0x80324E18 && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } }*/ /*if (m_CompilePC >= 0x80324E00 && m_CompilePC <= 0x80324E18 && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } }*/ /* if (m_CompilePC == 0x803245CC && m_NextInstruction == NORMAL) { //m_RegWorkingSet.UnMap_AllFPRs(); g_Notify->BreakPoint(__FILE__, __LINE__); //X86HardBreakPoint(); //X86BreakPoint(__FILEW__,__LINE__); //m_RegWorkingSet.UnMap_AllFPRs(); }*/ /*if (m_CompilePC >= 0x80179DC4 && m_CompilePC <= 0x80179DF0 && m_NextInstruction == NORMAL) { m_RegWorkingSet.UnMap_AllFPRs(); }*/ m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.ResetX86Protection(); switch (m_Opcode.op) { case R4300i_SPECIAL: switch (m_Opcode.funct) { case R4300i_SPECIAL_SLL: SPECIAL_SLL(); break; case R4300i_SPECIAL_SRL: SPECIAL_SRL(); break; case R4300i_SPECIAL_SRA: SPECIAL_SRA(); break; case R4300i_SPECIAL_SLLV: SPECIAL_SLLV(); break; case R4300i_SPECIAL_SRLV: SPECIAL_SRLV(); break; case R4300i_SPECIAL_SRAV: SPECIAL_SRAV(); break; case R4300i_SPECIAL_JR: SPECIAL_JR(); break; case R4300i_SPECIAL_JALR: SPECIAL_JALR(); break; case R4300i_SPECIAL_MFLO: SPECIAL_MFLO(); break; case R4300i_SPECIAL_SYSCALL: SPECIAL_SYSCALL(); break; case R4300i_SPECIAL_MTLO: SPECIAL_MTLO(); break; case R4300i_SPECIAL_MFHI: SPECIAL_MFHI(); break; case R4300i_SPECIAL_MTHI: SPECIAL_MTHI(); break; case R4300i_SPECIAL_DSLLV: SPECIAL_DSLLV(); break; case R4300i_SPECIAL_DSRLV: SPECIAL_DSRLV(); break; case R4300i_SPECIAL_DSRAV: SPECIAL_DSRAV(); break; case R4300i_SPECIAL_MULT: SPECIAL_MULT(); break; case R4300i_SPECIAL_DIV: SPECIAL_DIV(); break; case R4300i_SPECIAL_DIVU: SPECIAL_DIVU(); break; case R4300i_SPECIAL_MULTU: SPECIAL_MULTU(); break; case R4300i_SPECIAL_DMULT: SPECIAL_DMULT(); break; case R4300i_SPECIAL_DMULTU: SPECIAL_DMULTU(); break; case R4300i_SPECIAL_DDIV: SPECIAL_DDIV(); break; case R4300i_SPECIAL_DDIVU: SPECIAL_DDIVU(); break; case R4300i_SPECIAL_ADD: SPECIAL_ADD(); break; case R4300i_SPECIAL_ADDU: SPECIAL_ADDU(); break; case R4300i_SPECIAL_SUB: SPECIAL_SUB(); break; case R4300i_SPECIAL_SUBU: SPECIAL_SUBU(); break; case R4300i_SPECIAL_AND: SPECIAL_AND(); break; case R4300i_SPECIAL_OR: SPECIAL_OR(); break; case R4300i_SPECIAL_XOR: SPECIAL_XOR(); break; case R4300i_SPECIAL_NOR: SPECIAL_NOR(); break; case R4300i_SPECIAL_SLT: SPECIAL_SLT(); break; case R4300i_SPECIAL_SLTU: SPECIAL_SLTU(); break; case R4300i_SPECIAL_DADD: SPECIAL_DADD(); break; case R4300i_SPECIAL_DADDU: SPECIAL_DADDU(); break; case R4300i_SPECIAL_DSUB: SPECIAL_DSUB(); break; case R4300i_SPECIAL_DSUBU: SPECIAL_DSUBU(); break; case R4300i_SPECIAL_DSLL: SPECIAL_DSLL(); break; case R4300i_SPECIAL_DSRL: SPECIAL_DSRL(); break; case R4300i_SPECIAL_DSRA: SPECIAL_DSRA(); break; case R4300i_SPECIAL_DSLL32: SPECIAL_DSLL32(); break; case R4300i_SPECIAL_DSRL32: SPECIAL_DSRL32(); break; case R4300i_SPECIAL_DSRA32: SPECIAL_DSRA32(); break; default: UnknownOpcode(); break; } break; case R4300i_REGIMM: switch (m_Opcode.rt) { case R4300i_REGIMM_BLTZ:Compile_Branch(BLTZ_Compare, BranchTypeRs, false); break; case R4300i_REGIMM_BGEZ:Compile_Branch(BGEZ_Compare, BranchTypeRs, false); break; case R4300i_REGIMM_BLTZL:Compile_BranchLikely(BLTZ_Compare, false); break; case R4300i_REGIMM_BGEZL:Compile_BranchLikely(BGEZ_Compare, false); break; case R4300i_REGIMM_BLTZAL:Compile_Branch(BLTZ_Compare, BranchTypeRs, true); break; case R4300i_REGIMM_BGEZAL:Compile_Branch(BGEZ_Compare, BranchTypeRs, true); break; default: UnknownOpcode(); break; } break; case R4300i_BEQ: Compile_Branch(BEQ_Compare, BranchTypeRsRt, false); break; case R4300i_BNE: Compile_Branch(BNE_Compare, BranchTypeRsRt, false); break; case R4300i_BGTZ:Compile_Branch(BGTZ_Compare, BranchTypeRs, false); break; case