#include "stdafx.h" #include #include #include #include #include #include #include #include #include uint8_t * CMipsMemoryVM::m_Reserve1 = nullptr; uint8_t * CMipsMemoryVM::m_Reserve2 = nullptr; uint32_t CMipsMemoryVM::RegModValue; #pragma warning(disable : 4355) // Disable 'this' : used in base member initializer list CMipsMemoryVM::CMipsMemoryVM(CN64System & System, bool SavesReadOnly) : m_System(System), m_Reg(System.m_Reg), m_AudioInterfaceHandler(System, System.m_Reg), m_CartridgeDomain1Address1Handler(System.m_Reg, g_DDRom), m_CartridgeDomain2Address1Handler(System.m_Reg), m_CartridgeDomain2Address2Handler(System, System.m_Reg, *this, SavesReadOnly), m_RDRAMRegistersHandler(System.m_Reg), m_DPCommandRegistersHandler(System, System.GetPlugins(), System.m_Reg), m_ISViewerHandler(System, m_RomMemoryHandler, *g_Rom), m_MIPSInterfaceHandler(System.m_Reg), m_PeripheralInterfaceHandler(System, *this, System.m_Reg, m_CartridgeDomain2Address2Handler), m_PifRamHandler(System, SavesReadOnly), m_RDRAMInterfaceHandler(System.m_Reg), m_RomMemoryHandler(System, System.m_Reg, *g_Rom), m_SerialInterfaceHandler(*this, System.m_Reg), m_SPRegistersHandler(System, *this, System.m_Reg), m_VideoInterfaceHandler(System, *this, System.m_Reg), m_MemoryReadMap(nullptr), m_MemoryWriteMap(nullptr), m_TLB_ReadMap(nullptr), m_TLB_WriteMap(nullptr), m_RDRAM(nullptr), m_Rom(*g_Rom) { g_Settings->RegisterChangeCB(Game_RDRamSize, this, (CSettings::SettingChangedFunc)RdramChanged); } CMipsMemoryVM::~CMipsMemoryVM() { g_Settings->UnregisterChangeCB(Game_RDRamSize, this, (CSettings::SettingChangedFunc)RdramChanged); FreeMemory(); } void CMipsMemoryVM::Reset(bool /*EraseMemory*/) { if (m_MemoryReadMap != nullptr && m_MemoryWriteMap != nullptr) { memset(m_MemoryReadMap, -1, 0x100000 * sizeof(m_MemoryReadMap[0])); memset(m_MemoryWriteMap, -1, 0x100000 * sizeof(m_MemoryWriteMap[0])); for (uint32_t i = 0; i < 2; i++) { uint32_t BaseAddress = i == 0 ? 0x80000000 : 0xA0000000; for (size_t Address = BaseAddress; Address < BaseAddress + m_AllocatedRdramSize; Address += 0x1000) { m_MemoryReadMap[Address >> 12] = (size_t)((m_RDRAM + (Address & 0x1FFFFFFF)) - Address); m_MemoryWriteMap[Address >> 12] = (size_t)((m_RDRAM + (Address & 0x1FFFFFFF)) - Address); } for (size_t Address = BaseAddress + 0x04000000; Address < (BaseAddress + 0x04001000); Address += 0x1000) { m_MemoryReadMap[Address >> 12] = (size_t)(Dmem() - Address); } for (size_t Address = BaseAddress + 0x04001000; Address < (BaseAddress + 0x04002000); Address += 0x1000) { m_MemoryReadMap[Address >> 12] = (size_t)(Imem() - Address); } } } if (m_TLB_ReadMap) { memset(m_TLB_ReadMap, -1, 0xFFFFF * sizeof(m_TLB_ReadMap[0])); memset(m_TLB_WriteMap, -1, 0xFFFFF * sizeof(m_TLB_WriteMap[0])); for (uint32_t Address = 0x80000000; Address < 0xC0000000; Address += 0x1000) { m_TLB_ReadMap[Address >> 12] = (Address & 0x1FFFFFFF) - Address; m_TLB_WriteMap[Address >> 12] = (Address & 0x1FFFFFFF) - Address; } if (g_Settings->LoadDword(Rdb_TLB_VAddrStart) != 0) { uint32_t Start = g_Settings->LoadDword(Rdb_TLB_VAddrStart); //0x7F000000; uint32_t Len = g_Settings->LoadDword(Rdb_TLB_VAddrLen); //0x01000000; uint32_t PAddr = g_Settings->LoadDword(Rdb_TLB_PAddrStart); //0x10034b30; uint32_t End = Start + Len; for (uint32_t Address = Start; Address < End; Address += 0x1000) { uint32_t TargetAddress = (Address - Start + PAddr); if (TargetAddress < m_AllocatedRdramSize) { m_MemoryReadMap[Address >> 12] = ((size_t)m_RDRAM + TargetAddress) - Address; m_MemoryWriteMap[Address >> 12] = ((size_t)m_RDRAM + TargetAddress) - Address; } if (TargetAddress >= 0x10000000 && TargetAddress < (0x10000000 + g_Rom->GetRomSize())) { m_MemoryReadMap[Address >> 12] = ((size_t)g_Rom->GetRomAddress() + (TargetAddress - 0x10000000)) - Address; } m_TLB_ReadMap[Address >> 12] = TargetAddress - Address; m_TLB_WriteMap[Address >> 12] = TargetAddress - Address; } } } } void