#include "stdafx.h" #include #include #include #include #include #include #include #include #include #include #include #include CPifRam::CPifRam(bool SavesReadOnly) : CEeprom(SavesReadOnly) { Reset(); } CPifRam::~CPifRam() { } void CPifRam::Reset() { memset(m_PifRam, 0, sizeof(m_PifRam)); memset(m_PifRom, 0, sizeof(m_PifRom)); } void CPifRam::n64_cic_nus_6105(char challenge[], char respone[], int32_t length) { static char lut0[0x10] = { 0x4, 0x7, 0xA, 0x7, 0xE, 0x5, 0xE, 0x1, 0xC, 0xF, 0x8, 0xF, 0x6, 0x3, 0x6, 0x9 }; static char lut1[0x10] = { 0x4, 0x1, 0xA, 0x7, 0xE, 0x5, 0xE, 0x1, 0xC, 0x9, 0x8, 0x5, 0x6, 0x3, 0xC, 0x9 }; char key, *lut; int32_t i, sgn, mag, mod; for (key = 0xB, lut = lut0, i = 0; i < length; i++) { respone[i] = (key + 5 * challenge[i]) & 0xF; key = lut[respone[i]]; sgn = (respone[i] >> 3) & 0x1; mag = ((sgn == 1) ? ~respone[i] : respone[i]) & 0x7; mod = (mag % 3 == 1) ? sgn : 1 - sgn; if (lut == lut1 && (respone[i] == 0x1 || respone[i] == 0x9)) { mod = 1; } if (lut == lut1 && (respone[i] == 0xB || respone[i] == 0xE)) { mod = 0; } lut = (mod == 1) ? lut1 : lut0; } } void CPifRam::PifRamRead() { if (m_PifRam[0x3F] == 0x2) { return; } CONTROL * Controllers = g_Plugins->Control()->PluginControllers(); int32_t Channel = 0; for (int32_t CurPos = 0; CurPos < 0x40; CurPos++) { switch (m_PifRam[CurPos]) { case 0x00: Channel += 1; if (Channel > 6) { CurPos = 0x40; } break; case 0xFD: CurPos = 0x40; break; case 0xFE: CurPos = 0x40; break; case 0xFF: break; case 0xB4: case 0x56: case 0xB8: break; default: if ((m_PifRam[CurPos] & 0xC0) == 0) { if (Channel < 4) { if (Controllers[Channel].Present && Controllers[Channel].RawData) { if (g_Plugins->Control()->ReadController) { g_Plugins->Control()->ReadController(Channel, &m_PifRam[CurPos]); } } else { ReadControllerCommand(Channel, &m_PifRam[CurPos]); } } CurPos += m_PifRam[CurPos] + (m_PifRam[CurPos + 1] & 0x3F) + 1; Channel += 1; } else { if (CurPos != 0x27 && bShowPifRamErrors()) { g_Notify->DisplayError(stdstr_f("Unknown command in PifRamRead(%X)", m_PifRam[CurPos]).c_str()); } CurPos = 0x40; } break; } } if (g_Plugins->Control()->ReadController) { g_Plugins->Control()->ReadController(-1, nullptr); } } void CPifRam::PifRamWrite() { CONTROL * Controllers = g_Plugins->Control()->PluginControllers(); int32_t Channel = 0, CurPos; if (m_PifRam[0x3F] > 0x1) { switch (m_PifRam[0x3F]) { case 0x02: // Format the 'challenge' message into 30 nibbles for X-Scale's CIC code { char Challenge[30], Response[30]; for (int32_t i = 0; i < 15; i++) { Challenge[i * 2] = (m_PifRam[48 + i] >> 4) & 0x0f; Challenge[i * 2 + 1] = m_PifRam[48 + i] & 0x0f; } n64_cic_nus_6105(Challenge, Response, CHALLENGE_LENGTH - 2); uint64_t ResponseValue = 0; m_PifRam[46] = m_PifRam[47] = 0x00; for (int32_t z = 8; z > 0; z--) { ResponseValue = (ResponseValue << 8) | ((Response[(z - 1) * 2] << 4) + Response[(z - 1) * 2 + 1]); } memcpy(&m_PifRam[48], &ResponseValue, sizeof(uint64_t)); ResponseValue = 0; for (int32_t z = 7; z > 0; z--) { ResponseValue = (ResponseValue << 8) | ((Response[((z + 8) - 1) * 2] << 4) + Response[((z + 8) - 1) * 2 + 1]); } memcpy(&m_PifRam[56], &ResponseValue, sizeof(uint64_t)); } break; case 0x08: m_PifRam[0x3F] = 0; g_Reg->MI_INTR_REG |= MI_INTR_SI; g_Reg->SI_STATUS_REG |= SI_STATUS_INTERRUPT; g_Reg->CheckInterrupts(); break; case 0x10: memset(m_PifRom, 0, 0x7C0); break; case 0x30: m_PifRam[0x3F] = 