R4300i_BLEZ:Compile_Branch(BLEZ_Compare, BranchTypeRs, false); break; case R4300i_J: J(); break; case R4300i_JAL: JAL(); break; case R4300i_ADDI: ADDI(); break; case R4300i_ADDIU: ADDIU(); break; case R4300i_SLTI: SLTI(); break; case R4300i_SLTIU: SLTIU(); break; case R4300i_ANDI: ANDI(); break; case R4300i_ORI: ORI(); break; case R4300i_XORI: XORI(); break; case R4300i_LUI: LUI(); break; case R4300i_CP0: switch (m_Opcode.rs) { case R4300i_COP0_MF: COP0_MF(); break; case R4300i_COP0_MT: COP0_MT(); break; default: if ((m_Opcode.rs & 0x10) != 0) { switch (m_Opcode.funct) { case R4300i_COP0_CO_TLBR: COP0_CO_TLBR(); break; case R4300i_COP0_CO_TLBWI: COP0_CO_TLBWI(); break; case R4300i_COP0_CO_TLBWR: COP0_CO_TLBWR(); break; case R4300i_COP0_CO_TLBP: COP0_CO_TLBP(); break; case R4300i_COP0_CO_ERET: COP0_CO_ERET(); break; default: UnknownOpcode(); break; } } else { UnknownOpcode(); } } break; case R4300i_CP1: switch (m_Opcode.rs) { case R4300i_COP1_MF: COP1_MF(); break; case R4300i_COP1_DMF: COP1_DMF(); break; case R4300i_COP1_CF: COP1_CF(); break; case R4300i_COP1_MT: COP1_MT(); break; case R4300i_COP1_DMT: COP1_DMT(); break; case R4300i_COP1_CT: COP1_CT(); break; case R4300i_COP1_BC: switch (m_Opcode.ft) { case R4300i_COP1_BC_BCF: Compile_Branch(COP1_BCF_Compare, BranchTypeCop1, false); break; case R4300i_COP1_BC_BCT: Compile_Branch(COP1_BCT_Compare, BranchTypeCop1, false); break; case R4300i_COP1_BC_BCFL: Compile_BranchLikely(COP1_BCF_Compare, false); break; case R4300i_COP1_BC_BCTL: Compile_BranchLikely(COP1_BCT_Compare, false); break; default: UnknownOpcode(); break; } break; case R4300i_COP1_S: switch (m_Opcode.funct) { case R4300i_COP1_FUNCT_ADD: COP1_S_ADD(); break; case R4300i_COP1_FUNCT_SUB: COP1_S_SUB(); break; case R4300i_COP1_FUNCT_MUL: COP1_S_MUL(); break; case R4300i_COP1_FUNCT_DIV: COP1_S_DIV(); break; case R4300i_COP1_FUNCT_ABS: COP1_S_ABS(); break; case R4300i_COP1_FUNCT_NEG: COP1_S_NEG(); break; case R4300i_COP1_FUNCT_SQRT: COP1_S_SQRT(); break; case R4300i_COP1_FUNCT_MOV: COP1_S_MOV(); break; case R4300i_COP1_FUNCT_TRUNC_L: COP1_S_TRUNC_L(); break; case R4300i_COP1_FUNCT_CEIL_L: COP1_S_CEIL_L(); break; //added by Witten case R4300i_COP1_FUNCT_FLOOR_L: COP1_S_FLOOR_L(); break; //added by Witten case R4300i_COP1_FUNCT_ROUND_W: COP1_S_ROUND_W(); break; case R4300i_COP1_FUNCT_TRUNC_W: COP1_S_TRUNC_W(); break; case R4300i_COP1_FUNCT_CEIL_W: COP1_S_CEIL_W(); break; //added by Witten case R4300i_COP1_FUNCT_FLOOR_W: COP1_S_FLOOR_W(); break; case R4300i_COP1_FUNCT_CVT_D: COP1_S_CVT_D(); break; case R4300i_COP1_FUNCT_CVT_W: COP1_S_CVT_W(); break; case R4300i_COP1_FUNCT_CVT_L: COP1_S_CVT_L(); break; case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN: case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ: case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT: case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE: case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE: case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL: case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE: case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT: COP1_S_CMP(); break; default: UnknownOpcode(); break; } break; case R4300i_COP1_D: switch (m_Opcode.funct) { case R4300i_COP1_FUNCT_ADD: COP1_D_ADD(); break; case R4300i_COP1_FUNCT_SUB: COP1_D_SUB(); break; case R4300i_COP1_FUNCT_MUL: COP1_D_MUL(); break; case R4300i_COP1_FUNCT_DIV: COP1_D_DIV(); break; case R4300i_COP1_FUNCT_ABS: COP1_D_ABS(); break; case R4300i_COP1_FUNCT_NEG: COP1_D_NEG(); break; case R4300i_COP1_FUNCT_SQRT: COP1_D_SQRT(); break; case R4300i_COP1_FUNCT_MOV: COP1_D_MOV(); break; case R4300i_COP1_FUNCT_TRUNC_L: COP1_D_TRUNC_L(); break; //added by Witten