#include "RspRecompilerCPU.h" #include "X86.h" #include #include #include #include #include #include #pragma warning(disable : 4152) // Non-standard extension, function/data pointer conversion in expression void RSP_Sections_VMUDH(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMUDH - affects the upper 32-bits if (AccumStyle == Low16BitAccum) { MmxXorRegToReg(x86_MM0, x86_MM0); MmxXorRegToReg(x86_MM1, x86_MM1); return; } RSPOpC = RspOp; // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RspOp.rd].s16(4), Reg); // VMUDH if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RspOp.rt].s16(4), Reg); if (AccumStyle == Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } else { MmxPmulhwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM1, x86_MM3); } } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2); if (AccumStyle == Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM2); } else { MmxPmulhwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM1, x86_MM2); } } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); if (AccumStyle == Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } else { MmxPmulhwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM1, x86_MM3); } } } void RSP_Sections_VMADH(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMADH - affects the upper 32-bits if (AccumStyle == Low16BitAccum) { return; } RSPOpC = RspOp; // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0 + 2, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1 + 2, &RSP_Vect[RspOp.rd].s16(4), Reg); // VMUDH if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2 + 2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3 + 2, &RSP_Vect[RspOp.rt].s16(4), Reg); if (AccumStyle == Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } else { MmxPmulhwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmulhwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2 + 2); if (AccumStyle == Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM2 + 2); } else { MmxPmulhwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmulhwRegToReg(x86_MM1 + 2, x86_MM2 + 2); } } else { RSP_MultiElement2Mmx(x86_MM2 + 2, x86_MM3 + 2); if (AccumStyle == Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } else { MmxPmulhwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmulhwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } } MmxPaddswRegToReg(x86_MM0, x86_MM0 + 2); MmxPaddswRegToReg(x86_MM1, x86_MM1 + 2); } void RSP_Sections_VMUDL(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMUDL - affects the lower 16-bits if (AccumStyle != Low16BitAccum) { MmxXorRegToReg(x86_MM0, x86_MM0); MmxXorRegToReg(x86_MM1, x86_MM1); return; } RSPOpC = RspOp; // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RspOp.rd].s16(4), Reg); // VMUDL if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RspOp.rt].s16(4), Reg); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM2); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } } void RSP_Sections_VMADL(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMADL - affects the lower 16-bits if (AccumStyle != Low16BitAccum) { return; } RSPOpC = RspOp; // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0 + 2, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1 + 2, &RSP_Vect[RspOp.rd].s16(4), Reg); // VMADL if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2 + 2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3 + 