CMipsMemoryVM::ReserveMemory() { #if defined(__i386__) || defined(_M_IX86) m_Reserve1 = (uint8_t *)AllocateAddressSpace(0x20000000, (void *)g_Settings->LoadDword(Setting_FixedRdramAddress)); #else m_Reserve1 = (uint8_t *)AllocateAddressSpace(0x20000000); #endif m_Reserve2 = (uint8_t *)AllocateAddressSpace(0x04002000); } void CMipsMemoryVM::FreeReservedMemory() { if (m_Reserve1) { FreeAddressSpace(m_Reserve1, 0x20000000); m_Reserve1 = nullptr; } if (m_Reserve2) { FreeAddressSpace(m_Reserve2, 0x20000000); m_Reserve2 = nullptr; } } bool CMipsMemoryVM::Initialize(bool SyncSystem) { if (m_RDRAM != nullptr) { return true; } if (!SyncSystem && m_RDRAM == nullptr && m_Reserve1 != nullptr) { m_RDRAM = m_Reserve1; m_Reserve1 = nullptr; } if (SyncSystem && m_RDRAM == nullptr && m_Reserve2 != nullptr) { m_RDRAM = m_Reserve2; m_Reserve2 = nullptr; } if (m_RDRAM == nullptr) { m_RDRAM = (uint8_t *)AllocateAddressSpace(0x20000000); } if (m_RDRAM == nullptr) { WriteTrace(TraceN64System, TraceError, "Failed to reserve RDRAM (Size: 0x%X)", 0x20000000); FreeMemory(); return false; } bool RdbRamSet = g_Settings->LoadDword(Rdb_RDRamSize, m_AllocatedRdramSize); if (!g_Settings->LoadDword(Game_RDRamSize, m_AllocatedRdramSize) && !RdbRamSet) { m_AllocatedRdramSize = g_Settings->LoadDword(g_Settings->LoadBool(Game_Known) ? Default_RDRamSizeKnown : Default_RDRamSizeUnknown); } if (CommitMemory(m_RDRAM, m_AllocatedRdramSize, MEM_READWRITE) == nullptr) { WriteTrace(TraceN64System, TraceError, "Failed to allocate RDRAM (Size: 0x%X)", m_AllocatedRdramSize); FreeMemory(); return false; } g_Settings->SaveDword(Setting_AllocatedRdramSize, m_AllocatedRdramSize); m_MemoryReadMap = new size_t[0x100000]; if (m_MemoryReadMap == nullptr) { WriteTrace(TraceN64System, TraceError, "Failed to allocate m_MemoryReadMap (Size: 0x%X)", 0x100000 * sizeof(size_t)); FreeMemory(); return false; } m_MemoryWriteMap = new size_t[0x100000]; if (m_MemoryWriteMap == nullptr) { WriteTrace(TraceN64System, TraceError, "Failed to allocate m_MemoryWriteMap (Size: 0x%X)", 0x100000 * sizeof(size_t)); FreeMemory(); return false; } m_TLB_ReadMap = new uint32_t[0x100000]; if (m_TLB_ReadMap == nullptr) { WriteTrace(TraceN64System, TraceError, "Failed to allocate m_TLB_ReadMap (Size: 0x%X)", 0x100000 * sizeof(size_t)); FreeMemory(); return false; } m_TLB_WriteMap = new uint32_t[0x100000]; if (m_TLB_WriteMap == nullptr) { WriteTrace(TraceN64System, TraceError, "Failed to allocate m_TLB_WriteMap (Size: 0x%X)", 0xFFFFF * sizeof(size_t)); FreeMemory(); return false; } Reset(false); return true; } void CMipsMemoryVM::FreeMemory() { if (m_RDRAM) { if (DecommitMemory(m_RDRAM, 0x20000000)) { if (m_Reserve1 == nullptr) { m_Reserve1 = m_RDRAM; } else if (m_Reserve2 == nullptr) { m_Reserve2 = m_RDRAM; } else { FreeAddressSpace(m_RDRAM, 0x20000000); } } else { FreeAddressSpace(m_RDRAM, 0x20000000); } m_RDRAM = nullptr; } if (m_TLB_ReadMap) { delete[] m_TLB_ReadMap; m_TLB_ReadMap = nullptr; } if (m_TLB_WriteMap) { delete[] m_TLB_WriteMap; m_TLB_WriteMap = nullptr; } if (m_MemoryReadMap) { delete[] m_MemoryReadMap; m_MemoryReadMap = nullptr; } if (m_MemoryWriteMap) { delete[] m_MemoryWriteMap; m_MemoryWriteMap = nullptr; } } uint8_t * CMipsMemoryVM::MemoryPtr(uint32_t VAddr, uint32_t Size, bool Read) { if (m_TLB_ReadMap[VAddr >> 12] == -1) { return nullptr; } uint32_t PAddr = m_TLB_ReadMap[VAddr >> 12] + VAddr; if ((PAddr + Size) < m_AllocatedRdramSize) { return (uint8_t *)(m_RDRAM + PAddr); } if (PAddr >= 0x04000000 && (PAddr + Size) <= 0x04001000) { return (uint8_t *)&m_SPRegistersHandler.Dmem()[PAddr - 0x04000000]; } if (PAddr >= 0x04001000 && (PAddr + Size) <= 0x04002000) { return (uint8_t *)&m_SPRegistersHandler.Imem()[PAddr - 0x04001000]; } if (Read && PAddr >= 0x10000000 && (PAddr + Size) < (0x10000000 + m_Rom.GetRomSize())) { return (uint8_t *)&m_Rom.GetRomAddress()[PAddr - 0x10000000]; } g_Notify->BreakPoint(__FILE__, __LINE__); return