case R4300i_COP1_FUNCT_CEIL_L: COP1_D_CEIL_L(); break; //added by Witten case R4300i_COP1_FUNCT_FLOOR_L: COP1_D_FLOOR_L(); break; //added by Witten case R4300i_COP1_FUNCT_ROUND_W: COP1_D_ROUND_W(); break; case R4300i_COP1_FUNCT_TRUNC_W: COP1_D_TRUNC_W(); break; case R4300i_COP1_FUNCT_CEIL_W: COP1_D_CEIL_W(); break; //added by Witten case R4300i_COP1_FUNCT_FLOOR_W: COP1_D_FLOOR_W(); break; //added by Witten case R4300i_COP1_FUNCT_CVT_S: COP1_D_CVT_S(); break; case R4300i_COP1_FUNCT_CVT_W: COP1_D_CVT_W(); break; case R4300i_COP1_FUNCT_CVT_L: COP1_D_CVT_L(); break; case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN: case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ: case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT: case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE: case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE: case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL: case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE: case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT: COP1_D_CMP(); break; default: UnknownOpcode(); break; } break; case R4300i_COP1_W: switch (m_Opcode.funct) { case R4300i_COP1_FUNCT_CVT_S: COP1_W_CVT_S(); break; case R4300i_COP1_FUNCT_CVT_D: COP1_W_CVT_D(); break; default: UnknownOpcode(); break; } break; case R4300i_COP1_L: switch (m_Opcode.funct) { case R4300i_COP1_FUNCT_CVT_S: COP1_L_CVT_S(); break; case R4300i_COP1_FUNCT_CVT_D: COP1_L_CVT_D(); break; default: UnknownOpcode(); break; } break; default: UnknownOpcode(); break; } break; case R4300i_BEQL: Compile_BranchLikely(BEQ_Compare, false); break; case R4300i_BNEL: Compile_BranchLikely(BNE_Compare, false); break; case R4300i_BGTZL:Compile_BranchLikely(BGTZ_Compare, false); break; case R4300i_BLEZL:Compile_BranchLikely(BLEZ_Compare, false); break; case R4300i_DADDIU: DADDIU(); break; case R4300i_LDL: g_MMU->Compile_LDL(); break; case R4300i_LDR: g_MMU->Compile_LDR(); break; case R4300i_LB: g_MMU->Compile_LB(); break; case R4300i_LH: g_MMU->Compile_LH(); break; case R4300i_LWL: g_MMU->Compile_LWL(); break; case R4300i_LW: g_MMU->Compile_LW(); break; case R4300i_LBU: g_MMU->Compile_LBU(); break; case R4300i_LHU: g_MMU->Compile_LHU(); break; case R4300i_LWR: g_MMU->Compile_LWR(); break; case R4300i_LWU: g_MMU->Compile_LWU(); break; //added by Witten case R4300i_SB: g_MMU->Compile_SB(); break; case R4300i_SH: g_MMU->Compile_SH(); break; case R4300i_SWL: g_MMU->Compile_SWL(); break; case R4300i_SW: g_MMU->Compile_SW(); break; case R4300i_SWR: g_MMU->Compile_SWR(); break; case R4300i_SDL: g_MMU->Compile_SDL(); break; case R4300i_SDR: g_MMU->Compile_SDR(); break; case R4300i_CACHE: CACHE(); break; case R4300i_LL: g_MMU->Compile_LL(); break; case R4300i_LWC1: g_MMU->Compile_LWC1(); break; case R4300i_LDC1: g_MMU->Compile_LDC1(); break; case R4300i_SC: g_MMU->Compile_SC(); break; case R4300i_LD: g_MMU->Compile_LD(); break; case R4300i_SWC1: g_MMU->Compile_SWC1(); break; case R4300i_SDC1: g_MMU->Compile_SDC1(); break; case R4300i_SD: g_MMU->Compile_SD(); break; default: UnknownOpcode(); break; } if (!g_System->bRegCaching()) { m_RegWorkingSet.WriteBackRegisters(); } m_RegWorkingSet.UnMap_AllFPRs(); if ((m_CompilePC & 0xFFC) == 0xFFC) { if (m_NextInstruction == DO_DELAY_SLOT) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (m_NextInstruction == NORMAL) { if (m_DelaySlot) { CompileExit(m_CompilePC, m_Jump.TargetPC, m_RegWorkingSet, CExitInfo::Normal, true, NULL); } else { CompileExit(m_CompilePC, m_CompilePC + 4, m_RegWorkingSet, CExitInfo::Normal, true, NULL); } m_NextInstruction = END_BLOCK; } } switch (m_NextInstruction) { case NORMAL: m_CompilePC += 4; break; case DO_DELAY_SLOT: m_NextInstruction = DELAY_SLOT; m_CompilePC += 4; break; case DELAY_SLOT: m_NextInstruction = DELAY_SLOT_DONE; m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); m_CompilePC -= 4; break; } if (m_DelaySlot) { if ((CompilePC() & 0xFFC) != 0xFFC && m_Jump.JumpPC != (uint32_t)-1) { m_CompilePC = m_Jump.JumpPC; m_Jump.RegSet = m_RegWorkingSet; m_Jump.FallThrough = true; GenerateSectionLinkage(); } else { CompileExit(m_Jump.JumpPC, m_Jump.TargetPC, m_RegWorkingSet, CExitInfo::Normal, true, NULL); } m_NextInstruction = END_BLOCK; } else if (m_NextInstruction != END_BLOCK && m_CompilePC == ContinueSectionPC) { if (m_NextInstruction != NORMAL) { g_Notify->BreakPoint(__FILE__, __LINE__); } m_CompilePC -= 4; m_Cont.RegSet = m_RegWorkingSet; m_Cont.FallThrough = true; m_Cont.JumpPC = m_CompilePC; GenerateSectionLinkage(); m_NextInstruction = END_BLOCK; } } while (m_NextInstruction != END_BLOCK); return true; } void CCodeSection::AddParent(CCodeSection * Parent) { if (this == NULL) { return; } if (Parent == NULL) { m_RegWorkingSet = m_RegEnter; return; } // check to see if we already have the parent in the list for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++) { if (*iter == Parent) { return; } } m_ParentSection.push_back(Parent); if (m_ParentSection.size() == 1) { if (Parent->m_ContinueSection == this) { m_RegEnter = Parent->m_Cont.RegSet; } else if (Parent->m_JumpSection == this) { m_RegEnter = Parent->m_Jump.RegSet; } else { g_Notify->DisplayError(L"How are these sections joined?????"); } m_RegWorkingSet = m_RegEnter; } else { if (Parent->m_ContinueSection == this) { TestRegConstantStates(Parent->m_Cont.RegSet, m_RegEnter); } if (Parent->m_JumpSection == this) { TestRegConstantStates(Parent->m_Jump.RegSet, m_RegEnter); } m_RegWorkingSet = m_RegEnter; } } void CCodeSection::SwitchParent(CCodeSection * OldParent, CCodeSection * NewParent) { if (this == NULL) { return; } bool bFoundOldParent = false; for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++) { if (*iter != OldParent) { continue; } bFoundOldParent = true; m_ParentSection.erase(iter); break; } if (!bFoundOldParent) { g_Notify->BreakPoint(__FILE__, __LINE__); } m_ParentSection.push_back(NewParent); } void CCodeSection::TestRegConstantStates(CRegInfo & Base, CRegInfo & Reg) { for (int i = 0; i < 32; i++) { if (Reg.GetMipsRegState(i) != Base.GetMipsRegState(i)) { Reg.SetMipsRegState(i, CRegInfo::STATE_UNKNOWN); } if (Reg.IsConst(i)) { if (Reg.Is32Bit(i)) { if (Reg.GetMipsRegLo(i) != Base.GetMipsRegLo(i)) { Reg.SetMipsRegState(i, CRegInfo::STATE_UNKNOWN); } } else { if (Reg.GetMipsReg(i) != Base.GetMipsReg(i)) { Reg.SetMipsRegState(i, CRegInfo::STATE_UNKNOWN); } } } } } void CCodeSection::DetermineLoop(uint32_t Test, uint32_t Test2, uint32_t TestID) { if (this == NULL) { return; } if (m_SectionID == TestID) { if (m_Test2 != Test2) { m_Test2 = Test2; m_ContinueSection->DetermineLoop(Test, Test2, TestID); m_JumpSection->DetermineLoop(Test, Test2, TestID); if (m_Test != Test) { m_Test = Test; if (m_ContinueSection != NULL) { m_ContinueSection->DetermineLoop(Test, m_BlockInfo->NextTest(), m_ContinueSection->m_SectionID); } if (m_JumpSection != NULL) { m_JumpSection->DetermineLoop(Test, m_BlockInfo->NextTest(), m_JumpSection->m_SectionID); } } } else { m_InLoop = true; } } else { if (m_Test2 != Test2) { m_Test2 = Test2; m_ContinueSection->DetermineLoop(Test, Test2, TestID); m_JumpSection->DetermineLoop(Test, Test2, TestID); } } } CCodeSection * CCodeSection::ExistingSection(uint32_t Addr, uint32_t Test) { if (this == NULL) { return NULL; } if (m_EnterPC == Addr && m_LinkAllowed) { return this; } if (m_Test == Test) { return NULL; } m_Test = Test; CCodeSection * Section = m_JumpSection->ExistingSection(Addr, Test); if (Section != NULL) { return Section; } Section = m_ContinueSection->ExistingSection(Addr, Test); if (Section != NULL) { return Section; } return NULL; } bool CCodeSection::SectionAccessible(uint32_t SectionId, uint32_t Test) { if (this == NULL) { return false; } if (m_SectionID == SectionId) { return true; } if (m_Test == Test) { return false; } m_Test = Test; if (m_ContinueSection->SectionAccessible(SectionId, Test)) { return true; } return m_JumpSection->SectionAccessible(SectionId, Test); } void CCodeSection::UnlinkParent(CCodeSection * Parent, bool ContinueSection) { if (this == NULL) { return; } CPU_Message(__FUNCTION__ ": Section %d Parent: %d ContinueSection = %s", m_SectionID, Parent->m_SectionID, ContinueSection ? "Yes" : "No"); if (Parent->m_ContinueSection == this && Parent->m_JumpSection == this) { g_Notify->BreakPoint(__FILE__, __LINE__); } SECTION_LIST::iterator iter = m_ParentSection.begin(); while (iter != m_ParentSection.end()) { CCodeSection * ParentIter = *iter; if (ParentIter == Parent && (Parent->m_ContinueSection != this || Parent->m_JumpSection != this)) { m_ParentSection.erase(iter); iter = m_ParentSection.begin(); } else { iter++; } } if (ContinueSection && Parent->m_ContinueSection == this) { Parent->m_ContinueSection = NULL; } if (!ContinueSection && Parent->m_JumpSection == this) { Parent->m_JumpSection = NULL; } bool bRemove = false; if (m_ParentSection.size() > 0) { if (!m_BlockInfo->SectionAccessible(m_SectionID)) { for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++) { CCodeSection * ParentIter = *iter; if (ParentIter->m_ContinueSection == this) { if (ParentIter->m_CompiledLocation) { g_Notify->BreakPoint(__FILE__, __LINE__); } ParentIter->m_ContinueSection = NULL; } if (ParentIter->m_JumpSection == this) { if (ParentIter->m_CompiledLocation) { g_Notify->BreakPoint(__FILE__, __LINE__); } ParentIter->m_JumpSection = NULL; } } bRemove = true; } } else { bRemove = true; } if (bRemove) { if (m_JumpSection != NULL) { m_JumpSection->UnlinkParent(this, false); } if (m_ContinueSection != NULL) { m_ContinueSection->UnlinkParent(this, true); } } } bool CCodeSection::IsAllParentLoops(CCodeSection * Parent, bool IgnoreIfCompiled, uint32_t Test) { if (IgnoreIfCompiled && Parent->m_CompiledLocation != NULL) { return true; } if (!m_InLoop) { return false; } if (!Parent->m_InLoop) { return false; } if (Parent->m_ParentSection.empty()) { return false; } if (this == Parent) { return true; } if (Parent->m_Test == Test) { return true; } Parent->m_Test = Test; for (SECTION_LIST::iterator iter = Parent->m_ParentSection.begin(); iter != Parent->m_ParentSection.end(); iter++) { CCodeSection * ParentSection = *iter; if (!IsAllParentLoops(ParentSection, IgnoreIfCompiled, Test)) { return false; } } return true; } bool CCodeSection::SetupRegisterForLoop() { CRegInfo OriginalReg = m_RegWorkingSet; if (!LoopAnalysis(m_BlockInfo, this).SetupRegisterForLoop()) { return false; } for (int i = 1; i < 32; i++) { if (OriginalReg.GetMipsRegState(i) != m_RegEnter.GetMipsRegState(i)) { UnMap_GPR(i, true); } } return true; } bool CCodeSection::InheritParentInfo() { if (m_CompiledLocation == NULL) { m_CompiledLocation = m_RecompPos; DisplaySectionInformation(); m_CompiledLocation = NULL; } else { DisplaySectionInformation(); } if (m_ParentSection.empty()) { m_RegWorkingSet = m_RegEnter; return true; } if (m_ParentSection.size() == 1) { CCodeSection * Parent = *(m_ParentSection.begin()); if (Parent->m_CompiledLocation == NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); } CJumpInfo * JumpInfo = this == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump; m_RegEnter = JumpInfo->RegSet; if (JumpInfo->LinkLocation != NULL) { CPU_Message(" Section_%d:", m_SectionID); SetJump32(JumpInfo->LinkLocation, (uint32_t *)m_RecompPos); if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2, (uint32_t *)m_RecompPos); } } m_RegWorkingSet = m_RegEnter; return true; } //Multiple Parents BLOCK_PARENT_LIST ParentList; SECTION_LIST::iterator iter; for (iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++) { CCodeSection * Parent = *iter; BLOCK_PARENT BlockParent; if (Parent->m_CompiledLocation == NULL) { continue; } if (Parent->m_JumpSection != Parent->m_ContinueSection) { BlockParent.Parent = Parent; BlockParent.JumpInfo = this == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump; ParentList.push_back(BlockParent); } else { BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Cont; ParentList.push_back(BlockParent); BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Jump; ParentList.push_back(BlockParent); } } size_t NoOfCompiledParents = ParentList.size(); if (NoOfCompiledParents == 0) { g_Notify->BreakPoint(__FILE__, __LINE__); return false; } // Add all the uncompiled blocks to the end of the list for (iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++) { CCodeSection * Parent = *iter; BLOCK_PARENT BlockParent; if (Parent->m_CompiledLocation != NULL) { continue; } if (Parent->m_JumpSection != Parent->m_ContinueSection) { BlockParent.Parent = Parent; BlockParent.JumpInfo = this == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump; ParentList.push_back(BlockParent); } else { BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Cont; ParentList.push_back(BlockParent); BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Jump; ParentList.push_back(BlockParent); } } int FirstParent = -1; for (size_t i = 0; i < NoOfCompiledParents; i++) { if (!ParentList[i].JumpInfo->FallThrough) { continue; } if (FirstParent != -1) { g_Notify->BreakPoint(__FILE__, __LINE__); } FirstParent = i; } if (FirstParent == -1) { FirstParent = 0; } //Link First Parent to start CCodeSection * Parent = ParentList[FirstParent].Parent; CJumpInfo * JumpInfo = ParentList[FirstParent].JumpInfo; m_RegWorkingSet = JumpInfo->RegSet; m_RegWorkingSet.ResetX86Protection(); if (JumpInfo->LinkLocation != NULL) { CPU_Message(" Section_%d (from %d):", m_SectionID, Parent->m_SectionID); SetJump32(JumpInfo->LinkLocation, (uint32_t *)m_RecompPos); JumpInfo->LinkLocation = NULL; if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2, (uint32_t *)m_RecompPos); JumpInfo->LinkLocation2 = NULL; } } if (JumpInfo->ExitReason == CExitInfo::Normal_NoSysCheck) { if (JumpInfo->RegSet.GetBlockCycleCount() != 0) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (JumpInfo->JumpPC != (uint32_t)-1) { g_Notify->BreakPoint(__FILE__, __LINE__); } } else { UpdateCounters(m_RegWorkingSet, m_EnterPC < JumpInfo->JumpPC, true); if (JumpInfo->JumpPC == (uint32_t)-1) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (m_EnterPC <= JumpInfo->JumpPC) { CPU_Message("CompileSystemCheck 10"); CompileSystemCheck(m_EnterPC, m_RegWorkingSet); } } JumpInfo->FallThrough = false; //Fix up initial state UnMap_AllFPRs(); //determine loop reg usage if (m_InLoop && ParentList.size() > 1) { if (!SetupRegisterForLoop()) { return false; } m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); } for (size_t i = 0; i < ParentList.size(); i++) { x86Reg MemoryStackPos; int i2; if (i == (size_t)FirstParent) { continue; } Parent = ParentList[i].Parent; if (Parent->m_CompiledLocation == NULL) { continue; } CRegInfo * RegSet = &ParentList[i].JumpInfo->RegSet; if (m_RegWorkingSet.GetRoundingModel() != RegSet->GetRoundingModel()) { m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); } //Find Parent MapRegState MemoryStackPos = x86_Unknown; for (i2 = 0; i2 < sizeof(x86_Registers) / sizeof(x86_Registers[0]); i2++) { if (RegSet->GetX86Mapped(x86_Registers[i2]) == CRegInfo::Stack_Mapped) { MemoryStackPos = x86_Registers[i2]; break; } } if (MemoryStackPos == x86_Unknown) { // if the memory stack position is not mapped then unmap it x86Reg MemStackReg = Get_MemoryStack(); if (MemStackReg != x86_Unknown) { UnMap_X86reg(MemStackReg); } } for (i2 = 1; i2 < 32; i2++) { if (Is32BitMapped(i2)) { switch (RegSet->GetMipsRegState(i2)) { case CRegInfo::STATE_MAPPED_64: Map_GPR_64bit(i2, i2); break; case CRegInfo::STATE_MAPPED_32_ZERO: break; case CRegInfo::STATE_MAPPED_32_SIGN: if (IsUnsigned(i2)) { m_RegWorkingSet.SetMipsRegState(i2, CRegInfo::STATE_MAPPED_32_SIGN); } break; case CRegInfo::STATE_CONST_64: Map_GPR_64bit(i2, i2); break; case CRegInfo::STATE_CONST_32_SIGN: if ((RegSet->GetMipsRegLo_S(i2) < 0) && IsUnsigned(i2)) { m_RegWorkingSet.SetMipsRegState(i2, CRegInfo::STATE_MAPPED_32_SIGN); } break; case CRegInfo::STATE_UNKNOWN: if (g_System->b32BitCore()) { Map_GPR_32bit(i2, true, i2); } else { //Map_GPR_32bit(i2,true,i2); Map_GPR_64bit(i2, i2); //?? //UnMap_GPR(Section,i2,true); ?? } break; default: CPU_Message("Unknown CPU State(%d) in InheritParentInfo", GetMipsRegState(i2)); g_Notify->BreakPoint(__FILE__, __LINE__); } } if (IsConst(i2)) { if (GetMipsRegState(i2) != RegSet->GetMipsRegState(i2)) { switch (RegSet->GetMipsRegState(i2)) { case CRegInfo::STATE_MAPPED_64: Map_GPR_64bit(i2, i2); break; case CRegInfo::STATE_MAPPED_32_ZERO: if (Is32Bit(i2)) { Map_GPR_32bit(i2, (GetMipsRegLo(i2) & 0x80000000) != 0, i2); } else { g_Notify->BreakPoint(__FILE__, __LINE__); } break; case CRegInfo::STATE_MAPPED_32_SIGN: if (Is32Bit(i2)) { Map_GPR_32bit(i2, true, i2); } else { g_Notify->BreakPoint(__FILE__, __LINE__); } break; case CRegInfo::STATE_UNKNOWN: if (g_System->b32BitCore()) { Map_GPR_32bit(i2, true, i2); } else { Map_GPR_64bit(i2, i2); } break; default: CPU_Message("Unknown CPU State(%d) in InheritParentInfo", RegSet->GetMipsRegState(i2)); g_Notify->BreakPoint(__FILE__, __LINE__); break; } } else if (Is32Bit(i2) && GetMipsRegLo(i2) != RegSet->GetMipsRegLo(i2)) { Map_GPR_32bit(i2, true, i2); } else if (Is64Bit(i2) && GetMipsReg(i2) != RegSet->GetMipsReg(i2)) { Map_GPR_32bit(i2, true, i2); } } ResetX86Protection(); } if (MemoryStackPos > 0) { Map_MemoryStack(MemoryStackPos, true); } } m_RegEnter = m_RegWorkingSet; //Sync registers for different blocks stdstr_f Label("Section_%d", m_SectionID); int CurrentParent = FirstParent; bool NeedSync = false; for (size_t i = 0; i < NoOfCompiledParents; i++) { CRegInfo * RegSet; int i2; if (i == (size_t)FirstParent) { continue; } Parent = ParentList[i].Parent; JumpInfo = ParentList[i].JumpInfo; RegSet = &ParentList[i].JumpInfo->RegSet; if (JumpInfo->RegSet.GetBlockCycleCount() != 0) { NeedSync = true; } for (i2 = 0; !NeedSync && i2 < 8; i2++) { if (m_RegWorkingSet.FpuMappedTo(i2) == (uint32_t)-1) { NeedSync = true; } } for (i2 = 0; !NeedSync && i2 < sizeof(x86_Registers) / sizeof(x86_Registers[0]); i2++) { if (m_RegWorkingSet.GetX86Mapped(x86_Registers[i2]) == CRegInfo::Stack_Mapped) { if (m_RegWorkingSet.GetX86Mapped(x86_Registers[i2]) != RegSet->GetX86Mapped(x86_Registers[i2])) { NeedSync = true; } break; } } for (i2 = 0; !NeedSync && i2 < 32; i2++) { if (NeedSync == true) { break; } if (m_RegWorkingSet.GetMipsRegState(i2) != RegSet->GetMipsRegState(i2)) { NeedSync = true; continue; } switch (m_RegWorkingSet.GetMipsRegState(i2)) { case CRegInfo::STATE_UNKNOWN: break; case CRegInfo::STATE_MAPPED_64: if (GetMipsRegMapHi(i2) != RegSet->GetMipsRegMapHi(i2) || GetMipsRegMapLo(i2) != RegSet->GetMipsRegMapLo(i2)) { NeedSync = true; } break; case CRegInfo::STATE_MAPPED_32_ZERO: case