2, &RSP_Vect[RspOp.rt].s16(4), Reg); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM2 + 2); } else { RSP_MultiElement2Mmx(x86_MM2 + 2, x86_MM3 + 2); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } MmxPaddswRegToReg(x86_MM0, x86_MM0 + 2); MmxPaddswRegToReg(x86_MM1, x86_MM1 + 2); } void RSP_Sections_VMUDM(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMUDM - affects the middle 32-bits, s16*u16 if (AccumStyle == High16BitAccum) { MmxXorRegToReg(x86_MM0, x86_MM0); MmxXorRegToReg(x86_MM1, x86_MM1); return; } RSPOpC = RspOp; // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RspOp.rd].s16(4), Reg); // VMUDM if (AccumStyle != Middle16BitAccum) { if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RspOp.rt].s16(4), Reg); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM2); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } } else { if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM4, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM5, &RSP_Vect[RSPOpC.vt].u16(4), Reg); // Copy the signed portion MmxMoveRegToReg(x86_MM2, x86_MM0); MmxMoveRegToReg(x86_MM3, x86_MM1); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0, x86_MM4); MmxPmulhuwRegToReg(x86_MM1, x86_MM5); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2, 15); MmxPsrawImmed(x86_MM3, 15); MmxPmullwRegToReg(x86_MM2, x86_MM4); MmxPmullwRegToReg(x86_MM3, x86_MM5); } else if ((RSPOpC.rs & 0xF) >= 8) { RSP_Element2Mmx(x86_MM4); // Copy the signed portion MmxMoveRegToReg(x86_MM2, x86_MM0); MmxMoveRegToReg(x86_MM3, x86_MM1); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0, x86_MM4); MmxPmulhuwRegToReg(x86_MM1, x86_MM4); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2, 15); MmxPsrawImmed(x86_MM3, 15); MmxPmullwRegToReg(x86_MM2, x86_MM4); MmxPmullwRegToReg(x86_MM3, x86_MM4); } else { RSP_MultiElement2Mmx(x86_MM4, x86_MM5); // Copy the signed portion MmxMoveRegToReg(x86_MM2, x86_MM0); MmxMoveRegToReg(x86_MM3, x86_MM1); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0, x86_MM4); MmxPmulhuwRegToReg(x86_MM1, x86_MM5); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2, 15); MmxPsrawImmed(x86_MM3, 15); MmxPmullwRegToReg(x86_MM2, x86_MM4); MmxPmullwRegToReg(x86_MM3, x86_MM5); } // Add them up MmxPaddwRegToReg(x86_MM0, x86_MM2); MmxPaddwRegToReg(x86_MM1, x86_MM3); } } void RSP_Sections_VMADM(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMADM - affects the middle 32-bits, s16*u16 if (AccumStyle == High16BitAccum) { MmxXorRegToReg(x86_MM0, x86_MM0); MmxXorRegToReg(x86_MM1, x86_MM1); return; } RSPOpC = RspOp; // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0 + 2, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1 + 2, &RSP_Vect[RspOp.rd].s16(4), Reg); // VMADM if (AccumStyle != Middle16BitAccum) { if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2 + 2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3 + 2, &RSP_Vect[RspOp.rt].s16(4), Reg); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2 + 2); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM2 + 2); } else { RSP_MultiElement2Mmx(x86_MM2 + 2, x86_MM3 + 2); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } } else { if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM4 + 2, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM5 + 2, &RSP_Vect[RSPOpC.vt].u16(4), Reg); // Copy the signed portion MmxMoveRegToReg(x86_MM2 + 2, x86_MM0 + 2); MmxMoveRegToReg(x86_MM3 + 2, x86_MM1 + 2); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0 + 2, x86_MM4 + 2); MmxPmulhuwRegToReg(x86_MM1 + 2, x86_MM5 + 2); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2 + 2, 15); MmxPsrawImmed(x86_MM3 + 2, 15); MmxPmullwRegToReg(x86_MM2 + 2, x86_MM4 + 2); MmxPmullwRegToReg(x86_MM3 + 2, x86_MM5 + 2); } else if ((RSPOpC.rs & 0xF) >= 8) { RSP_Element2Mmx(x86_MM4 + 2); // Copy the signed portion MmxMoveRegToReg(x86_MM2 + 2, x86_MM0 + 2); MmxMoveRegToReg(x86_MM3 + 2, x86_MM1 + 2); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0 + 2, x86_MM4 + 2); MmxPmulhuwRegToReg(x86_MM1 + 2, x86_MM4 + 2); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2 + 2, 15); MmxPsrawImmed(x86_MM3 + 2, 15); MmxPmullwRegToReg(x86_MM2 + 2, x86_MM4 + 2); MmxPmullwRegToReg(x86_MM3 + 2, x86_MM4 + 2); } else { RSP_MultiElement2Mmx(x86_MM4 + 2, x86_MM5 + 2); // Copy the signed portion MmxMoveRegToReg(x86_MM2 + 2, x86_MM0 + 2); MmxMoveRegToReg(x86_MM3 + 2, x86_MM1 + 2); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0 + 2, x86_MM4 + 2); MmxPmulhuwRegToReg(x86_MM1 + 2, x86_MM5 + 2); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2 + 2, 15); MmxPsrawImmed(x86_MM3 + 2, 15); MmxPmullwRegToReg(x86_MM2 + 2, x86_MM4 + 2); MmxPmullwRegToReg(x86_MM3 + 2, x86_MM5 + 2); } // Add them up MmxPaddwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPaddwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } MmxPaddswRegToReg(x86_MM0, x86_MM0 + 2); MmxPaddswRegToReg(x86_MM1, x86_MM1 + 2); } void RSP_Sections_VMUDN(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMUDN - affects the middle 32-bits, u16*s16 if (AccumStyle == High16BitAccum) { MmxXorRegToReg(x86_MM0, x86_MM0); MmxXorRegToReg(x86_MM1, x86_MM1); return; } RSPOpC = RspOp; // VMUDN if (AccumStyle != Middle16BitAccum) { // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RspOp.rd].s16(4), Reg); if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RspOp.rt].s16(4), Reg); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM2); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } } else { // NOTE: for code clarity, this is the same as VMUDM, // just the MMX registers are swapped, this is easier // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM4, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM5, &RSP_Vect[RspOp.rd].s16(4), Reg); if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vt].u16(4), Reg); } else if ((RSPOpC.rs & 0xF) >= 8) { RSP_Element2Mmx(x86_MM0); MmxMoveRegToReg(x86_MM1, x86_MM0); } else { RSP_MultiElement2Mmx(x86_MM0, x86_MM1); } // Copy the signed portion MmxMoveRegToReg(x86_MM2, x86_MM0); MmxMoveRegToReg(x86_MM3, x86_MM1); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0, x86_MM4); MmxPmulhuwRegToReg(x86_MM1, x86_MM5); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2, 15); MmxPsrawImmed(x86_MM3, 15); MmxPmullwRegToReg(x86_MM2, x86_MM4); MmxPmullwRegToReg(x86_MM3, x86_MM5); // Add them up MmxPaddwRegToReg(x86_MM0, x86_MM2); MmxPaddwRegToReg(x86_MM1, x86_MM3); } } void RSP_Sections_VMADN(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMADN - affects the middle 32-bits, u16*s16 if (AccumStyle == High16BitAccum) { return; } RSPOpC = RspOp; // VMADN if (AccumStyle != Middle16BitAccum) { // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0 + 2, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1 + 2, &RSP_Vect[RspOp.rd].s16(4), Reg); if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2 + 2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3 + 2, &RSP_Vect[RspOp.rt].s16(4), Reg); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2 + 2); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM2 + 2); } else { RSP_MultiElement2Mmx(x86_MM2 + 2, x86_MM3 + 2); MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } } else { // NOTE: for code clarity, this is the same as VMADM, // just the MMX registers are swapped, this is easier // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM4 + 2, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM5 + 2, &RSP_Vect[RspOp.rd].s16(4), Reg); if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM0 + 2, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM1 + 2, &RSP_Vect[RSPOpC.vt].u16(4), Reg); } else if ((RSPOpC.rs & 0xF) >= 8) { RSP_Element2Mmx(x86_MM0 + 2); MmxMoveRegToReg(x86_MM1 + 2, x86_MM0 + 2); } else { RSP_MultiElement2Mmx(x86_MM0 + 2, x86_MM1 + 2); } // Copy the signed portion MmxMoveRegToReg(x86_MM2 + 2, x86_MM0 + 2); MmxMoveRegToReg(x86_MM3 + 2, x86_MM1 + 2); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0 + 2, x86_MM4 + 2); MmxPmulhuwRegToReg(x86_MM1 + 2, x86_MM5 + 2); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2 + 2, 15); MmxPsrawImmed(x86_MM3 + 2, 15); MmxPmullwRegToReg(x86_MM2 + 2, x86_MM4 + 2); MmxPmullwRegToReg(x86_MM3 + 2, x86_MM5 + 2); // Add them up MmxPaddwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPaddwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } // Only thing is when we are responsible for clamping // So we adopt unsigned here? MmxPaddswRegToReg(x86_MM0, x86_MM0 + 2); MmxPaddswRegToReg(x86_MM1, x86_MM1 + 2); } void RSP_Sections_VMULF(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMULF - affects the middle 32-bits, s16*s16*2 if (AccumStyle == High16BitAccum) { MmxXorRegToReg(x86_MM0, x86_MM0); MmxXorRegToReg(x86_MM1, x86_MM1); return; } RSPOpC = RspOp; // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RspOp.rd].s16(4), Reg); // VMULF if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RspOp.rt].s16(4), Reg); if (AccumStyle != Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } else { MmxPmulhwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM1, x86_MM3); } } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2); if (AccumStyle != Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM2); } else { MmxPmulhwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM1, x86_MM2); } } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); if (AccumStyle != Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } else { MmxPmulhwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM1, x86_MM3); } } MmxPsllwImmed(x86_MM0, 1); MmxPsllwImmed(x86_MM1, 1); } void RSP_Sections_VMACF(RSPOpcode RspOp, uint32_t AccumStyle) { char Reg[256]; // VMACF - affects the upper 32-bits, s16*s16*2 if (AccumStyle == High16BitAccum) { return; } RSPOpC = RspOp; // Load source registers sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM0 + 2, &RSP_Vect[RspOp.rd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rd); MmxMoveQwordVariableToReg(x86_MM1 + 2, &RSP_Vect[RspOp.rd].s16(4), Reg); // VMACF if ((RspOp.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM2 + 2, &RSP_Vect[RspOp.rt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RspOp.rt); MmxMoveQwordVariableToReg(x86_MM3 + 2, &RSP_Vect[RspOp.rt].s16(4), Reg); if (AccumStyle != Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } else { MmxPmulhwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmulhwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } } else if ((RspOp.rs & 0x0f) >= 8) { RSP_Element2Mmx(x86_MM2 + 2); if (AccumStyle != Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM2 + 2); } else { MmxPmulhwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmulhwRegToReg(x86_MM1 + 2, x86_MM2 + 2); } } else { RSP_MultiElement2Mmx(x86_MM2 + 2, x86_MM3 + 2); if (AccumStyle != Middle16BitAccum) { MmxPmullwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmullwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } else { MmxPmulhwRegToReg(x86_MM0 + 2, x86_MM2 + 2); MmxPmulhwRegToReg(x86_MM1 + 2, x86_MM3 + 2); } } MmxPsllwImmed(x86_MM0 + 2, 1); MmxPsllwImmed(x86_MM1 + 2, 1); MmxPaddswRegToReg(x86_MM0, x86_MM0 + 2); MmxPaddswRegToReg(x86_MM1, x86_MM1 + 2); } // Microcode sections static uint32_t Section_000_VMADN; // Yeah I know, but leave it bool Check_Section_000(void) { uint32_t i; RSPOpcode op0, op1; RSP_LW_IMEM(CompilePC + 0x00, &op0.Value); // Example: (Mario audio microcode) // 0x574 VMUDN $v30, $v3, $v23 // 0x578 VMADN $v30, $v4, $v23 if (!(op0.op == RSP_CP2 && (op0.rs & 0x10) != 0 && op0.funct == RSP_VECTOR_VMUDN)) { return false; } Section_000_VMADN = 0; for (i = 0; i < 0x20; i++) { RSP_LW_IMEM(CompilePC + 0x04 + (i * 4), &op1.Value); if (!(op1.op == RSP_CP2 && (op1.rs & 0x10) != 0 && op1.funct == RSP_VECTOR_VMADN)) { break; } else { Section_000_VMADN++; } if ((op1.rs & 0xF) >= 2 && (op1.rs & 0xF) <= 7 && IsMmx2Enabled == false) { return false; } } // We need at least 1 VMADN if (Section_000_VMADN == 0) { return false; } // TODO: check destination and flushes if (true == WriteToAccum(7, CompilePC + 0x4 + (Section_000_VMADN * 4) - 0x4)) { return false; } if (!IsMmxEnabled) { return false; } return true; } void Compile_Section_000(void) { char Reg[256]; RSPOpcode vmudn, vmadn = {0}; uint32_t i; RSP_LW_IMEM(CompilePC + 0x00, &vmudn.Value); CPU_Message("Compiling: %X to ..., RSP optimization $000", CompilePC); CPU_Message(" %X %s", CompilePC + 0x00, RSPInstruction(CompilePC + 0x00, vmudn.Value).NameAndParam().c_str()); if (LogRDP) { char str[40]; sprintf(str, "%X", CompilePC); PushImm32(str, CompilePC); Call_Direct((void *)RDP_LogLoc, "RDP_LogLoc"); AddConstToX86Reg(x86_ESP, 4); } for (i = 0; i < Section_000_VMADN; i++) { RSP_LW_IMEM(CompilePC + 0x04 + (i * 4), &vmadn.Value); CPU_Message(" %X %s", CompilePC + 0x04 + (i * 4), RSPInstruction(CompilePC + 0x04 + (i * 4), vmadn.Value).NameAndParam().c_str()); if (LogRDP) { char str[40]; sprintf(str, "%X", CompilePC + 0x04 + (i * 4)); PushImm32(str, CompilePC + 0x04 + (i * 4)); Call_Direct((void *)RDP_LogLoc, "RDP_LogLoc"); AddConstToX86Reg(x86_ESP, 4); } } RSP_Sections_VMUDN(vmudn, Low16BitAccum); CompilePC += 4; for (i = 0; i < Section_000_VMADN; i++) { RSP_LW_IMEM(CompilePC, &vmadn.Value); CompilePC += 4; RSP_Sections_VMADN(vmadn, Low16BitAccum); if (WriteToVectorDest(vmadn.sa, CompilePC - 4) == true) { sprintf(Reg, "RSP_Vect[%i].HW[0]", vmadn.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[vmadn.sa].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", vmadn.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[vmadn.sa].s16(4), Reg); } } sprintf(Reg, "RSP_Vect[%i].HW[0]", vmadn.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[vmadn.sa].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", vmadn.