// Project64 - A Nintendo 64 emulator // https://www.pj64-emu.com/ // Copyright(C) 2001-2021 Project64. // Copyright(C) 2015 Gilles Siberlin // Copyright(C) 2007 - 2009 Richard Goedeken // Copyright(C) 2007 - 2008 Ebenblues // Copyright(C) 2003 JttL // Copyright(C) 2002 Hacktarux // GNU/GPLv2 licensed: https://gnu.org/licenses/gpl-2.0.html #include "OpenSLES.h" #include #include #include #ifdef ANDROID #include #include #endif #ifdef ANDROID typedef struct threadLock_ { pthread_mutex_t mutex; pthread_cond_t cond; volatile unsigned char value; volatile unsigned char limit; } threadLock; #endif // Default start-time size of primary buffer (in equivalent output samples) // This is the buffer where audio is loaded after it's extracted from N64's memory enum { PRIMARY_BUFFER_SIZE = 16384 }; // Size of a single secondary buffer, in output samples. This is the requested size of OpenSLES's // hardware buffer, this should be a power of two. enum { SECONDARY_BUFFER_SIZE = 1024 }; // This is the requested number of OpenSLES's hardware buffers enum { SECONDARY_BUFFER_NBR = 2 }; // This sets default frequency what is used if ROM doesn't want to change it. // Probably only game that needs this is Zelda: Ocarina Of Time Master Quest // TODO: We should try to find out why Demos' frequencies are always wrong // They tend to rely on a default frequency, but apparently never the same one enum { DEFAULT_FREQUENCY = 33600 }; // Number of bytes per sample enum { N64_SAMPLE_BYTES = 4, SLES_SAMPLE_BYTES = 4, }; // Pointer to the primary audio buffer uint8_t * g_primaryBuffer = nullptr; // Size of the primary buffer uint32_t g_primaryBufferBytes = 0; // Pointer to secondary buffers uint8_t ** g_secondaryBuffers = nullptr; // Size of a single secondary buffer uint32_t g_secondaryBufferBytes = 0; // Position in the primary buffer where next audio chunk should be placed uint32_t g_primaryBufferPos = 0; // Index of the next secondary buffer available uint32_t g_secondaryBufferIndex = 0; // Audio frequency, this is usually obtained from the game, but for compatibility we set default value uint32_t g_GameFreq = DEFAULT_FREQUENCY; // SpeedFactor is used to increase/decrease game playback speed uint32_t g_speed_factor = 100; // Output audio frequency int g_OutputFreq = 44100; // Indicate that the audio plugin failed to initialize, so the emulator can keep running without sound bool g_critical_failure = false; #ifdef ANDROID // Thread lock threadLock g_lock; // Engine interfaces SLObjectItf g_engineObject = nullptr; SLEngineItf g_engineEngine = nullptr; // Output mix interfaces SLObjectItf g_outputMixObject = nullptr; // Player interfaces SLObjectItf g_playerObject = nullptr; SLPlayItf g_playerPlay = nullptr; // Buffer queue interfaces SLAndroidSimpleBufferQueueItf g_bufferQueue = nullptr; #endif static bool CreatePrimaryBuffer(void) { WriteTrace(TraceAudioInitShutdown, TraceDebug, "Start"); unsigned int primaryBytes = (unsigned int)(PRIMARY_BUFFER_SIZE * N64_SAMPLE_BYTES); WriteTrace(TraceAudioInitShutdown, TraceDebug, "Allocating memory for primary audio buffer: %i bytes.", primaryBytes); g_primaryBuffer = new uint8_t[primaryBytes]; if (g_primaryBuffer == nullptr) { WriteTrace(TraceAudioInitShutdown, TraceError, "g_primaryBuffer == nullptr"); WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done (res: false)"); return false; } memset(g_primaryBuffer, 0, primaryBytes); g_primaryBufferBytes = primaryBytes; WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done (res: True)"); return true; } static void CloseAudio(void) { WriteTrace(TraceAudioInitShutdown, TraceDebug, "Start"); g_primaryBufferPos = 0; g_secondaryBufferIndex = 0; // Delete primary buffer if (g_primaryBuffer != nullptr) { WriteTrace(TraceAudioInitShutdown, TraceDebug, "Delete g_primaryBuffer (%p)", g_primaryBuffer); g_primaryBufferBytes = 0; delete[] g_primaryBuffer; g_primaryBuffer = nullptr; } // Delete secondary buffers if (g_secondaryBuffers != nullptr) { for (uint32_t i = 0; i < SECONDARY_BUFFER_NBR; i++) { if (g_secondaryBuffers[i] != nullptr) { WriteTrace(TraceAudioInitShutdown, TraceDebug, "Delete g_secondaryBuffers[%d] (%p)", i, g_secondaryBuffers[i]); delete[] g_secondaryBuffers[i]; g_secondaryBuffers[i] = nullptr; } } g_secondaryBufferBytes = 0; WriteTrace(TraceAudioInitShutdown, TraceDebug, "Delete g_secondaryBuffers (%p)", g_secondaryBuffers); delete[] g_secondaryBuffers; g_secondaryBuffers = nullptr; } #ifdef ANDROID // Destroy buffer queue audio player object, and invalidate all associated interfaces if (g_playerObject != nullptr) { SLuint32 state = SL_PLAYSTATE_PLAYING; (*g_playerPlay)->SetPlayState(g_playerPlay, SL_PLAYSTATE_STOPPED); while (state != SL_PLAYSTATE_STOPPED) { (*g_playerPlay)->GetPlayState(g_playerPlay, &state); } (*g_playerObject)->Destroy(g_playerObject); g_playerObject = nullptr; g_playerPlay = nullptr; g_bufferQueue = nullptr; } // Destroy output mix object, and invalidate all associated interfaces if (g_outputMixObject != nullptr) { (*g_outputMixObject)->Destroy(g_outputMixObject); g_outputMixObject = nullptr; } // Destroy engine object, and invalidate all associated interfaces if (g_engineObject != nullptr) { (*g_engineObject)->Destroy(g_engineObject); g_engineObject = nullptr; g_engineEngine = nullptr; } // Destroy thread locks pthread_cond_signal(&(g_lock.cond)); pthread_mutex_unlock(&(g_lock.mutex)); pthread_cond_destroy(&(g_lock.cond)); pthread_mutex_destroy(&(g_lock.mutex)); #endif WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done"); } static bool CreateSecondaryBuffers(void) { WriteTrace(TraceAudioInitShutdown, TraceDebug, "Start"); bool status = true; unsigned int secondaryBytes = (unsigned int)(SECONDARY_BUFFER_SIZE * SLES_SAMPLE_BYTES); WriteTrace(TraceAudioInitShutdown, TraceDebug, "Allocating memory for %d secondary audio buffers: %i bytes.", SECONDARY_BUFFER_NBR, secondaryBytes); // Allocate number of secondary buffers g_secondaryBuffers = new uint8_t *[SECONDARY_BUFFER_NBR]; if (g_secondaryBuffers == nullptr) { WriteTrace(TraceAudioInitShutdown, TraceError, "g_secondaryBuffers == nullptr"); WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done (res: false)"); return false; } // Allocate size of each secondary buffers for (uint32_t i = 0; i < SECONDARY_BUFFER_NBR; i++) { g_secondaryBuffers[i] = new uint8_t[secondaryBytes]; if (g_secondaryBuffers[i] == nullptr) { status = false; break; } memset(g_secondaryBuffers[i], 0, secondaryBytes); } g_secondaryBufferBytes = secondaryBytes; WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done (res: %s)", status ? "True" : "False"); return status; } static int resample(unsigned char *input, int /*input_avail*/, int oldsamplerate, unsigned char *output, int output_needed, int newsamplerate) { int *psrc = (int*)input; int *pdest = (int*)output; int i = 0, j = 0; #ifdef USE_SPEEX spx_uint32_t in_len, out_len; if (Resample == RESAMPLER_SPEEX) { if (spx_state == nullptr) { spx_state = speex_resampler_init(2, oldsamplerate, newsamplerate, ResampleQuality, &error); if (spx_state == nullptr) { memset(output, 0, output_needed); return 0; } } speex_resampler_set_rate(spx_state, oldsamplerate, newsamplerate); in_len = input_avail / 4; out_len = output_needed / 4; if ((error = speex_resampler_process_interleaved_int(spx_state, (const spx_int16_t *)input, &in_len, (spx_int16_t *)output, &out_len))) { memset(output, 0, output_needed); return input_avail; // Number of bytes consumed } return in_len * 4; } #endif #ifdef USE_SRC if (Resample == RESAMPLER_SRC) { // The high quality resampler needs more input than the sample rate ratio would indicate to work properly if (input_avail > output_needed * 3 / 2) input_avail = output_needed * 3 / 2; // Just to avoid too much short-float-short conversion time if (_src_len < input_avail * 2 && input_avail > 0) { if (_src) free(_src); _src_len = input_avail * 2; _src = malloc(_src_len); } if (_dest_len < output_needed * 2 && output_needed > 0) { if (_dest) free(_dest); _dest_len = output_needed * 2; _dest = malloc(_dest_len); } memset(_src, 0, _src_len); memset(_dest, 0, _dest_len); if (src_state == nullptr) { src_state = src_new(ResampleQuality, 2, &error); if (src_state == nullptr) { memset(output, 0, output_needed); return 0; } } src_short_to_float_array((short *)input, _src, input_avail / 2); src_data.end_of_input = 0; src_data.data_in = _src; src_data.input_frames = input_avail / 4; src_data.src_ratio = (float)newsamplerate / oldsamplerate; src_data.data_out = _dest; src_data.output_frames = output_needed / 4; if ((error = src_process(src_state, &src_data))) { memset(output, 0, output_needed); return input_avail; // Number of bytes consumed } src_float_to_short_array(_dest, (short *)output, output_needed / 2); return src_data.input_frames_used * 4; } #endif // RESAMPLE == TRIVIAL if (newsamplerate >= oldsamplerate) { int sldf = oldsamplerate; int const2 = 2 * sldf; int dldf = newsamplerate; int const1 = const2 - 2 * dldf; int criteria = const2 - dldf; for (i = 0; i < output_needed / 4; i++) { pdest[i] = psrc[j]; if (criteria >= 0) { ++j; criteria += const1; } else criteria += const2; } return j * 4; // Number of bytes consumed } // newsamplerate < oldsamplerate, this only happens when speed_factor > 1 for (i = 0; i < output_needed / 4; i++) { j = i * oldsamplerate / newsamplerate; pdest[i] = psrc[j]; } return j * 4; // Number of bytes consumed } // This callback handler is called every time a buffer finishes playing #ifdef ANDROID void queueCallback(SLAndroidSimpleBufferQueueItf caller, void *context) { threadLock *plock = (threadLock *)context; pthread_mutex_lock(&(plock->mutex)); if (plock->value < plock->limit) plock->value++; pthread_cond_signal(&(plock->cond)); pthread_mutex_unlock(&(plock->mutex)); } #endif void OpenSLESDriver::AI_SetFrequency(uint32_t freq, uint32_t /*BufferSize*/) { WriteTrace(TraceAudioInitShutdown, TraceDebug, "Start (freq: %d)", freq); if (freq < 4000) { WriteTrace(TraceAudioInitShutdown, TraceInfo, "Sometimes a bad frequency is requested so ignore it (freq: %d)", freq); WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done"); return; } if (g_GameFreq == freq && g_primaryBuffer != nullptr) { WriteTrace(TraceAudioInitShutdown, TraceInfo, "We are already using this frequency, so ignore it (freq: %d)", freq); WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done"); return; } if (g_critical_failure) { WriteTrace(TraceAudioInitShutdown, TraceInfo, "Critical failure in setting up plugin, ignoring initialization..."); WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done"); return; } // This is important for the sync g_GameFreq = freq; #ifdef ANDROID SLuint32 sample_rate; if ((freq / 1000) <= 11) { g_OutputFreq = 11025; sample_rate = SL_SAMPLINGRATE_11_025; } else if ((freq / 1000) <= 22) { g_OutputFreq = 22050; sample_rate = SL_SAMPLINGRATE_22_05; } else if ((freq / 1000) <= 32) { g_OutputFreq = 32000; sample_rate = SL_SAMPLINGRATE_32; } else { g_OutputFreq = 44100; sample_rate = SL_SAMPLINGRATE_44_1; } #endif WriteTrace(TraceAudioInitShutdown, TraceInfo, "Requesting frequency: %iHz.", g_OutputFreq); // Close everything because InitializeAudio can be called more than once CloseAudio(); // Create primary buffer if (!CreatePrimaryBuffer()) { WriteTrace(TraceAudioInitShutdown, TraceError, "CreatePrimaryBuffer failed"); CloseAudio(); g_critical_failure = true; WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done"); return; } // Create secondary buffers if (!CreateSecondaryBuffers()) { WriteTrace(TraceAudioInitShutdown, TraceError, "CreateSecondaryBuffers failed"); CloseAudio(); g_critical_failure = true; WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done"); return; } #ifdef ANDROID // Create thread locks to ensure synchronization between callback and processing code if (pthread_mutex_init(&(g_lock.mutex), (pthread_mutexattr_t*)nullptr) != 0) { WriteTrace(TraceAudioInitShutdown, TraceError, "pthread_mutex_init failed"); CloseAudio(); g_critical_failure = true; WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done"); return; } if (pthread_cond_init(&(g_lock.cond), (pthread_condattr_t*)nullptr) != 0) { WriteTrace(TraceAudioInitShutdown, TraceError, "pthread_cond_init failed"); CloseAudio(); g_critical_failure = true; WriteTrace(TraceAudioInitShutdown, TraceDebug, "Done"); return; } pthread_mutex_lock(&(g_lock.mutex)); g_lock.value = g_lock.limit = SECONDARY_BUFFER_NBR; pthread_mutex_unlock(&(g_lock.mutex)); // Engine object SLresult result = slCreateEngine(&g_engineObject, 0, nullptr, 0, nullptr, nullptr); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "slCreateEngine failed (result: %d)", result); } if (result == SL_RESULT_SUCCESS) { result = (*g_engineObject)->Realize(g_engineObject, SL_BOOLEAN_FALSE); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "slCreateEngine->Realize failed (result: %d)", result); } } if (result == SL_RESULT_SUCCESS) { result = (*g_engineObject)->GetInterface(g_engineObject, SL_IID_ENGINE, &g_engineEngine); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "slCreateEngine->GetInterface failed (result: %d)", result); } } if (result == SL_RESULT_SUCCESS) { // Output mix object result = (*g_engineEngine)->CreateOutputMix(g_engineEngine, &g_outputMixObject, 0, nullptr, nullptr); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "slCreateEngine->CreateOutputMix failed (result: %d)", result); } } if (result == SL_RESULT_SUCCESS) { result = (*g_outputMixObject)->Realize(g_outputMixObject, SL_BOOLEAN_FALSE); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "g_outputMixObject->Realize failed (result: %d)", result); } } if (result == SL_RESULT_SUCCESS) { SLDataLocator_AndroidSimpleBufferQueue loc_bufq = { SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE, SECONDARY_BUFFER_NBR }; SLDataFormat_PCM format_pcm = { SL_DATAFORMAT_PCM,2, sample_rate, SL_PCMSAMPLEFORMAT_FIXED_16, SL_PCMSAMPLEFORMAT_FIXED_16, (SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT), SL_BYTEORDER_LITTLEENDIAN }; SLDataSource audioSrc = { &loc_bufq, &format_pcm }; // Configure audio sink SLDataLocator_OutputMix loc_outmix = { SL_DATALOCATOR_OUTPUTMIX, g_outputMixObject }; SLDataSink audioSnk = { &loc_outmix, nullptr }; // Create audio player const SLInterfaceID ids1[] = { SL_IID_ANDROIDSIMPLEBUFFERQUEUE }; const SLboolean req1[] = { SL_BOOLEAN_TRUE }; result = (*g_engineEngine)->CreateAudioPlayer(g_engineEngine, &(g_playerObject), &audioSrc, &audioSnk, 1, ids1, req1); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "g_engineEngine->CreateAudioPlayer failed (result: %d)", result); } } // Realize the player if (result == SL_RESULT_SUCCESS) { result = (*g_playerObject)->Realize(g_playerObject, SL_BOOLEAN_FALSE); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "g_playerObject->Realize failed (result: %d)", result); } } // Get the play interface if (result == SL_RESULT_SUCCESS) { result = (*g_playerObject)->GetInterface(g_playerObject, SL_IID_PLAY, &(g_playerPlay)); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "g_playerObject->GetInterface(SL_IID_PLAY) failed (result: %d)", result); } } // Get the buffer queue interface if (result == SL_RESULT_SUCCESS) { result = (*g_playerObject)->GetInterface(g_playerObject, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &(g_bufferQueue)); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "g_playerObject->GetInterface(SL_IID_ANDROIDSIMPLEBUFFERQUEUE) failed (result: %d)", result); } } // Register callback on the buffer queue if (result == SL_RESULT_SUCCESS) { result = (*g_bufferQueue)->RegisterCallback(g_bufferQueue, queueCallback, &g_lock); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "bufferQueue->RegisterCallback() failed (result: %d)", result); } } // Set the player's state to playing if (result == SL_RESULT_SUCCESS) { result = (*g_playerPlay)->SetPlayState(g_playerPlay, SL_PLAYSTATE_PLAYING); if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceError, "g_playerPlay->SetPlayState(SL_PLAYSTATE_PLAYING) failed (result: %d)", result); } } if (result != SL_RESULT_SUCCESS) { WriteTrace(TraceAudioInitShutdown, TraceNotice, "Couldn't open OpenSLES audio"); CloseAudio(); g_critical_failure = true; } #endif WriteTrace(TraceAudioInitShutdown, TraceNotice, "Done"); } void OpenSLESDriver::AI_Startup(void) { AI_SetFrequency(DEFAULT_FREQUENCY, 0); } void OpenSLESDriver::AI_Shutdown(void) { CloseAudio(); } void OpenSLESDriver::AI_LenChanged(uint8_t *start, uint32_t length) { WriteTrace(TraceAudioInterface, TraceDebug, "Start"); WriteTrace(TraceAudioInterface, TraceDebug, "g_primaryBufferPos = 0x%X length = 0x%X g_primaryBufferBytes = %X", g_primaryBufferPos, length, g_primaryBufferBytes); if (g_primaryBufferPos + length < g_primaryBufferBytes) { unsigned int i; for (i = 0; i < length; i += 4) { // Left channel g_primaryBuffer[g_primaryBufferPos + i] = start[i + 2]; g_primaryBuffer[g_primaryBufferPos + i + 1] = start[i + 3]; // Right channel g_primaryBuffer[g_primaryBufferPos + i + 2] = start[i]; g_primaryBuffer[g_primaryBufferPos + i + 3] = start[i + 1]; } g_primaryBufferPos += i; } else { WriteTrace(TraceAudioInterface, TraceDebug, "Audio primary buffer overflow. (g_primaryBufferPos: %d LenReg: %d g_primaryBufferBytes: %d)", g_primaryBufferPos, length, g_primaryBufferBytes); } uint32_t newsamplerate = g_OutputFreq * 100 / g_speed_factor; uint32_t oldsamplerate = g_GameFreq != 0 ? g_GameFreq : DEFAULT_FREQUENCY; while (g_primaryBufferPos >= ((g_secondaryBufferBytes * oldsamplerate) / newsamplerate)) { WriteTrace(TraceAudioInterface, TraceDebug, "g_secondaryBufferBytes = %d", g_secondaryBufferBytes); WriteTrace(TraceAudioInterface, TraceDebug, "oldsamplerate = %d", oldsamplerate); WriteTrace(TraceAudioInterface, TraceDebug, "newsamplerate = %d", newsamplerate); WriteTrace(TraceAudioInterface, TraceDebug, "((g_secondaryBufferBytes * oldsamplerate) / newsamplerate) = %d", ((g_secondaryBufferBytes * oldsamplerate) / newsamplerate)); WriteTrace(TraceAudioInterface, TraceDebug, "g_primaryBufferPos= %d", g_primaryBufferPos); #ifdef ANDROID pthread_mutex_lock(&(g_lock.mutex)); // Wait for the next callback if no more output buffers available while (g_lock.value == 0) { pthread_cond_wait(&(g_lock.cond), &(g_lock.mutex)); } g_lock.value--; pthread_mutex_unlock(&(g_lock.mutex)); #endif WriteTrace(TraceAudioInterface, TraceDebug, "Finished with lock"); // TODO: Don't resample if speed_factor = 100 and newsamplerate ~= oldsamplerate int input_used = resample(g_primaryBuffer, g_primaryBufferPos, oldsamplerate, g_secondaryBuffers[g_secondaryBufferIndex], g_secondaryBufferBytes, newsamplerate); #ifdef ANDROID (*g_bufferQueue)->Enqueue(g_bufferQueue, g_secondaryBuffers[g_secondaryBufferIndex], g_secondaryBufferBytes); #endif memmove(g_primaryBuffer, &g_primaryBuffer[input_used], g_primaryBufferPos - input_used); g_primaryBufferPos -= input_used; g_secondaryBufferIndex++; if (g_secondaryBufferIndex > (SECONDARY_BUFFER_NBR - 1)) { g_secondaryBufferIndex = 0; } } WriteTrace(TraceAudioInterface, TraceDebug, "Done"); } void OpenSLESDriver::AI_Update(bool Wait) { m_AiUpdateEvent.IsTriggered(Wait ? SyncEvent::INFINITE_TIMEOUT : 0); }