nullptr; } bool CMipsMemoryVM::MemoryValue8(uint32_t VAddr, uint8_t & Value) { uint8_t * ptr = MemoryPtr(VAddr ^ 3, 1, true); if (ptr == nullptr) { return false; } Value = *ptr; return true; } bool CMipsMemoryVM::MemoryValue16(uint32_t VAddr, uint16_t & Value) { uint8_t * ptr = MemoryPtr(VAddr ^ 2, 2, true); if (ptr == nullptr) { return false; } Value = *(uint16_t *)(ptr); return true; } bool CMipsMemoryVM::MemoryValue32(uint32_t VAddr, uint32_t & Value) { uint8_t * ptr = MemoryPtr(VAddr, 4, true); if (ptr == nullptr) { return false; } Value = *(uint32_t *)(ptr); return true; } bool CMipsMemoryVM::MemoryValue64(uint32_t VAddr, uint64_t & Value) { uint8_t * ptr = MemoryPtr(VAddr, 8, true); if (ptr == nullptr) { return false; } *((uint32_t *)(&Value) + 1) = *(uint32_t *)(ptr); *((uint32_t *)(&Value) + 0) = *(uint32_t *)(ptr + 4); return true; } bool CMipsMemoryVM::UpdateMemoryValue8(uint32_t VAddr, uint8_t Value) { uint8_t * ptr = MemoryPtr(VAddr ^ 3, 1, false); if (ptr == nullptr) { return false; } *ptr = Value; return true; } bool CMipsMemoryVM::UpdateMemoryValue16(uint32_t VAddr, uint16_t Value) { uint8_t * ptr = MemoryPtr(VAddr ^ 2, 2, false); if (ptr == nullptr) { return false; } *(uint16_t *)(ptr) = Value; return true; } bool CMipsMemoryVM::UpdateMemoryValue32(uint32_t VAddr, uint32_t Value) { uint8_t * ptr = MemoryPtr(VAddr, 4, false); if (ptr == nullptr) { return false; } *(uint32_t *)(ptr) = Value; return true; } bool CMipsMemoryVM::LB_Memory(uint64_t VAddr, uint8_t & Value) { if ((uint64_t)((int32_t)VAddr) != VAddr) { uint32_t PAddr; bool MemoryUnused; if (!g_TLB->VAddrToPAddr(VAddr, PAddr, MemoryUnused)) { m_Reg.TriggerAddressException(VAddr, MemoryUnused ? EXC_RADE : EXC_RMISS); return false; } return LB_PhysicalAddress(PAddr, Value); } uint32_t VAddr32 = (uint32_t)VAddr; if (HaveReadBP() && g_Debugger->ReadBP8(VAddr32) && MemoryBreakpoint()) { return false; } uint8_t * MemoryPtr = (uint8_t *)m_MemoryReadMap[VAddr32 >> 12]; if (MemoryPtr != (uint8_t *)-1) { Value = *(uint8_t *)(MemoryPtr + (VAddr32 ^ 3)); return true; } return LB_VAddr32(VAddr32, Value); } bool CMipsMemoryVM::LH_Memory(uint64_t VAddr, uint16_t & Value) { if ((VAddr & 1) != 0) { m_Reg.TriggerAddressException(VAddr, EXC_RADE); return false; } if ((uint64_t)((int32_t)VAddr) != VAddr) { uint32_t PAddr; bool MemoryUnused; if (!g_TLB->VAddrToPAddr(VAddr, PAddr, MemoryUnused)) { m_Reg.TriggerAddressException(VAddr, MemoryUnused ? EXC_RADE : EXC_RMISS); return false; } return LH_PhysicalAddress(PAddr, Value); } uint32_t VAddr32 = (uint32_t)VAddr; if (HaveReadBP() && g_Debugger->ReadBP16(VAddr32) && MemoryBreakpoint()) { return false; } uint8_t * MemoryPtr = (uint8_t *)m_MemoryReadMap[VAddr32 >> 12]; if (MemoryPtr != (uint8_t *)-1) { Value = *(uint16_t *)(MemoryPtr + (VAddr32 ^ 2)); return true; } return LH_VAddr32(VAddr32, Value); } bool CMipsMemoryVM::LW_Memory(uint64_t VAddr, uint32_t & Value) { if ((VAddr & 3) != 0) { m_Reg.TriggerAddressException(VAddr, EXC_RADE); return false; } if ((uint64_t)((int32_t)VAddr) != VAddr) { uint32_t PAddr; bool MemoryUnused; if (!g_TLB->VAddrToPAddr(VAddr, PAddr, MemoryUnused)) { m_Reg.TriggerAddressException(VAddr, MemoryUnused ? EXC_RADE : EXC_RMISS); return false; } return LW_PhysicalAddress(PAddr, Value); } uint32_t VAddr32 = (uint32_t)VAddr; if (HaveReadBP() && g_Debugger->ReadBP32(VAddr32) && MemoryBreakpoint()) { return false; } uint8_t * MemoryPtr = (uint8_t *)m_MemoryReadMap[VAddr32 >> 12]; if (MemoryPtr != (uint8_t *)-1) { Value = *(uint32_t *)(MemoryPtr + VAddr32); return true; } return LW_VAddr32(VAddr32, Value); } bool CMipsMemoryVM::LD_Memory(uint64_t VAddr, uint64_t & Value) { if ((VAddr & 7) != 0) { m_Reg.TriggerAddressException(VAddr, EXC_RADE); return false; } if ((uint64_t)((int32_t)VAddr) != VAddr) { uint32_t PAddr; bool MemoryUnused; if (!g_TLB->VAddrToPAddr(VAddr, PAddr, MemoryUnused)) { m_Reg.TriggerAddressException(VAddr, MemoryUnused ? EXC_RADE : EXC_RMISS); return false; } return LD_PhysicalAddress(PAddr, Value); } uint32_t VAddr32 = (uint32_t)VAddr; if (HaveReadBP() && g_Debugger->ReadBP64(VAddr32) && MemoryBreakpoint()) { return false; } uint8_t * MemoryPtr = (uint8_t *)m_MemoryReadMap[VAddr32 >> 12]; if (MemoryPtr != (uint8_t *)-1) { *((uint32_t *)(&Value) + 1) = *(uint32_t *)(MemoryPtr + VAddr32); *((uint32_t *)(&Value) + 0) = *(uint32_t *)(MemoryPtr + VAddr32 + 4); return true; } return LD_VAddr32(VAddr32, Value); } bool CMipsMemoryVM::SB_Memory(uint64_t VAddr, uint32_t Value) { if ((uint64_t)((int32_t)VAddr) != VAddr) { uint32_t PAddr; bool MemoryUnused; if (!g_TLB->VAddrToPAddr(VAddr, PAddr, MemoryUnused)) { m_Reg.TriggerAddressException(VAddr, MemoryUnused ? EXC_WADE : EXC_WMISS); return false; } return SB_PhysicalAddress(PAddr, Value); } uint32_t VAddr32 = (uint32_t)VAddr; if (HaveWriteBP() && g_Debugger->WriteBP8(VAddr32) && MemoryBreakpoint()) { return false; } uint8_t * MemoryPtr = (uint8_t *)m_MemoryWriteMap[VAddr32 >> 12]; if (MemoryPtr != (uint8_t *)-1) { *(uint8_t *)(MemoryPtr + (VAddr32 ^ 3)) = (uint8_t)Value; return true; } return SB_VAddr32(VAddr32, Value); } bool CMipsMemoryVM::SH_Memory(uint64_t VAddr, uint32_t Value) { if ((VAddr & 1) != 0) { m_Reg.TriggerAddressException(VAddr, EXC_WADE); return false; } if ((uint64_t)((int32_t)VAddr) != VAddr) { uint32_t PAddr; bool MemoryUnused; if (!g_TLB->VAddrToPAddr(VAddr, PAddr, MemoryUnused)) { m_Reg.TriggerAddressException(VAddr, MemoryUnused ? EXC_WADE : EXC_WMISS); return false; } return SH_PhysicalAddress(PAddr, Value); } uint32_t VAddr32 = (uint32_t)VAddr; if (HaveWriteBP() && g_Debugger->WriteBP16(VAddr32) && MemoryBreakpoint()) { return false; } uint8_t * MemoryPtr = (uint8_t *)m_MemoryWriteMap[VAddr32 >> 12]; if (MemoryPtr != (uint8_t *)-1) { *(uint16_t *)(MemoryPtr + (VAddr32 ^ 2)) = (uint16_t)Value; return true; } return SH_VAddr32(VAddr32, Value); } bool CMipsMemoryVM::SW_Memory(uint64_t VAddr, uint32_t Value) { if ((VAddr & 3) != 0) { m_Reg.TriggerAddressException(VAddr, EXC_WADE); return false; } if ((uint64_t)((int32_t)VAddr) != VAddr) { uint32_t PAddr; bool MemoryUnused; if (!g_TLB->VAddrToPAddr(VAddr, PAddr, MemoryUnused)) { m_Reg.TriggerAddressException(VAddr, MemoryUnused ? EXC_WADE : EXC_WMISS); return false; } return SW_PhysicalAddress(PAddr, Value); } uint32_t VAddr32 = (uint32_t)VAddr; if (HaveWriteBP() && g_Debugger->WriteBP32(VAddr32) && MemoryBreakpoint()) { return false; } uint8_t * MemoryPtr = (uint8_t *)m_MemoryWriteMap[VAddr32 >> 12]; if (MemoryPtr != (uint8_t *)-1) { *(uint32_t *)(MemoryPtr + VAddr32) = Value; return true; } return SW_VAddr32(VAddr32, Value); } bool CMipsMemoryVM::SD_Memory(uint64_t VAddr, uint64_t Value) { if ((VAddr & 7) != 0) { m_Reg.TriggerAddressException(VAddr, EXC_WADE); return false; } if ((uint64_t)((int32_t)VAddr) != VAddr) { uint32_t PAddr; bool MemoryUnused; if (!g_TLB->VAddrToPAddr(VAddr, PAddr, MemoryUnused)) { m_Reg.TriggerAddressException(VAddr, MemoryUnused ? EXC_WADE : EXC_WMISS); return false; } return SD_PhysicalAddress(PAddr, Value); } uint32_t VAddr32 = (uint32_t)VAddr; if (HaveWriteBP() && g_Debugger->WriteBP64(VAddr32) && MemoryBreakpoint()) { return false; } uint8_t * MemoryPtr = (uint8_t *)m_MemoryWriteMap[VAddr32 >> 12]; if (MemoryPtr != (uint8_t *)-1) { *(uint32_t *)(MemoryPtr + VAddr32 + 0) = *((uint32_t *)(&Value) + 1); *(uint32_t *)(MemoryPtr + VAddr32 + 4) = *((uint32_t *)(&Value)); return true; } return SD_VAddr32(VAddr32, Value); } bool CMipsMemoryVM::ValidVaddr(uint32_t VAddr) const { return m_TLB_ReadMap[VAddr >> 12] != -1; } bool CMipsMemoryVM::VAddrToPAddr(uint32_t VAddr, uint32_t & PAddr) const { if (m_TLB_ReadMap[VAddr >> 12] == -1) { return false; } PAddr = m_TLB_ReadMap[VAddr >> 12] + VAddr; return true; } bool CMipsMemoryVM::MemoryBreakpoint() { if (g_Settings->LoadBool(Debugger_SteppingOps)) { return