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[vmadn.sa].s16(4), Reg); MmxEmptyMultimediaState(); } static uint32_t Section_001_VMACF; bool Check_Section_001(void) { uint32_t i; RSPOpcode op0, op1; RSP_LW_IMEM(CompilePC + 0x00, &op0.Value); // Example: (Mario audio microcode) // 0xCC0 VMULF $v28, $v28, $v10 [6] // 0xCC4 VMACF $v28, $v17, $v16 if (!(op0.op == RSP_CP2 && (op0.rs & 0x10) != 0 && op0.funct == RSP_VECTOR_VMULF)) { return false; } Section_001_VMACF = 0; for (i = 0; i < 0x20; i++) { RSP_LW_IMEM(CompilePC + 0x04 + (i * 4), &op1.Value); if (!(op1.op == RSP_CP2 && (op1.rs & 0x10) != 0 && op1.funct == RSP_VECTOR_VMACF)) { break; } else { Section_001_VMACF++; } if ((op1.rs & 0xF) >= 2 && (op1.rs & 0xF) <= 7 && IsMmx2Enabled == false) { return false; } } // We need at least 1 VMACF if (Section_001_VMACF == 0) { return false; } if (!IsMmxEnabled) { return false; } // Destinations are checked elsewhere, this is fine if (true == WriteToAccum(7, CompilePC + 0x4 + (Section_001_VMACF * 4) - 0x4)) { return false; } return true; } void Compile_Section_001(void) { uint32_t i; char Reg[256]; RSPOpcode vmulf, vmacf; RSP_LW_IMEM(CompilePC + 0x00, &vmulf.Value); CPU_Message("Compiling: %X to ..., RSP optimization $001", CompilePC); CPU_Message(" %X %s", CompilePC + 0x00, RSPInstruction(CompilePC + 0x00, vmulf.Value).NameAndParam().c_str()); for (i = 0; i < Section_001_VMACF; i++) { RSP_LW_IMEM(CompilePC + 0x04 + (i * 4), &vmacf.Value); CPU_Message(" %X %s", CompilePC + 0x04 + (i * 4), RSPInstruction(CompilePC + 0x04 + (i * 4), vmacf.Value).NameAndParam().c_str()); } RSP_Sections_VMULF(vmulf, Middle16BitAccum); if (WriteToVectorDest(vmulf.sa, CompilePC) == true) { sprintf(Reg, "RSP_Vect[%i].HW[0]", vmulf.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[vmulf.sa].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", vmulf.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[vmulf.sa].s16(4), Reg); } CompilePC += 4; for (i = 0; i < Section_001_VMACF; i++) { RSP_LW_IMEM(CompilePC, &vmacf.Value); CompilePC += 4; RSP_Sections_VMACF(vmacf, Middle16BitAccum); if (WriteToVectorDest(vmacf.sa, CompilePC - 4) == true) { sprintf(Reg, "RSP_Vect[%i].HW[0]", vmacf.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[vmacf.sa].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", vmacf.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[vmacf.sa].s16(4), Reg); } } MmxEmptyMultimediaState(); } bool Check_Section_002(void) { uint32_t Count; RSPOpcode op[0x0C]; for (Count = 0; Count < 0x0C; Count++) { RSP_LW_IMEM(CompilePC + (Count * 0x04), &op[Count].Value); } /* ** Example: (Mario audio microcode) ** 5F4 VMUDH $v2, $v21, $v27 [6] ** 5F8 VMADH $v2, $v20, $v27 [7] ** 5FC VMADH $v2, $v19, $v30 [0] ** 600 VMADH $v2, $v18, $v30 [1] ** 604 VMADH $v2, $v17, $v30 [2] ** 608 VMADH $v2, $v16, $v30 [3] ** 60C VMADH $v28, $v15, $v30 [4] ** 610 VMADH $v2, $v14, $v30 [5] ** 614 VMADH $v2, $v13, $v30 [6] ** 618 VMADH $v2, $v30, $v31 [5] ** 61C VSAW $v26 [9], $v7, $v28 ** 620 VSAW $v28 [8], $v7, $v28 */ if (!IsMmxEnabled) { return false; } if (!(op[0].op == RSP_CP2 && (op[0].rs & 0x10) != 0 && op[0].funct == RSP_VECTOR_VMUDH)) { return false; } if ((op[0].rs & 0xF) < 8) { return false; } for (Count = 1; Count < 10; Count++) { if (!(op[Count].op == RSP_CP2 && (op[Count].rs & 0x10) != 0 && op[Count].funct == RSP_VECTOR_VMADH)) { return false; } if ((op[Count].rs & 0xF) < 8) { return false; } } if (!(op[10].op == RSP_CP2 && (op[10].rs & 0x10) != 0 && op[10].funct == RSP_VECTOR_VSAW)) return false; if (!