0x80; break; case 0xC0: memset(m_PifRam, 0, 0x40); break; default: if (bShowPifRamErrors()) { g_Notify->DisplayError(stdstr_f("Unknown PifRam control: %d", m_PifRam[0x3F]).c_str()); } } return; } for (CurPos = 0; CurPos < 0x40; CurPos++) { switch (m_PifRam[CurPos]) { case 0x00: Channel += 1; if (Channel > 6) { CurPos = 0x40; } break; case 0xFD: CurPos = 0x40; break; case 0xFE: CurPos = 0x40; break; case 0xFF: break; case 0xB4: case 0x56: case 0xB8: break; // ??? default: if ((m_PifRam[CurPos] & 0xC0) == 0) { if (Channel < 4) { if (Controllers[Channel].Present && Controllers[Channel].RawData) { if (g_Plugins->Control()->ControllerCommand) { g_Plugins->Control()->ControllerCommand(Channel, &m_PifRam[CurPos]); } } else { ProcessControllerCommand(Channel, &m_PifRam[CurPos]); } } else if (Channel == 4) { EepromCommand(&m_PifRam[CurPos]); } else { if (bShowPifRamErrors()) { g_Notify->DisplayError("Command on channel 5?"); } } CurPos += m_PifRam[CurPos] + (m_PifRam[CurPos + 1] & 0x3F) + 1; Channel += 1; } else { if (CurPos != 0x27 && bShowPifRamErrors()) { g_Notify->DisplayError(stdstr_f("Unknown Command in PifRamWrite(%X)", m_PifRam[CurPos]).c_str()); } CurPos = 0x40; } break; } } m_PifRam[0x3F] = 0; if (g_Plugins->Control()->ControllerCommand) { g_Plugins->Control()->ControllerCommand(-1, nullptr); } } void CPifRam::SI_DMA_READ() { uint8_t * PifRamPos = m_PifRam; uint8_t * RDRAM = g_MMU->Rdram(); uint32_t & SI_DRAM_ADDR_REG = (uint32_t &)g_Reg->SI_DRAM_ADDR_REG; if ((int32_t)SI_DRAM_ADDR_REG > (int32_t)g_System->RdramSize()) { if (bShowPifRamErrors()) { g_Notify->DisplayError(stdstr_f("%s\nSI_DRAM_ADDR_REG not in RDRAM space", __FUNCTION__).c_str()); } return; } PifRamRead(); if (CDebugSettings::HaveDebugger()) { g_Debugger->PIFReadStarted(); } SI_DRAM_ADDR_REG &= 0xFFFFFFF8; if ((int32_t)SI_DRAM_ADDR_REG < 0) { int32_t count, RdramPos; RdramPos = (int32_t)SI_DRAM_ADDR_REG; for (count = 0; count < 0x40; count++, RdramPos++) { if (RdramPos < 0) { continue; } RDRAM[RdramPos ^ 3] = m_PifRam[count]; } } else { for (size_t i = 0; i < 64; i++) { RDRAM[(SI_DRAM_ADDR_REG + i) ^ 3] = PifRamPos[i]; } } if (LogPRDMAMemStores()) { int32_t count; char HexData[100], AsciiData[100], Addon[20]; LogMessage("\tData DMAed to RDRAM:"); LogMessage("\t--------------------"); for (count = 0; count < 16; count++) { if ((count % 4) == 0) { HexData[0] = '\0'; AsciiData[0] = '\0'; } sprintf(Addon, "%02X %02X %02X %02X", m_PifRam[(count << 2) + 0], m_PifRam[(count << 2) + 1], m_PifRam[(count << 2) + 2], m_PifRam[(count << 2) + 3]); strcat(HexData, Addon); if (((count + 1) % 4) != 0) { sprintf(Addon, "-"); strcat(HexData, Addon); } sprintf(Addon, "%c%c%c%c", m_PifRam[(count << 2) + 0], m_PifRam[(count << 2) + 1], m_PifRam[(count << 2) + 2], m_PifRam[(count << 2) + 3]); strcat(AsciiData, Addon); if (((count + 1) % 4) == 0) { LogMessage("\t%s %s", HexData, AsciiData); } } LogMessage(""); } if(g_System->bRandomizeSIPIInterrupts()) { if(g_System->bDelaySI()) { g_SystemTimer->SetTimer(CSystemTimer::SiTimer, 0x900 + (g_Random->next() % 0x40), false); } else { g_SystemTimer->SetTimer(CSystemTimer::SiTimer, g_Random->next() % 0x40, false); } } else { if(g_System->bDelaySI()) { g_SystemTimer->SetTimer(CSystemTimer::SiTimer, 0x900, false); } else { g_Reg->MI_INTR_REG |= MI_INTR_SI; g_Reg->SI_STATUS_REG |= SI_STATUS_INTERRUPT; g_Reg->CheckInterrupts(); } } } void CPifRam::SI_DMA_WRITE() { uint8_t * PifRamPos = m_PifRam; uint32_t & SI_DRAM_ADDR_REG = (uint32_t &)g_Reg->SI_DRAM_ADDR_REG; if ((int32_t)SI_DRAM_ADDR_REG > (int32_t)g_System->RdramSize()) { if (bShowPifRamErrors()) { g_Notify->DisplayError("SI DMA\nSI_DRAM_ADDR_REG not in RDRAM space"); } return; } SI_DRAM_ADDR_REG &= 0xFFFFFFF8; uint8_t * RDRAM = g_MMU->Rdram(); if ((int32_t)SI_DRAM_ADDR_REG < 0) { int32_t RdramPos = (int32_t)SI_DRAM_ADDR_REG; for (int32_t count = 0; count < 0x40; count++, RdramPos++) { if (RdramPos < 0) { m_PifRam[count] = 0; continue; } m_PifRam[count] = RDRAM[RdramPos ^ 3]; } } else { for (size_t i = 0; i < 64; i++) { PifRamPos[i] = RDRAM[(SI_DRAM_ADDR_REG + i) ^ 3]; } } if (LogPRDMAMemLoads()) { int32_t count; char HexData[100], AsciiData[100], Addon[20]; LogMessage(""); LogMessage("\tData DMAed to the PIF RAM:"); LogMessage("\t--------------------------"); for (count = 0; count < 16; count++) { if ((count % 4) == 0) { HexData[0] = '\0'; AsciiData[0] = '\0'; } sprintf(Addon, "%02X %02X %02X %02X", m_PifRam[(count << 2) + 0], m_PifRam[(count << 2) + 1], m_PifRam[(count << 2) + 2], m_PifRam[(count << 2) + 3]); strcat(HexData, Addon); if (((count + 1) % 4) != 0) { sprintf(Addon, "-"); strcat(HexData, Addon); } sprintf(Addon, "%c%c%c%c", m_PifRam[(count << 2) + 0], m_PifRam[(count << 2) + 1], m_PifRam[(count << 2) + 2], m_PifRam[(count << 2) + 3]); strcat(AsciiData, Addon); if (((count + 1) % 4) == 0) { LogMessage("\t%s %s", HexData, AsciiData); } } LogMessage(""); } PifRamWrite(); if (g_System->bDelaySI()) { g_SystemTimer->SetTimer(CSystemTimer::SiTimer, 0x900, false); } else { g_Reg->MI_INTR_REG |= MI_INTR_SI; g_Reg->SI_STATUS_REG |= SI_STATUS_INTERRUPT; g_Reg->CheckInterrupts(); } } void CPifRam::ProcessControllerCommand(int32_t Control, uint8_t * Command) { CONTROL * Controllers = g_Plugins->Control()->PluginControllers(); switch (Command[2]) { case 0x00: // Check case 0xFF: // Reset and check? if ((Command[1] & 0x80) != 0) { break; } if (bShowPifRamErrors()) { if (Command[0] != 1 || Command[1] != 3) { g_Notify->DisplayError("What am I meant to do with this controller command?"); } } if (Controllers[Control].Present != 0) { Command[3] = 0x05; Command[4] = 0x00; switch (Controllers[Control].Plugin) { case PLUGIN_TANSFER_PAK: case PLUGIN_RUMBLE_PAK: case PLUGIN_MEMPAK: case PLUGIN_RAW: Command[5] = 1; break; default: Command[5] = 0; break; } } else { Command[1] |= 0x80; } break; case 0x01: // Read controller if (bShowPifRamErrors()) { if (Command[0] != 1 || Command[1] != 4) { g_Notify->DisplayError("What am I meant to do with this controller command?"); } } if (Controllers[Control].Present == false) { Command[1] |= 0x80; } break; case 0x02: // Read from controller pak if (LogControllerPak()) { LogControllerPakData("Read: before getting results"); } if (bShowPifRamErrors()) { if (Command[0] != 3 || Command[1] != 33) { g_Notify->DisplayError("What am I meant to do with this controller command?"); } } if (Controllers[Control].Present != 0) { uint32_t address = (Command[3] << 8) | (Command[4] & 0xE0); uint8_t* data = &Command[5]; switch (Controllers[Control].Plugin) { case PLUGIN_RUMBLE_PAK: Rumblepak::ReadFrom(address, data); break; case PLUGIN_MEMPAK: g_Mempak->ReadFrom(Control, address, data); break; case PLUGIN_TANSFER_PAK: Transferpak::ReadFrom((uint16_t)address, data); break; case PLUGIN_RAW: if (g_Plugins->Control()->ControllerCommand) { g_Plugins->Control()->ControllerCommand(Control, Command); } break; default: memset(&Command[5], 0, 0x20); } if (Controllers[Control].Plugin != PLUGIN_RAW) { Command[0x25] = CMempak::CalculateCrc(data); } } else { Command[1] |= 0x80; } if (LogControllerPak()) { LogControllerPakData("Read: after getting results"); } break; case 0x03: // Write controller pak if (LogControllerPak()) { LogControllerPakData("Write: before processing"); } if (bShowPifRamErrors()) { if (Command[0] != 35 || Command[1] != 1) { g_Notify->DisplayError("What am I meant to do with this controller command?"); } } if (Controllers[Control].Present != 0) { uint32_t address = (Command[3] << 8) | (Command[4] & 0xE0); uint8_t* data = &Command[5]; switch (Controllers[Control].Plugin) { case PLUGIN_MEMPAK: g_Mempak->WriteTo(Control, address, data); break; case PLUGIN_RUMBLE_PAK: Rumblepak::WriteTo(Control, address, data); break; case PLUGIN_TANSFER_PAK: Transferpak::WriteTo((uint16_t)address, data); break; case PLUGIN_RAW: if (g_Plugins->Control()->ControllerCommand) { g_Plugins->Control()->ControllerCommand(Control, Command); } break; } if (Controllers[Control].Plugin != PLUGIN_RAW) { Command[0x25] = CMempak::CalculateCrc(data); } } else { Command[1] |= 0x80; } if (LogControllerPak()) { LogControllerPakData("Write: after processing"); } break; default: if (bShowPifRamErrors()) { g_Notify->DisplayError(stdstr_f("Unknown ControllerCommand %d", Command[2]).c_str()); } } } void CPifRam::ReadControllerCommand(int32_t Control, uint8_t * Command) { CONTROL * Controllers = g_Plugins->Control()->PluginControllers(); switch (Command[2]) { case 0x01: // Read controller if (Controllers[Control].Present != 0) { if (bShowPifRamErrors()) { if (Command[0] != 1 || Command[1] != 4) { g_Notify->DisplayError("What am I meant to do with this controller command?"); } } const uint32_t buttons = g_BaseSystem->GetButtons(Control); memcpy(&Command[3], &buttons, sizeof(uint32_t)); } break; case 0x02: // Read from controller pak if (Controllers[Control].Present != 0) { switch (Controllers[Control].Plugin) { case PLUGIN_RAW: if (g_Plugins->Control()->ReadController) { g_Plugins->Control()->ReadController(Control, Command); } break; } } break; case 0x03: // Write controller pak if (Controllers[Control].Present != 0) { switch (Controllers[Control].Plugin) { case PLUGIN_RAW: if (g_Plugins->Control()->ReadController) { g_Plugins->Control()->ReadController(Control, Command); } break; } } break; } } void CPifRam::LogControllerPakData(const char * Description) { uint8_t * PIF_Ram = g_MMU->PifRam(); int32_t count, count2; char HexData[100], AsciiData[100], Addon[20]; LogMessage("\t%s:", Description); LogMessage("\t------------------------------"); for (count = 0; count < 16; count++) { if ((count % 4) == 0) { HexData[0] = '\0'; AsciiData[0] = '\0'; } sprintf(Addon, "%02X %02X %02X %02X", PIF_Ram[(count << 2) + 0], PIF_Ram[(count << 2) + 1], PIF_Ram[(count << 2) + 2], PIF_Ram[(count << 2) + 3]); strcat(HexData, Addon); if (((count + 1) % 4) != 0) { sprintf(Addon, "-"); strcat(HexData, Addon); } Addon[0] = 0; for (count2 = 0; count2 < 4; count2++) { if (PIF_Ram[(count << 2) + count2] < 30) { strcat(Addon, "."); } else { char tmp[2]; sprintf(tmp, "%c", PIF_Ram[(count << 2) + count2]); strcat(Addon, tmp); } } strcat(AsciiData, Addon); if (((count + 1) % 4) == 0) { LogMessage("\t%s %s", HexData, AsciiData); } } LogMessage(""); }