false; } g_Settings->SaveBool(Debugger_SteppingOps, true); g_Debugger->WaitForStep(); if (SkipOp()) { // Skip command if instructed by the debugger g_Settings->SaveBool(Debugger_SkipOp, false); return true; } return false; } bool CMipsMemoryVM::LB_VAddr32(uint32_t VAddr, uint8_t & Value) { uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12]; if (BaseAddress == -1) { m_Reg.TriggerAddressException((int32_t)VAddr, EXC_RMISS); return false; } return LB_PhysicalAddress(BaseAddress + VAddr, Value); } bool CMipsMemoryVM::LH_VAddr32(uint32_t VAddr, uint16_t & Value) { uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12]; if (BaseAddress == -1) { m_Reg.TriggerAddressException((int32_t)VAddr, EXC_RMISS); return false; } return LH_PhysicalAddress(BaseAddress + VAddr, Value); } bool CMipsMemoryVM::LW_VAddr32(uint32_t VAddr, uint32_t & Value) { uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12]; if (BaseAddress == -1) { m_Reg.TriggerAddressException((int32_t)VAddr, EXC_RMISS); return false; } return LW_PhysicalAddress(BaseAddress + VAddr, Value); } bool CMipsMemoryVM::LD_VAddr32(uint32_t VAddr, uint64_t & Value) { uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12]; if (BaseAddress == -1) { m_Reg.TriggerAddressException((int32_t)VAddr, EXC_RMISS); return false; } return LD_PhysicalAddress(BaseAddress + VAddr, Value); } bool CMipsMemoryVM::LB_PhysicalAddress(uint32_t PAddr, uint8_t & Value) { uint32_t ReadAddress = PAddr & ~3; uint32_t Value32; switch (PAddr & 0xFFF00000) { case 0x1FC00000: m_PifRamHandler.Read32(ReadAddress, Value32); break; default: if (PAddr < RdramSize()) { Value = *(uint8_t *)(m_RDRAM + (PAddr ^ 3)); return true; } else if (PAddr >= 0x10000000 && PAddr < 0x20000000) { if (!m_RomMemoryHandler.Read32(PAddr, Value32)) { return false; } Value = ((Value32 >> (((PAddr & 1) ^ 3) << 3)) & 0xff); return true; } else { if (BreakOnUnhandledMemory()) { g_Notify->BreakPoint(__FILE__, __LINE__); } Value32 = 0; } } Value = ((Value32 >> (((PAddr & 3) ^ 3) << 3)) & 0xff); return true; } bool CMipsMemoryVM::LH_PhysicalAddress(uint32_t PAddr, uint16_t & Value) { uint32_t ReadAddress = PAddr & ~1; uint32_t Value32; switch (PAddr & 0xFFF00000) { case 0x1FC00000: m_PifRamHandler.Read32(ReadAddress, Value32); break; default: if (PAddr < RdramSize()) { Value = *(uint16_t *)(m_RDRAM + (PAddr ^ 2)); return true; } else if (PAddr >= 0x10000000 && PAddr < 0x20000000) { if (!m_RomMemoryHandler.Read32(PAddr, Value32)) { return false; } Value = ((Value32 >> 16) & 0xffff); return true; } else { if (BreakOnUnhandledMemory()) { g_Notify->BreakPoint(__FILE__, __LINE__); } Value32 = 0; } } Value = ((Value32 >> (((PAddr ^ 1) & 1) << 4)) & 0xffff); return true; } bool CMipsMemoryVM::LW_PhysicalAddress(uint32_t PAddr, uint32_t & Value) { switch (PAddr & 0xFFF00000) { case 0x03F00000: m_RDRAMRegistersHandler.Read32(PAddr, Value); break; case 0x04000000: m_SPRegistersHandler.Read32(PAddr, Value); break; case 0x04100000: m_DPCommandRegistersHandler.Read32(PAddr, Value); break; case 0x04300000: m_MIPSInterfaceHandler.Read32(PAddr, Value); break; case 0x04400000: m_VideoInterfaceHandler.Read32(PAddr, Value); break; case 0x04500000: m_AudioInterfaceHandler.Read32(PAddr, Value); break; case 0x04600000: m_PeripheralInterfaceHandler.Read32(PAddr, Value); break; case 0x04700000: m_RDRAMInterfaceHandler.Read32(PAddr, Value); break; case 0x04800000: m_SerialInterfaceHandler.Read32(PAddr, Value); break; case 0x05000000: m_CartridgeDomain2Address1Handler.Read32(PAddr, Value); break; case 0x06000000: m_CartridgeDomain1Address1Handler.Read32(PAddr, Value); break; case 0x08000000: m_CartridgeDomain2Address2Handler.Read32(PAddr, Value); break; case 0x13F00000: m_ISViewerHandler.Read32(PAddr, Value); break; case 0x1FC00000: m_PifRamHandler.Read32(PAddr, Value); break; case 0x1FF00000: m_CartridgeDomain1Address3Handler.Read32(PAddr, Value); break; default: if (PAddr < RdramSize()) { Value = *(uint32_t *)(m_RDRAM + PAddr); } else if (PAddr >= 0x10000000 && PAddr < 0x20000000) { m_RomMemoryHandler.Read32(PAddr, Value); } else if (BreakOnUnhandledMemory()) { g_Notify->BreakPoint(__FILE__, __LINE__); Value = ((PAddr & 0xFFFF) << 16) | (PAddr & 0xFFFF); } else { Value = ((PAddr & 0xFFFF) << 16) | (PAddr & 0xFFFF); } } return true; } bool CMipsMemoryVM::LD_PhysicalAddress(uint32_t PAddr, uint64_t & Value) { if (PAddr < RdramSize()) { *((uint32_t *)(&Value) + 1) = *(uint32_t *)(m_RDRAM + PAddr); *((uint32_t *)(&Value) + 0) = *(uint32_t *)(m_RDRAM + PAddr + 4); return true; } else if (PAddr < 0x800000) { Value = 0; return true; } g_Notify->BreakPoint(__FILE__, __LINE__); Value = 0; return false; } bool CMipsMemoryVM::SB_VAddr32(uint32_t VAddr, uint32_t Value) { uint32_t BaseAddress = m_TLB_WriteMap[VAddr >> 12]; if (BaseAddress == -1) { m_Reg.TriggerAddressException((int32_t)VAddr, EXC_WMISS); return false; } return SB_PhysicalAddress(BaseAddress + VAddr, Value); } bool CMipsMemoryVM::SH_VAddr32(uint32_t VAddr, uint32_t Value) { uint32_t BaseAddress = m_TLB_WriteMap[VAddr >> 12]; if (BaseAddress == -1) { m_Reg.TriggerAddressException((int32_t)VAddr, EXC_WMISS); return false; } return SH_PhysicalAddress(BaseAddress + VAddr, Value); } bool CMipsMemoryVM::SW_VAddr32(uint32_t VAddr, uint32_t Value) { uint32_t BaseAddress = m_TLB_WriteMap[VAddr >> 12]; if (BaseAddress == -1) { m_Reg.TriggerAddressException((int32_t)VAddr, EXC_WMISS); return false; } return SW_PhysicalAddress(BaseAddress + VAddr, Value); } bool CMipsMemoryVM::SD_VAddr32(uint32_t VAddr, uint64_t Value) { uint32_t BaseAddress = m_TLB_WriteMap[VAddr >> 12]; if (BaseAddress == -1) { m_Reg.TriggerAddressException((int32_t)VAddr, EXC_WMISS); return false; } return SD_PhysicalAddress(BaseAddress + VAddr, Value); } bool CMipsMemoryVM::SB_PhysicalAddress(uint32_t PAddr, uint32_t Value) { switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: if (PAddr < RdramSize()) { g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0xFFC, CRecompiler::Remove_ProtectedMem); ::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE); *(uint8_t *)(m_RDRAM + (PAddr ^ 3)) = (uint8_t)Value; } break; case 0x04000000: m_SPRegistersHandler.Write32(PAddr & ~3, Value << ((3 - (PAddr & 3)) * 8), 0xFFFFFFFF); break; case 0x1FC00000: m_PifRamHandler.Write32(PAddr & ~3, Value << ((3 - (PAddr & 3)) * 8), 0xFFFFFFFF); break; default: if (PAddr >= 0x10000000 && PAddr < 0x20000000) { m_RomMemoryHandler.Write32(PAddr, Value << ((3 - (PAddr & 3)) * 8), 0xFFFFFFFF); } else if (BreakOnUnhandledMemory()) { g_Notify->BreakPoint(__FILE__, __LINE__); } } return true; } bool CMipsMemoryVM::SH_PhysicalAddress(uint32_t PAddr, uint32_t Value) { switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: if (PAddr < RdramSize()) { if (CGameSettings::bSMM_Protect() || CGameSettings::bSMM_StoreInstruc()) { g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0x1000, CRecompiler::Remove_ProtectedMem); if (CGameSettings::bSMM_Protect()) { ::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE); } if (CGameSettings::bSMM_StoreInstruc()) { m_TLB_WriteMap[(0x80000000 + PAddr) >> 12] = PAddr - (0x80000000 + PAddr); m_TLB_WriteMap[(0xA0000000 + PAddr) >> 12] = PAddr - (0xA0000000 + PAddr); } *(uint16_t *)(m_RDRAM + (PAddr ^ 2)) = (uint16_t)Value; } } break; case 0x04000000: m_SPRegistersHandler.Write32(PAddr & ~3, Value << ((2 - (PAddr & 2)) * 8), 0xFFFFFFFF); break; case 0x1FC00000: m_PifRamHandler.Write32(PAddr & ~3, Value << ((2 - (PAddr & 2)) * 8), 0xFFFFFFFF); break; default: if (PAddr >= 0x10000000 && PAddr < 0x20000000) { m_RomMemoryHandler.Write32(PAddr, Value << ((2 - (PAddr & 2)) * 8), 0xFFFFFFFF); } else if (BreakOnUnhandledMemory()) { g_Notify->BreakPoint(__FILE__, __LINE__); } return false; } return true; } bool CMipsMemoryVM::SW_PhysicalAddress(uint32_t PAddr, uint32_t