(op[11].op == RSP_CP2 && (op[11].rs & 0x10) != 0 && op[11].funct == RSP_VECTOR_VSAW)) return false; if ((op[10].rs & 0xF) != 9) { return false; } if ((op[11].rs & 0xF) != 8) { return false; } if (true == WriteToAccum(7, CompilePC + 0x2C)) return false; return true; } void Compile_Section_002(void) { char Reg[256]; uint32_t Count; RSPOpcode op[0x0C]; RSPOpcode vmudh, vsaw; CPU_Message("Compiling: %X to ..., RSP optimization $002", CompilePC); for (Count = 0; Count < 0xC; Count++) { RSP_LW_IMEM(CompilePC + (Count * 0x04), &op[Count].Value); CPU_Message(" %X %s", CompilePC + (Count * 0x04), RSPInstruction(CompilePC + (Count * 0x04), op[Count].Value).NameAndParam().c_str()); if (LogRDP) { char str[40]; sprintf(str, "%X", CompilePC + (Count * 0x04)); PushImm32(str, CompilePC + (Count * 0x04)); Call_Direct((void *)RDP_LogLoc, "RDP_LogLoc"); AddConstToX86Reg(x86_ESP, 4); } } vmudh = op[0]; RSP_Sections_VMUDH(vmudh, High16BitAccum); // VMADHs for (Count = 1; Count < 10; Count++) { RSP_Sections_VMADH(op[Count], High16BitAccum); } // VSAWs vsaw = op[10]; MmxXorRegToReg(x86_MM4, x86_MM4); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM4, &RSP_Vect[vsaw.sa].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM4, &RSP_Vect[vsaw.sa].s16(4), Reg); vsaw = op[11]; sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[vsaw.sa].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[vsaw.sa].s16(4), Reg); MmxEmptyMultimediaState(); CompilePC += 12 * sizeof(RSPOpcode); } bool Check_Section_003(void) { uint32_t Count; RSPOpcode op[4]; for (Count = 0; Count < 4; Count++) { RSP_LW_IMEM(CompilePC + (Count * 0x04), &op[Count].Value); } // Example: (Zelda audio microcode) // VMUDM $v23, $v31, $v23 [7] // VMADH $v23, $v31, $v22 [7] // VMADM $v22, $v25, $v18 [4] // VMADN $v23, $v31, $v30 [0] if (op[0].Value == 0x4BF7FDC5 && op[1].Value == 0x4BF6FDCF && op[2].Value == 0x4B92CD8D && op[3].Value == 0x4B1EFDCE) { if (true == WriteToAccum(7, CompilePC + 0xc)) return false; return true; } return false; } static void resampler_hle() { UDWORD accum, initial; uint32_t const2 = (uint32_t)RSP_Vect[18].u16(4 ^ 7); int64_t const3 = (int64_t)((int)RSP_Vect[30].s16(0 ^ 7)) << 16; // VMUDM $v23, $v31, $v23 [7] initial.DW = (int64_t)((uint32_t)RSP_Vect[23].u16(7 ^ 7)) << 16; // VMADH $v23, $v31, $v22 [7] initial.W[1] += (int)RSP_Vect[22].s16(7 ^ 7); for (uint8_t i = 0; i < 8; i++) { accum.DW = initial.DW; // VMADM $v22, $v25, $v18 [4] accum.DW += (int64_t)((int)RSP_Vect[25].s16(i) * const2) << 16; if (accum.W[1] > 0x7FFF) { RSP_Vect[22].s16(i) = 0x7FFF; } else if (accum.W[1] < -0x8000) { RSP_Vect[22].s16(i) = -0x8000; } else { RSP_Vect[22].s16(i) = accum.HW[2]; } // VMADN $v23, $v31, $v30 [0] accum.DW += const3; if (accum.W[1] > 0x7FFF) { RSP_Vect[23].u16(i) = 0xFFFF; } else if (accum.W[1] < -0x8000) { RSP_Vect[23].s16(i) = 0; } else { RSP_Vect[23].s16(i) = accum.HW[1]; } } } void Compile_Section_003(void) { CPU_Message("Compiling: %X to ..., RSP optimization $003", CompilePC); Call_Direct((void *)resampler_hle, "Resampler_HLE"); CompilePC += 4 * sizeof(RSPOpcode); } bool RSP_DoSections(void) { if (true == Check_Section_000()) { Compile_Section_000(); return true; } if (true == Check_Section_001()) { Compile_Section_001(); return true; } if (true == Check_Section_002()) { Compile_Section_002(); return true; } if (true == Check_Section_003()) { Compile_Section_003(); return true; } return false; }