CRegInfo::STATE_MAPPED_32_SIGN: if (GetMipsRegMapLo(i2) != RegSet->GetMipsRegMapLo(i2)) { //DisplayError(L"Parent: %d",Parent->SectionID); NeedSync = true; } break; case CRegInfo::STATE_CONST_32_SIGN: if (GetMipsRegLo(i2) != RegSet->GetMipsRegLo(i2)) { g_Notify->BreakPoint(__FILE__, __LINE__); NeedSync = true; } break; default: WriteTrace(TraceRecompiler, TraceError, "Unhandled Reg state %d\nin InheritParentInfo", GetMipsRegState(i2)); g_Notify->BreakPoint(__FILE__, __LINE__); } } if (NeedSync == false) { continue; } Parent = ParentList[CurrentParent].Parent; JumpInfo = ParentList[CurrentParent].JumpInfo; JmpLabel32(Label.c_str(), 0); JumpInfo->LinkLocation = (uint32_t *)(m_RecompPos - 4); JumpInfo->LinkLocation2 = NULL; CurrentParent = i; Parent = ParentList[CurrentParent].Parent; JumpInfo = ParentList[CurrentParent].JumpInfo; CPU_Message(" Section_%d (from %d):", m_SectionID, Parent->m_SectionID); if (JumpInfo->LinkLocation != NULL) { SetJump32(JumpInfo->LinkLocation, (uint32_t *)m_RecompPos); JumpInfo->LinkLocation = NULL; if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2, (uint32_t *)m_RecompPos); JumpInfo->LinkLocation2 = NULL; } } //if (m_EnterPC == 0x8031CE44 && m_SectionID == 6) //{ // g_Notify->BreakPoint(__FILE__, __LINE__); //} m_RegWorkingSet = JumpInfo->RegSet; if (m_EnterPC < JumpInfo->JumpPC) { UpdateCounters(m_RegWorkingSet, true, true); CPU_Message("CompileSystemCheck 11"); CompileSystemCheck(m_EnterPC, m_RegWorkingSet); } else { UpdateCounters(m_RegWorkingSet, false, true); } SyncRegState(m_RegEnter); //Sync m_RegEnter = m_RegWorkingSet; } for (size_t i = 0; i < NoOfCompiledParents; i++) { Parent = ParentList[i].Parent; JumpInfo = ParentList[i].JumpInfo; if (JumpInfo->LinkLocation != NULL) { SetJump32(JumpInfo->LinkLocation, (uint32_t *)m_RecompPos); JumpInfo->LinkLocation = NULL; if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2, (uint32_t *)m_RecompPos); JumpInfo->LinkLocation2 = NULL; } } } CPU_Message(" Section_%d:", m_SectionID); m_RegWorkingSet.SetBlockCycleCount(0); return true; } bool CCodeSection::DisplaySectionInformation(uint32_t ID, uint32_t Test) { if (!bX86Logging) { return false; } if (this == NULL) { return false; } if (m_Test == Test) { return false; } m_Test = Test; if (m_SectionID != ID) { if (m_ContinueSection->DisplaySectionInformation(ID, Test)) { return true; } if (m_JumpSection->DisplaySectionInformation(ID, Test)) { return true; } return false; } DisplaySectionInformation(); return true; } void CCodeSection::DisplaySectionInformation() { if (m_SectionID == 0) { return; } CPU_Message("====== Section %d ======", m_SectionID); CPU_Message("Start PC: %X", m_EnterPC); CPU_Message("End PC: %X", m_EndPC); CPU_Message("CompiledLocation: %X", m_CompiledLocation); if (!m_ParentSection.empty()) { stdstr ParentList; for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++) { CCodeSection * Parent = *iter; if (!ParentList.empty()) { ParentList += ", "; } ParentList += stdstr_f("%d", Parent->m_SectionID); } CPU_Message("Number of parents: %d (%s)", m_ParentSection.size(), ParentList.c_str()); } CPU_Message("Jump Address: 0x%08X", m_Jump.JumpPC); CPU_Message("Jump Target Address: 0x%08X", m_Jump.TargetPC); if (m_JumpSection != NULL) { CPU_Message("Jump Section: %d", m_JumpSection->m_SectionID); } else { CPU_Message("Jump Section: None"); } CPU_Message("Continue Address: 0x%08X", m_Cont.JumpPC); CPU_Message("Continue Target Address: 0x%08X", m_Cont.TargetPC); if (m_ContinueSection != NULL) { CPU_Message("Continue Section: %d", m_ContinueSection->m_SectionID); } else { CPU_Message("Continue Section: None"); } CPU_Message("In Loop: %s", m_InLoop ? "Yes" : "No"); CPU_Message("======================="); }