Value) { switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: case 0x00800000: if (PAddr < RdramSize()) { if (CGameSettings::bSMM_Protect() || CGameSettings::bSMM_StoreInstruc()) { g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0x1000, CRecompiler::Remove_ProtectedMem); if (CGameSettings::bSMM_Protect()) { ::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE); } if (CGameSettings::bSMM_StoreInstruc()) { m_TLB_WriteMap[(0x80000000 + PAddr) >> 12] = PAddr - (0x80000000 + PAddr); m_TLB_WriteMap[(0xA0000000 + PAddr) >> 12] = PAddr - (0xA0000000 + PAddr); } *(uint32_t *)(m_RDRAM + PAddr) = Value; } } break; case 0x03F00000: m_RDRAMRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x04000000: m_SPRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x04100000: m_DPCommandRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x04300000: m_MIPSInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x04400000: m_VideoInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x04500000: m_AudioInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x04600000: m_PeripheralInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x04700000: m_RDRAMInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x04800000: m_SerialInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x05000000: m_CartridgeDomain2Address1Handler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x06000000: m_CartridgeDomain1Address1Handler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x08000000: case 0x0fe00000: m_CartridgeDomain2Address2Handler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x13F00000: m_ISViewerHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x1FC00000: m_PifRamHandler.Write32(PAddr, Value, 0xFFFFFFFF); break; case 0x1FF00000: m_CartridgeDomain1Address3Handler.Write32(PAddr, Value, 0xFFFFFFFF); break; default: if (PAddr >= 0x10000000 && PAddr < 0x20000000) { m_RomMemoryHandler.Write32(PAddr, Value, 0xFFFFFFFF); } else if (BreakOnUnhandledMemory()) { g_Notify->BreakPoint(__FILE__, __LINE__); } break; } return true; } bool CMipsMemoryVM::SD_PhysicalAddress(uint32_t PAddr, uint64_t Value) { switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: if (PAddr < RdramSize()) { g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0xFFC, CRecompiler::Remove_ProtectedMem); ::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE); *(uint64_t *)(m_RDRAM + PAddr) = Value; } break; case 0x04000000: m_SPRegistersHandler.Write32(PAddr, (int32_t)(Value >> 32), 0xFFFFFFFF); break; default: if (PAddr >= 0x10000000 && PAddr < 0x20000000) { m_RomMemoryHandler.Write32(PAddr, (int32_t)(Value >> 32), 0xFFFFFFFF); } else if (BreakOnUnhandledMemory()) { g_Notify->BreakPoint(__FILE__, __LINE__); } return false; } return true; } void CMipsMemoryVM::ClearMemoryWriteMap(uint32_t VAddr, uint32_t Length) { uint32_t BaseAddress = m_TLB_WriteMap[VAddr >> 12]; if (BaseAddress == -1) { return; } uint32_t PAddr = m_TLB_WriteMap[VAddr >> 12] + VAddr; for (uint32_t i = PAddr, n = (PAddr + (Length & ~0xFFF)) + 0x1000; i < n; i += 0x1000) { m_MemoryWriteMap[(i + 0x80000000) >> 12] = (size_t)-1; m_MemoryWriteMap[(i + 0xA0000000) >> 12] = (size_t)-1; } } void CMipsMemoryVM::ProtectMemory(uint32_t StartVaddr, uint32_t EndVaddr) { WriteTrace(TraceProtectedMem, TraceDebug, "StartVaddr: %08X EndVaddr: %08X", StartVaddr, EndVaddr); if (!ValidVaddr(StartVaddr) || !ValidVaddr(EndVaddr) || EndVaddr < StartVaddr) { return; } int32_t Length = ((EndVaddr + 3) - StartVaddr) & ~3; if (Length < 0) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } uint8_t * MemLoc = MemoryPtr(StartVaddr, Length, true); if (MemLoc == nullptr) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } WriteTrace(TraceProtectedMem, TraceDebug, "Length: 0x%X", Length); ::ProtectMemory(MemLoc, Length, MEM_READONLY); } void CMipsMemoryVM::UnProtectMemory(uint32_t StartVaddr, uint32_t EndVaddr) { WriteTrace(TraceProtectedMem, TraceDebug, "StartVaddr: %08X EndVaddr: %08X", StartVaddr, EndVaddr); if (!ValidVaddr(StartVaddr) || !ValidVaddr(EndVaddr) || EndVaddr < StartVaddr) { return; } int32_t Length = ((EndVaddr + 3) - StartVaddr) & ~3; if (Length < 0) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } uint8_t * MemLoc = MemoryPtr(StartVaddr, Length, true); if (MemLoc == nullptr) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } WriteTrace(TraceProtectedMem, TraceDebug, "Length: 0x%X", Length); ::ProtectMemory(MemLoc, Length, MEM_READWRITE); } const char * CMipsMemoryVM::LabelName(uint32_t Address) const { sprintf(m_strLabelName, "0x%08X", Address); return m_strLabelName; } void CMipsMemoryVM::TLB_Mapped(uint32_t VAddr, uint32_t Len, uint32_t PAddr, bool bReadOnly) { uint64_t VEnd = VAddr + Len; for (uint64_t Address = VAddr; Address < VEnd; Address += 0x1000) { size_t Index = (size_t)(Address >> 12); if ((Address - VAddr + PAddr) < m_AllocatedRdramSize) { m_MemoryReadMap[Index] = (size_t)((m_RDRAM + (Address - VAddr + PAddr)) - Address); } m_TLB_ReadMap[Index] = (size_t)((Address - VAddr + PAddr) - Address); if (!bReadOnly) { if ((Address - VAddr + PAddr) < m_AllocatedRdramSize) { m_MemoryWriteMap[Index] = (size_t)((m_RDRAM + (Address - VAddr + PAddr)) - Address); } m_TLB_WriteMap[Index] = (size_t)((Address - VAddr + PAddr) - Address); } } } void CMipsMemoryVM::TLB_Unmaped(uint32_t Vaddr, uint32_t Len) { uint64_t End = Vaddr + Len; for (uint64_t Address = Vaddr; Address < End && Address >= Vaddr; Address += 0x1000) { size_t Index = (size_t)(Address >> 12); m_MemoryReadMap[Index] = (size_t)-1; m_MemoryWriteMap[Index] = (size_t)-1; m_TLB_ReadMap[Index] = (uint32_t)-1; m_TLB_WriteMap[Index] = (uint32_t)-1; } } void CMipsMemoryVM::RdramChanged(CMipsMemoryVM * _this) { const size_t new_size = g_Settings->LoadDword(Game_RDRamSize); const size_t old_size = _this->m_AllocatedRdramSize; if (old_size == new_size) { return; } if (old_size > new_size) { DecommitMemory(_this->m_RDRAM + new_size, old_size - new_size); } else { void * result = CommitMemory(_this->m_RDRAM + old_size, new_size - old_size, MEM_READWRITE); if (result == nullptr) { WriteTrace(TraceN64System, TraceError, "Failed to allocate extended memory"); g_Notify->FatalError(GS(MSG_MEM_ALLOC_ERROR)); } } if (new_size > 0xFFFFFFFFul) { // Should be unreachable because: size_t new_size = g_Settings->(uint32_t) g_Notify->BreakPoint(__FILE__, __LINE__); } // However, FFFFFFFF also is a limit to RCP addressing, so we care _this->m_AllocatedRdramSize = (uint32_t)new_size; } void CMipsMemoryVM::ChangeMiIntrMask() { if ((RegModValue & MI_INTR_MASK_CLR_SP) != 0) { g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SP; } if ((RegModValue & MI_INTR_MASK_SET_SP) != 0) { g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SP; } if ((RegModValue & MI_INTR_MASK_CLR_SI) != 0) { g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SI; } if ((RegModValue & MI_INTR_MASK_SET_SI) != 0) { g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SI; } if ((RegModValue & MI_INTR_MASK_CLR_AI) != 0) { g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_AI; } if ((RegModValue & MI_INTR_MASK_SET_AI) != 0) { g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_AI; } if ((RegModValue & MI_INTR_MASK_CLR_VI) != 0) { g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_VI; } if ((RegModValue & MI_INTR_MASK_SET_VI) != 0) { g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_VI; } if ((RegModValue & MI_INTR_MASK_CLR_PI) != 0) { g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_PI; } if ((RegModValue & MI_INTR_MASK_SET_PI) != 0) { g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_PI; } if ((RegModValue & MI_INTR_MASK_CLR_DP) != 0) { g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_DP; } if ((RegModValue & MI_INTR_MASK_SET_DP) != 0) { g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_DP; } }