/**************************************************************************** * * * Project64 - A Nintendo 64 emulator. * * http://www.pj64-emu.com/ * * Copyright (C) 2012 Project64. All rights reserved. * * * * License: * * GNU/GPLv2 http://www.gnu.org/licenses/gpl-2.0.html * * * ****************************************************************************/ #include "stdafx.h" #if defined(__i386__) || defined(_M_IX86) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include CCodeSection * CX86RecompilerOps::m_Section = NULL; CRegInfo CX86RecompilerOps::m_RegWorkingSet; STEP_TYPE CX86RecompilerOps::m_NextInstruction; uint32_t CX86RecompilerOps::m_CompilePC; OPCODE CX86RecompilerOps::m_Opcode; uint32_t CX86RecompilerOps::m_BranchCompare = 0; uint32_t CX86RecompilerOps::m_TempValue = 0; /*int TestValue = 0; void TestFunc() { TestValue += 1; if (TestValue >= 4) { g_Notify->BreakPoint(__FILE__, __LINE__); } }*/ void CX86RecompilerOps::PreCompileOpcode(void) { if (m_NextInstruction != DELAY_SLOT_DONE) { CPU_Message(" %X %s", m_CompilePC, R4300iOpcodeName(m_Opcode.Hex, m_CompilePC)); } /*if (m_CompilePC == 0x803245C4 && m_NextInstruction == NORMAL) { X86BreakPoint(__FILE__, __LINE__); }*/ /*if (m_CompilePC >= 0x80000000 && m_CompilePC <= 0x80400000 && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet, false, true); MoveConstToVariable(m_CompilePC, &g_Reg->m_PROGRAM_COUNTER, "PROGRAM_COUNTER"); if (g_SyncSystem) { #ifdef _WIN32 MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } }*/ /*if ((m_CompilePC == 0x8031C0E4 || m_CompilePC == 0x8031C118 || m_CompilePC == 0x8031CD88 || m_CompilePC == 0x8031CE24 || m_CompilePC == 0x8031CE30 || m_CompilePC == 0x8031CE40) && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet, false, true); MoveConstToVariable(m_CompilePC, &g_Reg->m_PROGRAM_COUNTER, "PROGRAM_COUNTER"); if (g_SyncSystem) { #ifdef _WIN32 MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } }*/ /*if (m_CompilePC == 0x801C1B88) { m_RegWorkingSet.BeforeCallDirect(); Call_Direct(AddressOf(TestFunc), "TestFunc"); m_RegWorkingSet.AfterCallDirect(); }*/ /*if (m_CompilePC >= 0x801C1AF8 && m_CompilePC <= 0x801C1C00 && m_NextInstruction == NORMAL) { UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { m_RegWorkingSet.BeforeCallDirect(); MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystemPC), "CN64System::SyncSystemPC"); m_RegWorkingSet.AfterCallDirect(); } }*/ /*if ((m_CompilePC == 0x80263900) && m_NextInstruction == NORMAL) { X86BreakPoint(__FILEW__,__LINE__); }*/ /*if ((m_CompilePC >= 0x80325D80 && m_CompilePC <= 0x80325DF0) && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { #ifdef _WIN32 MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } }*/ /*if ((m_CompilePC == 0x80324E14) && m_NextInstruction == NORMAL) { X86BreakPoint(__FILEW__,__LINE__); }*/ /*if (m_CompilePC == 0x80324E18 && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { #ifdef _WIN32 MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } }*/ /*if (m_CompilePC >= 0x80324E00 && m_CompilePC <= 0x80324E18 && m_NextInstruction == NORMAL) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet,false,true); MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (g_SyncSystem) { #ifdef _WIN32 MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } }*/ /* if (m_CompilePC == 0x803245CC && m_NextInstruction == NORMAL) { //m_RegWorkingSet.UnMap_AllFPRs(); g_Notify->BreakPoint(__FILE__, __LINE__); //X86HardBreakPoint(); //X86BreakPoint(__FILEW__,__LINE__); //m_RegWorkingSet.UnMap_AllFPRs(); }*/ /*if (m_CompilePC >= 0x80179DC4 && m_CompilePC <= 0x80179DF0 && m_NextInstruction == NORMAL) { m_RegWorkingSet.UnMap_AllFPRs(); }*/ m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.ResetX86Protection(); } void CX86RecompilerOps::PostCompileOpcode(void) { if (!g_System->bRegCaching()) { m_RegWorkingSet.WriteBackRegisters(); } m_RegWorkingSet.UnMap_AllFPRs(); } void CX86RecompilerOps::CompileReadTLBMiss(uint32_t VirtualAddress, x86Reg LookUpReg) { MoveConstToVariable(VirtualAddress, g_TLBLoadAddress, "TLBLoadAddress"); TestX86RegToX86Reg(LookUpReg, LookUpReg); CompileExit(m_CompilePC, m_CompilePC, m_RegWorkingSet, CExitInfo::TLBReadMiss, false, JeLabel32); } void CX86RecompilerOps::CompileReadTLBMiss(x86Reg AddressReg, x86Reg LookUpReg) { MoveX86regToVariable(AddressReg, g_TLBLoadAddress, "TLBLoadAddress"); TestX86RegToX86Reg(LookUpReg, LookUpReg); CompileExit(m_CompilePC, m_CompilePC, m_RegWorkingSet, CExitInfo::TLBReadMiss, false, JeLabel32); } void CX86RecompilerOps::CompileWriteTLBMiss(x86Reg AddressReg, x86Reg LookUpReg) { MoveX86regToVariable(AddressReg, &g_TLBStoreAddress, "g_TLBStoreAddress"); TestX86RegToX86Reg(LookUpReg, LookUpReg); CompileExit(m_CompilePC, m_CompilePC, m_RegWorkingSet, CExitInfo::TLBWriteMiss, false, JeLabel32); } bool DelaySlotEffectsCompare(uint32_t PC, uint32_t Reg1, uint32_t Reg2); /************************** Branch functions ************************/ void CX86RecompilerOps::Compile_BranchCompare(BRANCH_COMPARE CompareType) { switch (CompareType) { case CompareTypeBEQ: BEQ_Compare(); break; case CompareTypeBNE: BNE_Compare(); break; case CompareTypeBLTZ: BLTZ_Compare(); break; case CompareTypeBLEZ: BLEZ_Compare(); break; case CompareTypeBGTZ: BGTZ_Compare(); break; case CompareTypeBGEZ: BGEZ_Compare(); break; case CompareTypeCOP1BCF: COP1_BCF_Compare(); break; case CompareTypeCOP1BCT: COP1_BCT_Compare(); break; default: g_Notify->BreakPoint(__FILE__, __LINE__); } } void CX86RecompilerOps::Compile_Branch(BRANCH_COMPARE CompareType, BRANCH_TYPE BranchType, bool Link) { static CRegInfo RegBeforeDelay; static bool EffectDelaySlot; if (m_NextInstruction == NORMAL) { if (CompareType == CompareTypeCOP1BCF || CompareType == CompareTypeCOP1BCT) { CompileCop1Test(); } if (m_CompilePC + ((int16_t)m_Opcode.offset << 2) + 4 == m_CompilePC + 8) { return; } if ((m_CompilePC & 0xFFC) != 0xFFC) { switch (BranchType) { case BranchTypeRs: EffectDelaySlot = DelaySlotEffectsCompare(m_CompilePC, m_Opcode.rs, 0); break; case BranchTypeRsRt: EffectDelaySlot = DelaySlotEffectsCompare(m_CompilePC, m_Opcode.rs, m_Opcode.rt); break; case BranchTypeCop1: { OPCODE Command; if (!g_MMU->LW_VAddr(m_CompilePC + 4, Command.Hex)) { g_Notify->FatalError(GS(MSG_FAIL_LOAD_WORD)); } EffectDelaySlot = false; if (Command.op == R4300i_CP1) { if ((Command.fmt == R4300i_COP1_S && (Command.funct & 0x30) == 0x30) || (Command.fmt == R4300i_COP1_D && (Command.funct & 0x30) == 0x30)) { EffectDelaySlot = true; } } } break; default: if (bHaveDebugger()) { g_Notify->DisplayError("Unknown branch type"); } } } else { EffectDelaySlot = true; } m_Section->m_Jump.JumpPC = m_CompilePC; m_Section->m_Jump.TargetPC = m_CompilePC + ((int16_t)m_Opcode.offset << 2) + 4; if (m_Section->m_JumpSection != NULL) { m_Section->m_Jump.BranchLabel.Format("Section_%d", m_Section->m_JumpSection->m_SectionID); } else { m_Section->m_Jump.BranchLabel.Format("Exit_%X_jump_%X", m_Section->m_EnterPC, m_Section->m_Jump.TargetPC); } m_Section->m_Jump.LinkLocation = NULL; m_Section->m_Jump.LinkLocation2 = NULL; m_Section->m_Jump.DoneDelaySlot = false; m_Section->m_Cont.JumpPC = m_CompilePC; m_Section->m_Cont.TargetPC = m_CompilePC + 8; if (m_Section->m_ContinueSection != NULL) { m_Section->m_Cont.BranchLabel.Format("Section_%d", m_Section->m_ContinueSection->m_SectionID); } else { m_Section->m_Cont.BranchLabel.Format("Exit_%X_continue_%X", m_Section->m_EnterPC, m_Section->m_Cont.TargetPC); } m_Section->m_Cont.LinkLocation = NULL; m_Section->m_Cont.LinkLocation2 = NULL; m_Section->m_Cont.DoneDelaySlot = false; if (m_Section->m_Jump.TargetPC < m_Section->m_Cont.TargetPC) { m_Section->m_Cont.FallThrough = false; m_Section->m_Jump.FallThrough = true; } else { m_Section->m_Cont.FallThrough = true; m_Section->m_Jump.FallThrough = false; } if (Link) { UnMap_GPR(31, false); m_RegWorkingSet.SetMipsRegLo(31, m_CompilePC + 8); m_RegWorkingSet.SetMipsRegState(31, CRegInfo::STATE_CONST_32_SIGN); } if (EffectDelaySlot) { if ((m_CompilePC & 0xFFC) != 0xFFC) { m_Section->m_Cont.BranchLabel = m_Section->m_ContinueSection != NULL ? "Continue" : "ExitBlock"; m_Section->m_Jump.BranchLabel = m_Section->m_JumpSection != NULL ? "Jump" : "ExitBlock"; } else { m_Section->m_Cont.BranchLabel = "Continue"; m_Section->m_Jump.BranchLabel = "Jump"; } if (m_Section->m_Jump.TargetPC != m_Section->m_Cont.TargetPC) { Compile_BranchCompare(CompareType); } if (!m_Section->m_Jump.FallThrough && !m_Section->m_Cont.FallThrough) { if (m_Section->m_Jump.LinkLocation != NULL) { CPU_Message(""); CPU_Message(" %s:", m_Section->m_Jump.BranchLabel.c_str()); LinkJump(m_Section->m_Jump); m_Section->m_Jump.FallThrough = true; } else if (m_Section->m_Cont.LinkLocation != NULL) { CPU_Message(""); CPU_Message(" %s:", m_Section->m_Cont.BranchLabel.c_str()); LinkJump(m_Section->m_Cont); m_Section->m_Cont.FallThrough = true; } } if ((m_CompilePC & 0xFFC) == 0xFFC) { uint8_t * DelayLinkLocation = NULL; if (m_Section->m_Jump.FallThrough) { if (m_Section->m_Jump.LinkLocation != NULL || m_Section->m_Jump.LinkLocation2 != NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); } MoveConstToVariable(m_Section->m_Jump.TargetPC, &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); } else if (m_Section->m_Cont.FallThrough) { if (m_Section->m_Cont.LinkLocation != NULL || m_Section->m_Cont.LinkLocation2 != NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); } MoveConstToVariable(m_Section->m_Cont.TargetPC, &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); } if (m_Section->m_Jump.LinkLocation != NULL || m_Section->m_Jump.LinkLocation2 != NULL) { JmpLabel8("DoDelaySlot", 0); if (DelayLinkLocation != NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); } DelayLinkLocation = (uint8_t *)(*g_RecompPos - 1); CPU_Message(" "); CPU_Message(" %s:", m_Section->m_Jump.BranchLabel.c_str()); LinkJump(m_Section->m_Jump); MoveConstToVariable(m_Section->m_Jump.TargetPC, &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); } if (m_Section->m_Cont.LinkLocation != NULL || m_Section->m_Cont.LinkLocation2 != NULL) { JmpLabel8("DoDelaySlot", 0); if (DelayLinkLocation != NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); } DelayLinkLocation = (uint8_t *)(*g_RecompPos - 1); CPU_Message(" "); CPU_Message(" %s:", m_Section->m_Cont.BranchLabel.c_str()); LinkJump(m_Section->m_Cont); MoveConstToVariable(m_Section->m_Cont.TargetPC, &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); } if (DelayLinkLocation) { CPU_Message(""); CPU_Message(" DoDelaySlot:"); SetJump8(DelayLinkLocation, *g_RecompPos); } OverflowDelaySlot(false); return; } ResetX86Protection(); RegBeforeDelay = m_RegWorkingSet; } m_NextInstruction = DO_DELAY_SLOT; } else if (m_NextInstruction == DELAY_SLOT_DONE) { if (EffectDelaySlot) { CJumpInfo * FallInfo = m_Section->m_Jump.FallThrough ? &m_Section->m_Jump : &m_Section->m_Cont; CJumpInfo * JumpInfo = m_Section->m_Jump.FallThrough ? &m_Section->m_Cont : &m_Section->m_Jump; if (FallInfo->FallThrough && !FallInfo->DoneDelaySlot) { ResetX86Protection(); FallInfo->RegSet = m_RegWorkingSet; if (FallInfo == &m_Section->m_Jump) { if (m_Section->m_JumpSection != NULL) { m_Section->m_Jump.BranchLabel.Format("Section_%d", m_Section->m_JumpSection->m_SectionID); } else { m_Section->m_Jump.BranchLabel = "ExitBlock"; } if (FallInfo->TargetPC <= m_CompilePC) { UpdateCounters(m_Section->m_Jump.RegSet, true, true); CPU_Message("CompileSystemCheck 12"); CompileSystemCheck(FallInfo->TargetPC, m_Section->m_Jump.RegSet); ResetX86Protection(); FallInfo->ExitReason = CExitInfo::Normal_NoSysCheck; FallInfo->JumpPC = (uint32_t)-1; } } else { if (m_Section->m_ContinueSection != NULL) { m_Section->m_Cont.BranchLabel.Format("Section_%d", m_Section->m_ContinueSection->m_SectionID); } else { m_Section->m_Cont.BranchLabel = "ExitBlock"; } } FallInfo->DoneDelaySlot = true; if (!JumpInfo->DoneDelaySlot) { FallInfo->FallThrough = false; JmpLabel32(FallInfo->BranchLabel.c_str(), 0); FallInfo->LinkLocation = (uint32_t *)(*g_RecompPos - 4); if (JumpInfo->LinkLocation != NULL) { CPU_Message(" %s:", JumpInfo->BranchLabel.c_str()); LinkJump(*JumpInfo); JumpInfo->FallThrough = true; m_NextInstruction = DO_DELAY_SLOT; m_RegWorkingSet = RegBeforeDelay; return; } } } } else { if (m_Section->m_Jump.TargetPC != m_Section->m_Cont.TargetPC) { Compile_BranchCompare(CompareType); ResetX86Protection(); m_Section->m_Cont.RegSet = m_RegWorkingSet; m_Section->m_Jump.RegSet = m_RegWorkingSet; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; m_Section->m_Cont.RegSet = m_RegWorkingSet; if (m_Section->m_ContinueSection == NULL && m_Section->m_JumpSection != NULL) { m_Section->m_ContinueSection = m_Section->m_JumpSection; m_Section->m_JumpSection = NULL; } if (m_Section->m_ContinueSection != NULL) { m_Section->m_Cont.BranchLabel.Format("Section_%d", m_Section->m_ContinueSection->m_SectionID); } else { m_Section->m_Cont.BranchLabel = "ExitBlock"; } } } m_Section->GenerateSectionLinkage(); m_NextInstruction = END_BLOCK; } else { if (bHaveDebugger()) { g_Notify->DisplayError(stdstr_f("WTF\n\nBranch\nNextInstruction = %X", m_NextInstruction).c_str()); } } } void CX86RecompilerOps::Compile_BranchLikely(BRANCH_COMPARE CompareType, bool Link) { if (m_NextInstruction == NORMAL) { if (CompareType == CompareTypeCOP1BCF || CompareType == CompareTypeCOP1BCT) { CompileCop1Test(); } if (!g_System->bLinkBlocks() || (m_CompilePC & 0xFFC) == 0xFFC) { m_Section->m_Jump.JumpPC = m_CompilePC; m_Section->m_Jump.TargetPC = m_CompilePC + ((int16_t)m_Opcode.offset << 2) + 4; m_Section->m_Cont.JumpPC = m_CompilePC; m_Section->m_Cont.TargetPC = m_CompilePC + 8; } else { if (m_Section->m_Jump.JumpPC != m_CompilePC) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (m_Section->m_Cont.JumpPC != m_CompilePC) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (m_Section->m_Cont.TargetPC != m_CompilePC + 8) { g_Notify->BreakPoint(__FILE__, __LINE__); } } if (m_Section->m_JumpSection != NULL) { m_Section->m_Jump.BranchLabel.Format("Section_%d", ((CCodeSection *)m_Section->m_JumpSection)->m_SectionID); } else { m_Section->m_Jump.BranchLabel = "ExitBlock"; } if (m_Section->m_ContinueSection != NULL) { m_Section->m_Cont.BranchLabel.Format("Section_%d", ((CCodeSection *)m_Section->m_ContinueSection)->m_SectionID); } else { m_Section->m_Cont.BranchLabel = "ExitBlock"; } m_Section->m_Jump.FallThrough = true; m_Section->m_Jump.LinkLocation = NULL; m_Section->m_Jump.LinkLocation2 = NULL; m_Section->m_Cont.FallThrough = false; m_Section->m_Cont.LinkLocation = NULL; m_Section->m_Cont.LinkLocation2 = NULL; if (Link) { UnMap_GPR(31, false); m_RegWorkingSet.SetMipsRegLo(31, m_CompilePC + 8); m_RegWorkingSet.SetMipsRegState(31, CRegInfo::STATE_CONST_32_SIGN); } Compile_BranchCompare(CompareType); ResetX86Protection(); m_Section->m_Cont.RegSet = m_RegWorkingSet; if ((m_CompilePC & 0xFFC) == 0xFFC) { if (m_Section->m_Cont.FallThrough) { if (m_Section->m_Jump.LinkLocation != NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); } } if (m_Section->m_Jump.LinkLocation != NULL || m_Section->m_Jump.FallThrough) { LinkJump(m_Section->m_Jump); MoveConstToVariable(m_Section->m_Jump.TargetPC, &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); OverflowDelaySlot(false); CPU_Message(" "); CPU_Message(" %s:", m_Section->m_Cont.BranchLabel.c_str()); } else if (!m_Section->m_Cont.FallThrough) { g_Notify->BreakPoint(__FILE__, __LINE__); } LinkJump(m_Section->m_Cont); CompileExit(m_CompilePC, m_CompilePC + 8, m_Section->m_Cont.RegSet, CExitInfo::Normal, true, NULL); return; } else { m_NextInstruction = DO_DELAY_SLOT; } if (g_System->bLinkBlocks()) { m_Section->m_Jump.RegSet = m_RegWorkingSet; m_Section->GenerateSectionLinkage(); m_NextInstruction = END_BLOCK; } else { if (m_Section->m_Cont.FallThrough) { if (m_Section->m_Jump.LinkLocation != NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); } m_Section->GenerateSectionLinkage(); m_NextInstruction = END_BLOCK; } } } else if (m_NextInstruction == DELAY_SLOT_DONE) { ResetX86Protection(); m_Section->m_Jump.RegSet = m_RegWorkingSet; m_Section->GenerateSectionLinkage(); m_NextInstruction = END_BLOCK; } else if (bHaveDebugger()) { g_Notify->DisplayError(stdstr_f("WTF\n%s\nNextInstruction = %X", __FUNCTION__, m_NextInstruction).c_str()); } } void CX86RecompilerOps::BNE_Compare() { uint8_t *Jump = NULL; if (IsKnown(m_Opcode.rs) && IsKnown(m_Opcode.rt)) { if (IsConst(m_Opcode.rs) && IsConst(m_Opcode.rt)) { if (Is64Bit(m_Opcode.rs) || Is64Bit(m_Opcode.rt)) { CX86RecompilerOps::UnknownOpcode(); } else if (GetMipsRegLo(m_Opcode.rs) != GetMipsRegLo(m_Opcode.rt)) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else if (IsMapped(m_Opcode.rs) && IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rs); ProtectGPR(m_Opcode.rt); if (Is64Bit(m_Opcode.rs) || Is64Bit(m_Opcode.rt)) { CompX86RegToX86Reg( Is32Bit(m_Opcode.rs) ? Map_TempReg(x86_Any, m_Opcode.rs, true) : GetMipsRegMapHi(m_Opcode.rs), Is32Bit(m_Opcode.rt) ? Map_TempReg(x86_Any, m_Opcode.rt, true) : GetMipsRegMapHi(m_Opcode.rt) ); if (m_Section->m_Jump.FallThrough) { JneLabel8("continue", 0); Jump = *g_RecompPos - 1; } else { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } CompX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rs), GetMipsRegMapLo(m_Opcode.rt)); if (m_Section->m_Cont.FallThrough) { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); CPU_Message(" "); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } else { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } else { CompX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rs), GetMipsRegMapLo(m_Opcode.rt)); if (m_Section->m_Cont.FallThrough) { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } } else { uint32_t ConstReg = IsConst(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t MappedReg = IsConst(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (Is64Bit(ConstReg) || Is64Bit(MappedReg)) { if (Is32Bit(ConstReg) || Is32Bit(MappedReg)) { ProtectGPR(MappedReg); if (Is32Bit(MappedReg)) { CompConstToX86reg(Map_TempReg(x86_Any, MappedReg, true), GetMipsRegHi(ConstReg)); } else { CompConstToX86reg(GetMipsRegMapHi(MappedReg), GetMipsRegLo_S(ConstReg) >> 31); } } else { CompConstToX86reg(GetMipsRegMapHi(MappedReg), GetMipsRegHi(ConstReg)); } if (m_Section->m_Jump.FallThrough) { JneLabel8("continue", 0); Jump = *g_RecompPos - 1; } else { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } CompConstToX86reg(GetMipsRegMapLo(MappedReg), GetMipsRegLo(ConstReg)); if (m_Section->m_Cont.FallThrough) { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); CPU_Message(" "); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } else { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } else { CompConstToX86reg(GetMipsRegMapLo(MappedReg), GetMipsRegLo(ConstReg)); if (m_Section->m_Cont.FallThrough) { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } } } else if (IsKnown(m_Opcode.rs) || IsKnown(m_Opcode.rt)) { uint32_t KnownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t UnknownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (!g_System->b32BitCore()) { if (IsConst(KnownReg)) { if (Is64Bit(KnownReg)) { CompConstToVariable(GetMipsRegHi(KnownReg), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else if (IsSigned(KnownReg)) { CompConstToVariable((GetMipsRegLo_S(KnownReg) >> 31), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else { CompConstToVariable(0, &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } } else { if (Is64Bit(KnownReg)) { CompX86regToVariable(GetMipsRegMapHi(KnownReg), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else if (IsSigned(KnownReg)) { ProtectGPR(KnownReg); CompX86regToVariable(Map_TempReg(x86_Any, KnownReg, true), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else { CompConstToVariable(0, &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } } if (m_Section->m_Jump.FallThrough) { JneLabel8("continue", 0); Jump = *g_RecompPos - 1; } else { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } if (IsConst(KnownReg)) { CompConstToVariable(GetMipsRegLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } else { CompX86regToVariable(GetMipsRegMapLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } if (m_Section->m_Cont.FallThrough) { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); if (g_System->b32BitCore()) { m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } else if (m_Section->m_Jump.FallThrough) { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); if (Jump) { CPU_Message(" "); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } } else { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); if (g_System->b32BitCore()) { m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } } else { x86Reg Reg = x86_Any; if (!g_System->b32BitCore()) { Reg = Map_TempReg(x86_Any, m_Opcode.rt, true); CompX86regToVariable(Reg, &_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs]); if (m_Section->m_Jump.FallThrough) { JneLabel8("continue", 0); Jump = *g_RecompPos - 1; } else { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } Reg = Map_TempReg(Reg, m_Opcode.rt, false); CompX86regToVariable(Reg, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); if (m_Section->m_Cont.FallThrough) { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); if (g_System->b32BitCore()) { m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } else if (m_Section->m_Jump.FallThrough) { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); if (Jump) { CPU_Message(" "); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } } else { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); if (g_System->b32BitCore()) { m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } } } void CX86RecompilerOps::BEQ_Compare() { uint8_t *Jump = NULL; if (IsKnown(m_Opcode.rs) && IsKnown(m_Opcode.rt)) { if (IsConst(m_Opcode.rs) && IsConst(m_Opcode.rt)) { if (Is64Bit(m_Opcode.rs) || Is64Bit(m_Opcode.rt)) { CX86RecompilerOps::UnknownOpcode(); } else if (GetMipsRegLo(m_Opcode.rs) == GetMipsRegLo(m_Opcode.rt)) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else if (IsMapped(m_Opcode.rs) && IsMapped(m_Opcode.rt)) { if ((Is64Bit(m_Opcode.rs) || Is64Bit(m_Opcode.rt)) && !g_System->b32BitCore()) { ProtectGPR(m_Opcode.rs); ProtectGPR(m_Opcode.rt); CompX86RegToX86Reg( Is32Bit(m_Opcode.rs) ? Map_TempReg(x86_Any, m_Opcode.rs, true) : GetMipsRegMapHi(m_Opcode.rs), Is32Bit(m_Opcode.rt) ? Map_TempReg(x86_Any, m_Opcode.rt, true) : GetMipsRegMapHi(m_Opcode.rt) ); if (m_Section->m_Cont.FallThrough) { JneLabel8("continue", 0); Jump = *g_RecompPos - 1; } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } CompX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rs), GetMipsRegMapLo(m_Opcode.rt)); if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); CPU_Message(" "); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } else if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else { CompX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rs), GetMipsRegMapLo(m_Opcode.rt)); if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } } else { uint32_t ConstReg = IsConst(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t MappedReg = IsConst(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (Is64Bit(ConstReg) || Is64Bit(MappedReg)) { if (Is32Bit(ConstReg) || Is32Bit(MappedReg)) { if (Is32Bit(MappedReg)) { ProtectGPR(MappedReg); CompConstToX86reg(Map_TempReg(x86_Any, MappedReg, true), GetMipsRegHi(ConstReg)); } else { CompConstToX86reg(GetMipsRegMapHi(MappedReg), GetMipsRegLo_S(ConstReg) >> 31); } } else { CompConstToX86reg(GetMipsRegMapHi(MappedReg), GetMipsRegHi(ConstReg)); } if (m_Section->m_Cont.FallThrough) { JneLabel8("continue", 0); Jump = *g_RecompPos - 1; } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } CompConstToX86reg(GetMipsRegMapLo(MappedReg), GetMipsRegLo(ConstReg)); if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); CPU_Message(" "); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } else if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else { CompConstToX86reg(GetMipsRegMapLo(MappedReg), GetMipsRegLo(ConstReg)); if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } } } else if (IsKnown(m_Opcode.rs) || IsKnown(m_Opcode.rt)) { uint32_t KnownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t UnknownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (!g_System->b32BitCore()) { if (IsConst(KnownReg)) { if (Is64Bit(KnownReg)) { CompConstToVariable(GetMipsRegHi(KnownReg), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else if (IsSigned(KnownReg)) { CompConstToVariable(GetMipsRegLo_S(KnownReg) >> 31, &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else { CompConstToVariable(0, &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } } else { ProtectGPR(KnownReg); if (Is64Bit(KnownReg)) { CompX86regToVariable(GetMipsRegMapHi(KnownReg), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else if (IsSigned(KnownReg)) { CompX86regToVariable(Map_TempReg(x86_Any, KnownReg, true), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else { CompConstToVariable(0, &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } } if (m_Section->m_Cont.FallThrough) { JneLabel8("continue", 0); Jump = *g_RecompPos - 1; } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } if (IsConst(KnownReg)) { CompConstToVariable(GetMipsRegLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } else { CompX86regToVariable(GetMipsRegMapLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); if (Jump) { CPU_Message(" "); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } } else if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); if (g_System->b32BitCore()) { m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else { x86Reg Reg = x86_Any; if (!g_System->b32BitCore()) { Reg = Map_TempReg(x86_Any, m_Opcode.rs, true); CompX86regToVariable(Reg, &_GPR[m_Opcode.rt].W[1], CRegName::GPR_Hi[m_Opcode.rt]); if (m_Section->m_Cont.FallThrough) { JneLabel8("continue", 0); Jump = *g_RecompPos - 1; } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } CompX86regToVariable(Map_TempReg(Reg, m_Opcode.rs, false), &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); if (Jump) { CPU_Message(" "); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } } else if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); if (g_System->b32BitCore()) { m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); if (g_System->b32BitCore()) { m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } } void CX86RecompilerOps::BGTZ_Compare() { if (IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { if (GetMipsReg_S(m_Opcode.rs) > 0) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else { if (GetMipsRegLo_S(m_Opcode.rs) > 0) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } } else if (IsMapped(m_Opcode.rs) && Is32Bit(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), 0); if (m_Section->m_Jump.FallThrough) { JleLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Cont.FallThrough) { JgLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JleLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else if (IsUnknown(m_Opcode.rs) && g_System->b32BitCore()) { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); if (m_Section->m_Jump.FallThrough) { JleLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Cont.FallThrough) { JgLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JleLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else { uint8_t *Jump = NULL; if (IsMapped(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapHi(m_Opcode.rs), 0); } else { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs]); } if (m_Section->m_Jump.FallThrough) { JlLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JgLabel8("continue", 0); Jump = *g_RecompPos - 1; } else if (m_Section->m_Cont.FallThrough) { JlLabel8("continue", 0); Jump = *g_RecompPos - 1; JgLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JlLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JgLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } if (IsMapped(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), 0); } else { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); } if (m_Section->m_Jump.FallThrough) { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } else if (m_Section->m_Cont.FallThrough) { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } else { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } } void CX86RecompilerOps::BLEZ_Compare() { if (IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { if (GetMipsReg_S(m_Opcode.rs) <= 0) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else if (IsSigned(m_Opcode.rs)) { if (GetMipsRegLo_S(m_Opcode.rs) <= 0) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else { if (GetMipsRegLo(m_Opcode.rs) == 0) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } } else if (IsMapped(m_Opcode.rs)) { if (Is32Bit(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), 0); if (m_Section->m_Jump.FallThrough) { JgLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Cont.FallThrough) { JleLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JgLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else { uint8_t *Jump = NULL; if (IsMapped(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapHi(m_Opcode.rs), 0); } else { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs]); } if (m_Section->m_Jump.FallThrough) { JgLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JlLabel8("Continue", 0); Jump = *g_RecompPos - 1; } else if (m_Section->m_Cont.FallThrough) { JgLabel8("Continue", 0); Jump = *g_RecompPos - 1; JlLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JgLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JlLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } if (IsMapped(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), 0); } else { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); } if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } else if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); JmpLabel32("BranchToJump", 0); m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } } else { uint8_t *Jump = NULL; if (!g_System->b32BitCore()) { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs]); if (m_Section->m_Jump.FallThrough) { JgLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JlLabel8("Continue", 0); Jump = *g_RecompPos - 1; } else if (m_Section->m_Cont.FallThrough) { JgLabel8("Continue", 0); Jump = *g_RecompPos - 1; JlLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JgLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JlLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } CompConstToVariable(0, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); if (g_System->b32BitCore()) { m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } if (Jump) { CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } } else if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); if (Jump) { CPU_Message(" continue:"); SetJump8(Jump, *g_RecompPos); } } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); JmpLabel32("BranchToJump", 0); m_Section->m_Jump.LinkLocation2 = (uint32_t *)(*g_RecompPos - 4); } } else { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); if (m_Section->m_Jump.FallThrough) { JgLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Cont.FallThrough) { JleLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JgLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } } } void CX86RecompilerOps::BLTZ_Compare() { if (IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { if (GetMipsReg_S(m_Opcode.rs) < 0) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else if (IsSigned(m_Opcode.rs)) { if (GetMipsRegLo_S(m_Opcode.rs) < 0) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else if (IsMapped(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapHi(m_Opcode.rs), 0); if (m_Section->m_Jump.FallThrough) { JgeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Cont.FallThrough) { JlLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JgeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else if (IsSigned(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), 0); if (m_Section->m_Jump.FallThrough) { JgeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Cont.FallThrough) { JlLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JgeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else if (IsUnknown(m_Opcode.rs)) { if (g_System->b32BitCore()) { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); } else { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs]); } if (m_Section->m_Jump.FallThrough) { JgeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Cont.FallThrough) { JlLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JlLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } } void CX86RecompilerOps::BGEZ_Compare() { if (IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { g_Notify->BreakPoint(__FILE__, __LINE__); CX86RecompilerOps::UnknownOpcode(); } else if (IsSigned(m_Opcode.rs)) { if (GetMipsRegLo_S(m_Opcode.rs) >= 0) { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } else { m_Section->m_Jump.FallThrough = false; m_Section->m_Cont.FallThrough = true; } } else { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } } else if (IsMapped(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapHi(m_Opcode.rs), 0); if (m_Section->m_Cont.FallThrough) { JgeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JlLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JlLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else if (IsSigned(m_Opcode.rs)) { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), 0); if (m_Section->m_Cont.FallThrough) { JgeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JlLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JlLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } else { m_Section->m_Jump.FallThrough = true; m_Section->m_Cont.FallThrough = false; } } else { if (g_System->b32BitCore()) { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); } else { CompConstToVariable(0, &_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs]); } if (m_Section->m_Cont.FallThrough) { JgeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JlLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JlLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } } void CX86RecompilerOps::COP1_BCF_Compare() { TestVariable(FPCSR_C, &_FPCR[31], "_FPCR[31]"); if (m_Section->m_Cont.FallThrough) { JeLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JneLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } void CX86RecompilerOps::COP1_BCT_Compare() { TestVariable(FPCSR_C, &_FPCR[31], "_FPCR[31]"); if (m_Section->m_Cont.FallThrough) { JneLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else if (m_Section->m_Jump.FallThrough) { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } else { JeLabel32(m_Section->m_Cont.BranchLabel.c_str(), 0); m_Section->m_Cont.LinkLocation = (uint32_t *)(*g_RecompPos - 4); JmpLabel32(m_Section->m_Jump.BranchLabel.c_str(), 0); m_Section->m_Jump.LinkLocation = (uint32_t *)(*g_RecompPos - 4); } } /************************* OpCode functions *************************/ void CX86RecompilerOps::J() { if (m_NextInstruction == NORMAL) { if ((m_CompilePC & 0xFFC) == 0xFFC) { MoveConstToVariable((m_CompilePC & 0xF0000000) + (m_Opcode.target << 2), &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); OverflowDelaySlot(false); return; } m_Section->m_Jump.TargetPC = (m_CompilePC & 0xF0000000) + (m_Opcode.target << 2);; m_Section->m_Jump.JumpPC = m_CompilePC; if (m_Section->m_JumpSection != NULL) { m_Section->m_Jump.BranchLabel.Format("Section_%d", ((CCodeSection *)m_Section->m_JumpSection)->m_SectionID); } else { m_Section->m_Jump.BranchLabel = "ExitBlock"; } m_Section->m_Jump.FallThrough = true; m_Section->m_Jump.LinkLocation = NULL; m_Section->m_Jump.LinkLocation2 = NULL; m_NextInstruction = DO_DELAY_SLOT; } else if (m_NextInstruction == DELAY_SLOT_DONE) { m_Section->m_Jump.RegSet = m_RegWorkingSet; m_Section->GenerateSectionLinkage(); m_NextInstruction = END_BLOCK; } else if (bHaveDebugger()) { g_Notify->DisplayError(stdstr_f("WTF\n\nJ\nNextInstruction = %X", m_NextInstruction).c_str()); } } void CX86RecompilerOps::JAL() { if (m_NextInstruction == NORMAL) { Map_GPR_32bit(31, true, -1); MoveVariableToX86reg(_PROGRAM_COUNTER, "_PROGRAM_COUNTER", GetMipsRegMapLo(31)); AndConstToX86Reg(GetMipsRegMapLo(31), 0xF0000000); AddConstToX86Reg(GetMipsRegMapLo(31), (m_CompilePC + 8) & ~0xF0000000); if ((m_CompilePC & 0xFFC) == 0xFFC) { MoveConstToVariable((m_CompilePC & 0xF0000000) + (m_Opcode.target << 2), &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); OverflowDelaySlot(false); return; } m_Section->m_Jump.TargetPC = (m_CompilePC & 0xF0000000) + (m_Opcode.target << 2); m_Section->m_Jump.JumpPC = m_CompilePC; if (m_Section->m_JumpSection != NULL) { m_Section->m_Jump.BranchLabel.Format("Section_%d", ((CCodeSection *)m_Section->m_JumpSection)->m_SectionID); } else { m_Section->m_Jump.BranchLabel = "ExitBlock"; } m_Section->m_Jump.FallThrough = true; m_Section->m_Jump.LinkLocation = NULL; m_Section->m_Jump.LinkLocation2 = NULL; m_NextInstruction = DO_DELAY_SLOT; } else if (m_NextInstruction == DELAY_SLOT_DONE) { if (m_Section->m_JumpSection) { m_Section->m_Jump.RegSet = m_RegWorkingSet; m_Section->GenerateSectionLinkage(); } else { m_RegWorkingSet.WriteBackRegisters(); x86Reg pc_reg = Map_TempReg(x86_Any, -1, false); MoveVariableToX86reg(_PROGRAM_COUNTER, "_PROGRAM_COUNTER", pc_reg); AndConstToX86Reg(pc_reg, 0xF0000000); AddConstToX86Reg(pc_reg, (m_Opcode.target << 2)); MoveX86regToVariable(pc_reg, _PROGRAM_COUNTER, "_PROGRAM_COUNTER"); uint32_t TargetPC = (m_CompilePC & 0xF0000000) + (m_Opcode.target << 2); bool bCheck = TargetPC <= m_CompilePC; UpdateCounters(m_RegWorkingSet, bCheck, true); CompileExit((uint32_t)-1, (uint32_t)-1, m_RegWorkingSet, bCheck ? CExitInfo::Normal : CExitInfo::Normal_NoSysCheck, true, NULL); } m_NextInstruction = END_BLOCK; } else { g_Notify->BreakPoint(__FILE__, __LINE__); } } void CX86RecompilerOps::ADDI() { if (m_Opcode.rt == 0) { return; } if (g_System->bFastSP() && m_Opcode.rs == 29 && m_Opcode.rt == 29) { AddConstToX86Reg(Map_MemoryStack(x86_Any, true), (int16_t)m_Opcode.immediate); } if (IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rt)) { UnMap_GPR(m_Opcode.rt, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rt, GetMipsRegLo(m_Opcode.rs) + (int16_t)m_Opcode.immediate); m_RegWorkingSet.SetMipsRegState(m_Opcode.rt, CRegInfo::STATE_CONST_32_SIGN); } else { Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rs); AddConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), (int16_t)m_Opcode.immediate); } if (g_System->bFastSP() && m_Opcode.rt == 29 && m_Opcode.rs != 29) { ResetX86Protection(); ResetMemoryStack(); } } void CX86RecompilerOps::ADDIU() { if (m_Opcode.rt == 0 || (m_Opcode.immediate == 0 && m_Opcode.rs == m_Opcode.rt)) { return; } if (g_System->bFastSP()) { if (m_Opcode.rs == 29 && m_Opcode.rt == 29) { AddConstToX86Reg(Map_MemoryStack(x86_Any, true), (int16_t)m_Opcode.immediate); } } if (IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rt)) { UnMap_GPR(m_Opcode.rt, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rt, GetMipsRegLo(m_Opcode.rs) + (int16_t)m_Opcode.immediate); m_RegWorkingSet.SetMipsRegState(m_Opcode.rt, CRegInfo::STATE_CONST_32_SIGN); } else { Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rs); AddConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), (int16_t)m_Opcode.immediate); } if (g_System->bFastSP() && m_Opcode.rt == 29 && m_Opcode.rs != 29) { ResetX86Protection(); ResetMemoryStack(); } } void CX86RecompilerOps::SLTIU() { if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.rs)) { uint32_t Result = Is64Bit(m_Opcode.rs) ? GetMipsReg(m_Opcode.rs) < ((unsigned)((int64_t)((int16_t)m_Opcode.immediate))) ? 1 : 0 : GetMipsRegLo(m_Opcode.rs) < ((unsigned)((int16_t)m_Opcode.immediate)) ? 1 : 0; UnMap_GPR(m_Opcode.rt, false); m_RegWorkingSet.SetMipsRegState(m_Opcode.rt, CRegInfo::STATE_CONST_32_SIGN); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rt, Result); } else if (IsMapped(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { uint8_t * Jump[2]; CompConstToX86reg(GetMipsRegMapHi(m_Opcode.rs), ((int16_t)m_Opcode.immediate >> 31)); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; SetbVariable(&m_BranchCompare, "m_BranchCompare"); JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), (int16_t)m_Opcode.immediate); SetbVariable(&m_BranchCompare, "m_BranchCompare"); CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rt)); } else { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), (int16_t)m_Opcode.immediate); SetbVariable(&m_BranchCompare, "m_BranchCompare"); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rt)); } } else if (g_System->b32BitCore()) { CompConstToVariable((int16_t)m_Opcode.immediate, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); SetbVariable(&m_BranchCompare, "m_BranchCompare"); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rt)); } else { uint8_t * Jump = NULL; CompConstToVariable(((int16_t)m_Opcode.immediate >> 31), &_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs]); JneLabel8("CompareSet", 0); Jump = *g_RecompPos - 1; CompConstToVariable((int16_t)m_Opcode.immediate, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); CPU_Message(""); CPU_Message(" CompareSet:"); SetJump8(Jump, *g_RecompPos); SetbVariable(&m_BranchCompare, "m_BranchCompare"); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rt)); } } void CX86RecompilerOps::SLTI() { if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.rs)) { uint32_t Result = Is64Bit(m_Opcode.rs) ? ((int64_t)GetMipsReg(m_Opcode.rs) < (int64_t)((int16_t)m_Opcode.immediate) ? 1 : 0) : (GetMipsRegLo_S(m_Opcode.rs) < (int16_t)m_Opcode.immediate ? 1 : 0); UnMap_GPR(m_Opcode.rt, false); m_RegWorkingSet.SetMipsRegState(m_Opcode.rt, CRegInfo::STATE_CONST_32_SIGN); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rt, Result); } else if (IsMapped(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { uint8_t * Jump[2]; CompConstToX86reg(GetMipsRegMapHi(m_Opcode.rs), ((int16_t)m_Opcode.immediate >> 31)); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; SetlVariable(&m_BranchCompare, "m_BranchCompare"); JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), (int16_t)m_Opcode.immediate); SetbVariable(&m_BranchCompare, "m_BranchCompare"); CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rt)); } else { /* CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs),(int16_t)m_Opcode.immediate); SetlVariable(&m_BranchCompare,"m_BranchCompare"); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveVariableToX86reg(&m_BranchCompare,"m_BranchCompare",GetMipsRegMapLo(m_Opcode.rt)); */ ProtectGPR(m_Opcode.rs); Map_GPR_32bit(m_Opcode.rt, false, -1); CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rs), (int16_t)m_Opcode.immediate); if (GetMipsRegMapLo(m_Opcode.rt) > x86_EBX) { SetlVariable(&m_BranchCompare, "m_BranchCompare"); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rt)); } else { Setl(GetMipsRegMapLo(m_Opcode.rt)); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), 1); } } } else if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rt, false, -1); CompConstToVariable((int16_t)m_Opcode.immediate, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); if (GetMipsRegMapLo(m_Opcode.rt) > x86_EBX) { SetlVariable(&m_BranchCompare, "m_BranchCompare"); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rt)); } else { Setl(GetMipsRegMapLo(m_Opcode.rt)); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), 1); } } else { uint8_t * Jump[2] = { NULL, NULL }; CompConstToVariable(((int16_t)m_Opcode.immediate >> 31), &_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs]); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; SetlVariable(&m_BranchCompare, "m_BranchCompare"); JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompConstToVariable((int16_t)m_Opcode.immediate, &_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs]); SetbVariable(&m_BranchCompare, "m_BranchCompare"); if (Jump[1]) { CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); } Map_GPR_32bit(m_Opcode.rt, false, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rt)); } } void CX86RecompilerOps::ANDI() { if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rt)) { UnMap_GPR(m_Opcode.rt, false); } m_RegWorkingSet.SetMipsRegState(m_Opcode.rt, CRegInfo::STATE_CONST_32_SIGN); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rt, GetMipsRegLo(m_Opcode.rs) & m_Opcode.immediate); } else if (m_Opcode.immediate != 0) { Map_GPR_32bit(m_Opcode.rt, false, m_Opcode.rs); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), m_Opcode.immediate); } else { Map_GPR_32bit(m_Opcode.rt, false, 0); } } void CX86RecompilerOps::ORI() { if (m_Opcode.rt == 0) { return; } if (g_System->bFastSP() && m_Opcode.rs == 29 && m_Opcode.rt == 29) { OrConstToX86Reg(m_Opcode.immediate, Map_MemoryStack(x86_Any, true)); } if (IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rt)) { UnMap_GPR(m_Opcode.rt, false); } m_RegWorkingSet.SetMipsRegState(m_Opcode.rt, GetMipsRegState(m_Opcode.rs)); m_RegWorkingSet.SetMipsRegHi(m_Opcode.rt, GetMipsRegHi(m_Opcode.rs)); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rt, GetMipsRegLo(m_Opcode.rs) | m_Opcode.immediate); } else if (IsMapped(m_Opcode.rs)) { if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rs); } else { if (Is64Bit(m_Opcode.rs)) { Map_GPR_64bit(m_Opcode.rt, m_Opcode.rs); } else { Map_GPR_32bit(m_Opcode.rt, IsSigned(m_Opcode.rs), m_Opcode.rs); } } OrConstToX86Reg(m_Opcode.immediate, GetMipsRegMapLo(m_Opcode.rt)); } else { if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rs); } else { Map_GPR_64bit(m_Opcode.rt, m_Opcode.rs); } OrConstToX86Reg(m_Opcode.immediate, GetMipsRegMapLo(m_Opcode.rt)); } if (g_System->bFastSP() && m_Opcode.rt == 29 && m_Opcode.rs != 29) { ResetX86Protection(); ResetMemoryStack(); } } void CX86RecompilerOps::XORI() { if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.rs)) { if (m_Opcode.rs != m_Opcode.rt) { UnMap_GPR(m_Opcode.rt, false); } m_RegWorkingSet.SetMipsRegState(m_Opcode.rt, GetMipsRegState(m_Opcode.rs)); m_RegWorkingSet.SetMipsRegHi(m_Opcode.rt, GetMipsRegHi(m_Opcode.rs)); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rt, GetMipsRegLo(m_Opcode.rs) ^ m_Opcode.immediate); } else { if (IsMapped(m_Opcode.rs) && Is32Bit(m_Opcode.rs)) { Map_GPR_32bit(m_Opcode.rt, IsSigned(m_Opcode.rs), m_Opcode.rs); } else if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rs); } else { Map_GPR_64bit(m_Opcode.rt, m_Opcode.rs); } if (m_Opcode.immediate != 0) { XorConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), m_Opcode.immediate); } } } void CX86RecompilerOps::LUI() { if (m_Opcode.rt == 0) { return; } if (g_System->bFastSP() && m_Opcode.rt == 29) { x86Reg Reg = Map_MemoryStack(x86_Any, true, false); uint32_t Address; g_TransVaddr->TranslateVaddr(((int16_t)m_Opcode.offset << 16), Address); if (Reg < 0) { MoveConstToVariable((uint32_t)(Address + g_MMU->Rdram()), &(g_Recompiler->MemoryStackPos()), "MemoryStack"); } else { MoveConstToX86reg((uint32_t)(Address + g_MMU->Rdram()), Reg); } } UnMap_GPR(m_Opcode.rt, false); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rt, ((int16_t)m_Opcode.offset << 16)); m_RegWorkingSet.SetMipsRegState(m_Opcode.rt, CRegInfo::STATE_CONST_32_SIGN); } void CX86RecompilerOps::DADDIU() { if (m_Opcode.rs != 0) { UnMap_GPR(m_Opcode.rs, true); } if (m_Opcode.rs != 0) { UnMap_GPR(m_Opcode.rt, true); } m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::DADDIU, "R4300iOp::DADDIU"); m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::CACHE() { if (g_Settings->LoadDword(Game_SMM_Cache) == 0) { return; } switch (m_Opcode.rt) { case 0: case 16: m_RegWorkingSet.BeforeCallDirect(); PushImm32("CRecompiler::Remove_Cache", CRecompiler::Remove_Cache); PushImm32("0x20", 0x20); if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; PushImm32("Address", Address); } else if (IsMapped(m_Opcode.base)) { AddConstToX86Reg(GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); Push(GetMipsRegMapLo(m_Opcode.base)); } else { MoveVariableToX86reg(&_GPR[m_Opcode.base].UW[0], CRegName::GPR_Lo[m_Opcode.base], x86_EAX); AddConstToX86Reg(x86_EAX, (int16_t)m_Opcode.offset); Push(x86_EAX); } #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Recompiler, x86_ECX); Call_Direct(AddressOf(&CRecompiler::ClearRecompCode_Virt), "CRecompiler::ClearRecompCode_Virt"); #else PushImm32((uint32_t)g_Recompiler); Call_Direct(AddressOf(&CRecompiler::ClearRecompCode_Virt), "CRecompiler::ClearRecompCode_Virt"); AddConstToX86Reg(x86_ESP, 16); #endif m_RegWorkingSet.AfterCallDirect(); break; case 1: case 3: case 13: case 5: case 8: case 9: case 17: case 21: case 25: break; default: if (bHaveDebugger()) { g_Notify->DisplayError(stdstr_f("cache: %d", m_Opcode.rt).c_str()); } } } void CX86RecompilerOps::LDL() { if (m_Opcode.base != 0) { UnMap_GPR(m_Opcode.base, true); } if (m_Opcode.rt != 0) { UnMap_GPR(m_Opcode.rt, true); } m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::LDL, "R4300iOp::LDL"); m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::LDR() { if (m_Opcode.base != 0) { UnMap_GPR(m_Opcode.base, true); } if (m_Opcode.rt != 0) { UnMap_GPR(m_Opcode.rt, true); } m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::LDR, "R4300iOp::LDR"); m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::LB_KnownAddress(x86Reg Reg, uint32_t VAddr, bool SignExtend) { uint32_t PAddr; char VarName[100]; if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { if (!g_System->bUseTlb()) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } x86Reg TlbMappReg = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr >> 12, TlbMappReg); x86Reg AddrReg = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr, AddrReg); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TlbMappReg, TlbMappReg, 4); CompileReadTLBMiss(AddrReg, TlbMappReg); if (SignExtend) { MoveSxByteX86regPointerToX86reg(AddrReg, TlbMappReg, Reg); } else { MoveZxByteX86regPointerToX86reg(AddrReg, TlbMappReg, Reg); } return; } if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { MoveConstToX86reg(0, Reg); CPU_Message("%s\nFailed to translate address %08X", __FUNCTION__, VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address %08X", __FUNCTION__, VAddr).c_str()); } return; } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: case 0x10000000: sprintf(VarName, "RDRAM + %X", PAddr); if (SignExtend) { MoveSxVariableToX86regByte(PAddr + g_MMU->Rdram(), VarName, Reg); } else { MoveZxVariableToX86regByte(PAddr + g_MMU->Rdram(), VarName, Reg); } break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to compile address: %08X", __FUNCTION__, VAddr).c_str()); } } } void CX86RecompilerOps::LH_KnownAddress(x86Reg Reg, uint32_t VAddr, bool SignExtend) { char VarName[100]; uint32_t PAddr; if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { if (!g_System->bUseTlb()) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } x86Reg TlbMappReg = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr >> 12, TlbMappReg); x86Reg AddrReg = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr, AddrReg); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TlbMappReg, TlbMappReg, 4); CompileReadTLBMiss(AddrReg, TlbMappReg); if (SignExtend) { MoveSxHalfX86regPointerToX86reg(AddrReg, TlbMappReg, Reg); } else { MoveZxHalfX86regPointerToX86reg(AddrReg, TlbMappReg, Reg); } return; } if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { MoveConstToX86reg(0, Reg); CPU_Message("%s\nFailed to translate address %08X", __FUNCTION__, VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address %08X", __FUNCTION__, VAddr).c_str()); } return; } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: case 0x10000000: sprintf(VarName, "RDRAM + %X", PAddr); if (SignExtend) { MoveSxVariableToX86regHalf(PAddr + g_MMU->Rdram(), VarName, Reg); } else { MoveZxVariableToX86regHalf(PAddr + g_MMU->Rdram(), VarName, Reg); } break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to compile address: %08X", __FUNCTION__, VAddr).c_str()); } } } void CX86RecompilerOps::LB() { if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.base)) { uint32_t Address = (GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset) ^ 3; Map_GPR_32bit(m_Opcode.rt, true, -1); LB_KnownAddress(GetMipsRegMapLo(m_Opcode.rt), Address, true); return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } x86Reg TempReg1, TempReg2; if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); XorConstToX86Reg(TempReg1, 3); Map_GPR_32bit(m_Opcode.rt, true, -1); MoveSxByteX86regPointerToX86reg(TempReg1, TempReg2, GetMipsRegMapLo(m_Opcode.rt)); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); XorConstToX86Reg(TempReg1, 3); Map_GPR_32bit(m_Opcode.rt, true, -1); MoveSxN64MemToX86regByte(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } } void CX86RecompilerOps::LH() { if (m_Opcode.rt == 0) return; if (IsConst(m_Opcode.base)) { uint32_t Address = (GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset) ^ 2; Map_GPR_32bit(m_Opcode.rt, true, -1); LH_KnownAddress(GetMipsRegMapLo(m_Opcode.rt), Address, true); return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } x86Reg TempReg1; if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); XorConstToX86Reg(TempReg1, 2); Map_GPR_32bit(m_Opcode.rt, true, -1); MoveSxHalfX86regPointerToX86reg(TempReg1, TempReg2, GetMipsRegMapLo(m_Opcode.rt)); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); XorConstToX86Reg(TempReg1, 2); Map_GPR_32bit(m_Opcode.rt, true, -1); MoveSxN64MemToX86regHalf(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } } void CX86RecompilerOps::LWL() { if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; uint32_t Offset = Address & 3; Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rt); x86Reg Value = Map_TempReg(x86_Any, -1, false); LW_KnownAddress(Value, (Address & ~3)); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), R4300iOp::LWL_MASK[Offset]); ShiftLeftSignImmed(Value, (uint8_t)R4300iOp::LWL_SHIFT[Offset]); AddX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rt), Value); return; } x86Reg shift = Map_TempReg(x86_ECX, -1, false), TempReg1 = x86_Unknown; if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } x86Reg TempReg2 = x86_Unknown; if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); } x86Reg OffsetReg = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, OffsetReg); AndConstToX86Reg(OffsetReg, 3); AndConstToX86Reg(TempReg1, (uint32_t)~3); Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rt); AndVariableDispToX86Reg((void *)R4300iOp::LWL_MASK, "LWL_MASK", GetMipsRegMapLo(m_Opcode.rt), OffsetReg, Multip_x4); MoveVariableDispToX86Reg((void *)R4300iOp::LWL_SHIFT, "LWL_SHIFT", shift, OffsetReg, 4); if (g_System->bUseTlb()) { MoveX86regPointerToX86reg(TempReg1, TempReg2, TempReg1); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); MoveN64MemToX86reg(TempReg1, TempReg1); } ShiftLeftSign(TempReg1); AddX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } void CX86RecompilerOps::LW() { LW(true, false); } void CX86RecompilerOps::LW(bool ResultSigned, bool bRecordLLBit) { if (m_Opcode.rt == 0) return; x86Reg TempReg1, TempReg2; if (m_Opcode.base == 29 && g_System->bFastSP()) { Map_GPR_32bit(m_Opcode.rt, ResultSigned, -1); TempReg1 = Map_MemoryStack(x86_Any, true); MoveVariableDispToX86Reg((void *)((uint32_t)(int16_t)m_Opcode.offset), stdstr_f("%Xh", (int16_t)m_Opcode.offset).c_str(), GetMipsRegMapLo(m_Opcode.rt), TempReg1, 1); if (bRecordLLBit) { g_Notify->BreakPoint(__FILE__, __LINE__); } } else if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; Map_GPR_32bit(m_Opcode.rt, ResultSigned, -1); LW_KnownAddress(GetMipsRegMapLo(m_Opcode.rt), Address); if (bRecordLLBit) { g_Notify->BreakPoint(__FILE__, __LINE__); } } else if (g_System->bUseTlb()) { if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base) && m_Opcode.offset == 0) { ProtectGPR(m_Opcode.base); TempReg1 = GetMipsRegMapLo(m_Opcode.base); } else { if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } } TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); Map_GPR_32bit(m_Opcode.rt, ResultSigned, -1); MoveX86regPointerToX86reg(TempReg1, TempReg2, GetMipsRegMapLo(m_Opcode.rt)); if (bRecordLLBit) { MoveConstToVariable(1, _LLBit, "LLBit"); } } else { if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { Map_GPR_32bit(m_Opcode.rt, ResultSigned, -1); LeaSourceAndOffset(GetMipsRegMapLo(m_Opcode.rt), GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { Map_GPR_32bit(m_Opcode.rt, ResultSigned, m_Opcode.base); } } else { Map_GPR_32bit(m_Opcode.rt, ResultSigned, m_Opcode.base); AddConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), (int16_t)m_Opcode.immediate); } AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), 0x1FFFFFFF); MoveN64MemToX86reg(GetMipsRegMapLo(m_Opcode.rt), GetMipsRegMapLo(m_Opcode.rt)); if (bRecordLLBit) { MoveConstToVariable(1, _LLBit, "LLBit"); } } if (g_System->bFastSP() && m_Opcode.rt == 29) { ResetX86Protection(); ResetMemoryStack(); } } void CX86RecompilerOps::LW_KnownAddress(x86Reg Reg, uint32_t VAddr) { char VarName[100]; uint32_t PAddr; m_RegWorkingSet.SetX86Protected(Reg, true); if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { if (!g_System->bUseTlb()) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } x86Reg TlbMappReg = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr >> 12, TlbMappReg); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TlbMappReg, TlbMappReg, 4); CompileReadTLBMiss(VAddr, TlbMappReg); AddConstToX86Reg(TlbMappReg, VAddr); MoveX86PointerToX86reg(Reg, TlbMappReg); } else { if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { g_Notify->BreakPoint(__FILE__, __LINE__); } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: sprintf(VarName, "RDRAM + %X", PAddr); MoveVariableToX86reg(PAddr + g_MMU->Rdram(), VarName, Reg); break; case 0x04000000: if (PAddr < 0x04002000) { sprintf(VarName, "RDRAM + %X", PAddr); MoveVariableToX86reg(PAddr + g_MMU->Rdram(), VarName, Reg); break; } switch (PAddr) { case 0x04040010: MoveVariableToX86reg(&g_Reg->SP_STATUS_REG, "SP_STATUS_REG", Reg); break; case 0x04040014: MoveVariableToX86reg(&g_Reg->SP_DMA_FULL_REG, "SP_DMA_FULL_REG", Reg); break; case 0x04040018: MoveVariableToX86reg(&g_Reg->SP_DMA_BUSY_REG, "SP_DMA_BUSY_REG", Reg); break; case 0x0404001C: MoveVariableToX86reg(&g_Reg->SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG", Reg); MoveConstToVariable(1, &g_Reg->SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG"); break; case 0x04080000: MoveVariableToX86reg(&g_Reg->SP_PC_REG, "SP_PC_REG", Reg); break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } break; case 0x04100000: { static uint32_t TempValue = 0; m_RegWorkingSet.BeforeCallDirect(); PushImm32("TempValue", (uint32_t)&TempValue); PushImm32(PAddr); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)(g_MMU), x86_ECX); Call_Direct(AddressOf(&CMipsMemoryVM::LW_NonMemory), "CMipsMemoryVM::LW_NonMemory"); #else PushImm32((uint32_t)(g_MMU)); Call_Direct(AddressOf(&CMipsMemoryVM::LW_NonMemory), "CMipsMemoryVM::LW_NonMemory"); AddConstToX86Reg(x86_ESP, 12); #endif m_RegWorkingSet.AfterCallDirect(); MoveVariableToX86reg(&TempValue, "TempValue", Reg); } break; case 0x04300000: switch (PAddr) { case 0x04300000: MoveVariableToX86reg(&g_Reg->MI_MODE_REG, "MI_MODE_REG", Reg); break; case 0x04300004: MoveVariableToX86reg(&g_Reg->MI_VERSION_REG, "MI_VERSION_REG", Reg); break; case 0x04300008: MoveVariableToX86reg(&g_Reg->MI_INTR_REG, "MI_INTR_REG", Reg); break; case 0x0430000C: MoveVariableToX86reg(&g_Reg->MI_INTR_MASK_REG, "MI_INTR_MASK_REG", Reg); break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } break; case 0x04400000: switch (PAddr) { case 0x04400010: m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_MMU, x86_ECX); Call_Direct(AddressOf(&CMipsMemoryVM::UpdateHalfLine), "CMipsMemoryVM::UpdateHalfLine"); #else PushImm32((uint32_t)g_MMU); Call_Direct(AddressOf(&CMipsMemoryVM::UpdateHalfLine), "CMipsMemoryVM::UpdateHalfLine"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); MoveVariableToX86reg((void *)&g_MMU->m_HalfLine, "MMU->m_HalfLine", Reg); break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } break; case 0x04500000: /* AI registers */ switch (PAddr) { case 0x04500004: if (g_System->bFixedAudio()) { m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Audio, x86_ECX); Call_Direct(AddressOf(&CAudio::GetLength), "CAudio::GetLength"); #else PushImm32((uint32_t)g_Audio); Call_Direct(AddressOf(&CAudio::GetLength), "CAudio::GetLength"); AddConstToX86Reg(x86_ESP, 4); #endif MoveX86regToVariable(x86_EAX, &m_TempValue, "m_TempValue"); m_RegWorkingSet.AfterCallDirect(); MoveVariableToX86reg(&m_TempValue, "m_TempValue", Reg); } else { if (g_Plugins->Audio()->AiReadLength != NULL) { m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)g_Plugins->Audio()->AiReadLength, "AiReadLength"); MoveX86regToVariable(x86_EAX, &m_TempValue, "m_TempValue"); m_RegWorkingSet.AfterCallDirect(); MoveVariableToX86reg(&m_TempValue, "m_TempValue", Reg); } else { MoveConstToX86reg(0, Reg); } } break; case 0x0450000C: if (g_System->bFixedAudio()) { m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Audio, x86_ECX); Call_Direct(AddressOf(&CAudio::GetStatus), "GetStatus"); #else PushImm32((uint32_t)g_Audio); Call_Direct(AddressOf(&CAudio::GetStatus), "GetStatus"); AddConstToX86Reg(x86_ESP, 4); #endif MoveX86regToVariable(x86_EAX, &m_TempValue, "m_TempValue"); m_RegWorkingSet.AfterCallDirect(); MoveVariableToX86reg(&m_TempValue, "m_TempValue", Reg); } else { MoveVariableToX86reg(&g_Reg->AI_STATUS_REG, "AI_STATUS_REG", Reg); } break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } break; case 0x04600000: switch (PAddr) { case 0x04600000: MoveVariableToX86reg(&g_Reg->PI_DRAM_ADDR_REG, "PI_DRAM_ADDR_REG", Reg); break; case 0x04600004: MoveVariableToX86reg(&g_Reg->PI_CART_ADDR_REG, "PI_CART_ADDR_REG", Reg); break; case 0x04600008: MoveVariableToX86reg(&g_Reg->PI_RD_LEN_REG, "PI_RD_LEN_REG", Reg); break; case 0x0460000C: MoveVariableToX86reg(&g_Reg->PI_WR_LEN_REG, "PI_WR_LEN_REG", Reg); break; case 0x04600010: MoveVariableToX86reg(&g_Reg->PI_STATUS_REG, "PI_STATUS_REG", Reg); break; case 0x04600014: MoveVariableToX86reg(&g_Reg->PI_DOMAIN1_REG, "PI_DOMAIN1_REG", Reg); break; case 0x04600018: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM1_PWD_REG, "PI_BSD_DOM1_PWD_REG", Reg); break; case 0x0460001C: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM1_PGS_REG, "PI_BSD_DOM1_PGS_REG", Reg); break; case 0x04600020: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM1_RLS_REG, "PI_BSD_DOM1_RLS_REG", Reg); break; case 0x04600024: MoveVariableToX86reg(&g_Reg->PI_DOMAIN2_REG, "PI_DOMAIN2_REG", Reg); break; case 0x04600028: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM2_PWD_REG, "PI_BSD_DOM2_PWD_REG", Reg); break; case 0x0460002C: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM2_PGS_REG, "PI_BSD_DOM2_PGS_REG", Reg); break; case 0x04600030: MoveVariableToX86reg(&g_Reg->PI_BSD_DOM2_RLS_REG, "PI_BSD_DOM2_RLS_REG", Reg); break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } break; case 0x04700000: switch (PAddr) { case 0x0470000C: MoveVariableToX86reg(&g_Reg->RI_SELECT_REG, "RI_SELECT_REG", Reg); break; case 0x04700010: MoveVariableToX86reg(&g_Reg->RI_REFRESH_REG, "RI_REFRESH_REG", Reg); break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } break; case 0x04800000: switch (PAddr) { case 0x04800018: MoveVariableToX86reg(&g_Reg->SI_STATUS_REG, "SI_STATUS_REG", Reg); break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } break; case 0x05000000: //64DD Registers if (g_Settings->LoadBool(Setting_EnableDisk)) { switch (PAddr) { case 0x05000500: MoveVariableToX86reg(&g_Reg->ASIC_DATA, "ASIC_DATA", Reg); break; case 0x05000504: MoveVariableToX86reg(&g_Reg->ASIC_MISC_REG, "ASIC_MISC_REG", Reg); break; case 0x05000508: MoveVariableToX86reg(&g_Reg->ASIC_STATUS, "ASIC_STATUS", Reg); m_RegWorkingSet.BeforeCallDirect(); Call_Direct(AddressOf(&DiskGapSectorCheck), "DiskGapSectorCheck"); m_RegWorkingSet.AfterCallDirect(); break; case 0x0500050C: MoveVariableToX86reg(&g_Reg->ASIC_CUR_TK, "ASIC_CUR_TK", Reg); break; case 0x05000510: MoveVariableToX86reg(&g_Reg->ASIC_BM_STATUS, "ASIC_BM_STATUS", Reg); break; case 0x05000514: MoveVariableToX86reg(&g_Reg->ASIC_ERR_SECTOR, "ASIC_ERR_SECTOR", Reg); break; case 0x05000518: MoveVariableToX86reg(&g_Reg->ASIC_SEQ_STATUS, "ASIC_SEQ_STATUS", Reg); break; case 0x0500051C: MoveVariableToX86reg(&g_Reg->ASIC_CUR_SECTOR, "ASIC_CUR_SECTOR", Reg); break; case 0x05000520: MoveVariableToX86reg(&g_Reg->ASIC_HARD_RESET, "ASIC_HARD_RESET", Reg); break; case 0x05000524: MoveVariableToX86reg(&g_Reg->ASIC_C1_S0, "ASIC_C1_S0", Reg); break; case 0x05000528: MoveVariableToX86reg(&g_Reg->ASIC_HOST_SECBYTE, "ASIC_HOST_SECBYTE", Reg); break; case 0x0500052C: MoveVariableToX86reg(&g_Reg->ASIC_C1_S2, "ASIC_C1_S2", Reg); break; case 0x05000530: MoveVariableToX86reg(&g_Reg->ASIC_SEC_BYTE, "ASIC_SEC_BYTE", Reg); break; case 0x05000534: MoveVariableToX86reg(&g_Reg->ASIC_C1_S4, "ASIC_C1_S4", Reg); break; case 0x05000538: MoveVariableToX86reg(&g_Reg->ASIC_C1_S6, "ASIC_C1_S6", Reg); break; case 0x0500053C: MoveVariableToX86reg(&g_Reg->ASIC_CUR_ADDR, "ASIC_CUR_ADDR", Reg); break; case 0x05000540: MoveVariableToX86reg(&g_Reg->ASIC_ID_REG, "ASIC_ID_REG", Reg); break; case 0x05000544: MoveVariableToX86reg(&g_Reg->ASIC_TEST_REG, "ASIC_TEST_REG", Reg); break; case 0x05000548: MoveVariableToX86reg(&g_Reg->ASIC_TEST_PIN_SEL, "ASIC_TEST_PIN_SEL", Reg); break; default: MoveConstToX86reg(0, Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } } else { MoveConstToX86reg((uint32_t)((PAddr & 0xFFFF) << 16) | (PAddr & 0xFFFF), Reg); } break; case 0x1FC00000: sprintf(VarName, "RDRAM + %X", PAddr); MoveVariableToX86reg(PAddr + g_MMU->Rdram(), VarName, Reg); break; default: if ((PAddr & 0xF0000000) == 0x10000000 && (PAddr - 0x10000000) < g_Rom->GetRomSize()) { // read from rom sprintf(VarName, "RDRAM + %X", PAddr); MoveVariableToX86reg(PAddr + g_MMU->Rdram(), VarName, Reg); } else if (g_DDRom != NULL && ((PAddr & 0xFF000000) == 0x06000000 && (PAddr - 0x06000000) < g_DDRom->GetRomSize())) { // read from ddrom sprintf(VarName, "RDRAM + %X", PAddr); MoveVariableToX86reg(PAddr + g_MMU->Rdram(), VarName, Reg); } else { MoveConstToX86reg(((PAddr & 0xFFFF) << 16) | (PAddr & 0xFFFF), Reg); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { CPU_Message("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr); g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } } } } } void CX86RecompilerOps::LBU() { x86Reg TempReg1, TempReg2; if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.base)) { uint32_t Address = (GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset) ^ 3; Map_GPR_32bit(m_Opcode.rt, false, -1); LB_KnownAddress(GetMipsRegMapLo(m_Opcode.rt), Address, false); return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); XorConstToX86Reg(TempReg1, 3); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveZxByteX86regPointerToX86reg(TempReg1, TempReg2, GetMipsRegMapLo(m_Opcode.rt)); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); XorConstToX86Reg(TempReg1, 3); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveZxN64MemToX86regByte(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } } void CX86RecompilerOps::LHU() { if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.base)) { uint32_t Address = (GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset) ^ 2; Map_GPR_32bit(m_Opcode.rt, false, -1); LH_KnownAddress(GetMipsRegMapLo(m_Opcode.rt), Address, false); return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } x86Reg TempReg1, TempReg2; if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); XorConstToX86Reg(TempReg1, 2); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveZxHalfX86regPointerToX86reg(TempReg1, TempReg2, GetMipsRegMapLo(m_Opcode.rt)); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); XorConstToX86Reg(TempReg1, 2); Map_GPR_32bit(m_Opcode.rt, true, -1); MoveZxN64MemToX86regHalf(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } } void CX86RecompilerOps::LWR() { x86Reg TempReg1 = x86_Unknown, TempReg2 = x86_Unknown, OffsetReg = x86_Unknown, shift = x86_Unknown; if (m_Opcode.rt == 0) { return; } if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; uint32_t Offset = Address & 3; Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rt); x86Reg Value = Map_TempReg(x86_Any, -1, false); LW_KnownAddress(Value, (Address & ~3)); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rt), R4300iOp::LWR_MASK[Offset]); ShiftRightUnsignImmed(Value, (uint8_t)R4300iOp::LWR_SHIFT[Offset]); AddX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rt), Value); return; } shift = Map_TempReg(x86_ECX, -1, false); if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); } OffsetReg = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, OffsetReg); AndConstToX86Reg(OffsetReg, 3); AndConstToX86Reg(TempReg1, (uint32_t)~3); Map_GPR_32bit(m_Opcode.rt, true, m_Opcode.rt); AndVariableDispToX86Reg((void *)R4300iOp::LWR_MASK, "R4300iOp::LWR_MASK", GetMipsRegMapLo(m_Opcode.rt), OffsetReg, Multip_x4); MoveVariableDispToX86Reg((void *)R4300iOp::LWR_SHIFT, "R4300iOp::LWR_SHIFT", shift, OffsetReg, 4); if (g_System->bUseTlb()) { MoveX86regPointerToX86reg(TempReg1, TempReg2, TempReg1); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); MoveN64MemToX86reg(TempReg1, TempReg1); } ShiftRightUnsign(TempReg1); AddX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } void CX86RecompilerOps::LWU() { LW(false, false); } void CX86RecompilerOps::SB() { x86Reg TempReg1, TempReg2; if (IsConst(m_Opcode.base)) { uint32_t Address = (GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset) ^ 3; if (IsConst(m_Opcode.rt)) { SB_Const((uint8_t)(GetMipsRegLo(m_Opcode.rt) & 0xFF), Address); } else if (IsMapped(m_Opcode.rt) && Is8BitReg(GetMipsRegMapLo(m_Opcode.rt))) { SB_Register(GetMipsRegMapLo(m_Opcode.rt), Address); } else { SB_Register(Map_TempReg(x86_Any8Bit, m_Opcode.rt, false), Address); } return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } Compile_StoreInstructClean(TempReg1, 4); if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); XorConstToX86Reg(TempReg1, 3); if (IsConst(m_Opcode.rt)) { MoveConstByteToX86regPointer((uint8_t)(GetMipsRegLo(m_Opcode.rt) & 0xFF), TempReg1, TempReg2); } else if (IsMapped(m_Opcode.rt) && Is8BitReg(GetMipsRegMapLo(m_Opcode.rt))) { MoveX86regByteToX86regPointer(GetMipsRegMapLo(m_Opcode.rt), TempReg1, TempReg2); } else { UnProtectGPR(m_Opcode.rt); MoveX86regByteToX86regPointer(Map_TempReg(x86_Any8Bit, m_Opcode.rt, false), TempReg1, TempReg2); } } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); XorConstToX86Reg(TempReg1, 3); if (IsConst(m_Opcode.rt)) { MoveConstByteToN64Mem((uint8_t)(GetMipsRegLo(m_Opcode.rt) & 0xFF), TempReg1); } else if (IsMapped(m_Opcode.rt) && Is8BitReg(GetMipsRegMapLo(m_Opcode.rt))) { MoveX86regByteToN64Mem(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } else { UnProtectGPR(m_Opcode.rt); MoveX86regByteToN64Mem(Map_TempReg(x86_Any8Bit, m_Opcode.rt, false), TempReg1); } } } void CX86RecompilerOps::SH() { x86Reg TempReg1, TempReg2; if (IsConst(m_Opcode.base)) { uint32_t Address = (GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset) ^ 2; if (IsConst(m_Opcode.rt)) { SH_Const((uint16_t)(GetMipsRegLo(m_Opcode.rt) & 0xFFFF), Address); } else if (IsMapped(m_Opcode.rt)) { SH_Register(GetMipsRegMapLo(m_Opcode.rt), Address); } else { SH_Register(Map_TempReg(x86_Any, m_Opcode.rt, false), Address); } return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); XorConstToX86Reg(TempReg1, 2); if (IsConst(m_Opcode.rt)) { MoveConstHalfToX86regPointer((uint16_t)(GetMipsRegLo(m_Opcode.rt) & 0xFFFF), TempReg1, TempReg2); } else if (IsMapped(m_Opcode.rt)) { MoveX86regHalfToX86regPointer(GetMipsRegMapLo(m_Opcode.rt), TempReg1, TempReg2); } else { MoveX86regHalfToX86regPointer(Map_TempReg(x86_Any, m_Opcode.rt, false), TempReg1, TempReg2); } } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); XorConstToX86Reg(TempReg1, 2); if (IsConst(m_Opcode.rt)) { MoveConstHalfToN64Mem((uint16_t)(GetMipsRegLo(m_Opcode.rt) & 0xFFFF), TempReg1); } else if (IsMapped(m_Opcode.rt)) { MoveX86regHalfToN64Mem(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } else { MoveX86regHalfToN64Mem(Map_TempReg(x86_Any, m_Opcode.rt, false), TempReg1); } } } void CX86RecompilerOps::SWL() { if (IsConst(m_Opcode.base)) { uint32_t Address; Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; uint32_t Offset = Address & 3; x86Reg Value = Map_TempReg(x86_Any, -1, false); LW_KnownAddress(Value, (Address & ~3)); AndConstToX86Reg(Value, R4300iOp::SWL_MASK[Offset]); x86Reg TempReg1 = Map_TempReg(x86_Any, m_Opcode.rt, false); ShiftRightUnsignImmed(TempReg1, (uint8_t)R4300iOp::SWL_SHIFT[Offset]); AddX86RegToX86Reg(Value, TempReg1); SW_Register(Value, (Address & ~3)); return; } x86Reg shift = Map_TempReg(x86_ECX, -1, false), TempReg1 = x86_Unknown; if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } x86Reg TempReg2 = x86_Unknown; if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); } x86Reg OffsetReg = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, OffsetReg); AndConstToX86Reg(OffsetReg, 3); AndConstToX86Reg(TempReg1, (uint32_t)~3); x86Reg Value = Map_TempReg(x86_Any, -1, false); if (g_System->bUseTlb()) { MoveX86regPointerToX86reg(TempReg1, TempReg2, Value); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); MoveN64MemToX86reg(Value, TempReg1); } AndVariableDispToX86Reg((void *)R4300iOp::SWL_MASK, "R4300iOp::SWL_MASK", Value, OffsetReg, Multip_x4); if (!IsConst(m_Opcode.rt) || GetMipsRegLo(m_Opcode.rt) != 0) { MoveVariableDispToX86Reg((void *)R4300iOp::SWL_SHIFT, "R4300iOp::SWL_SHIFT", shift, OffsetReg, 4); if (IsConst(m_Opcode.rt)) { MoveConstToX86reg(GetMipsRegLo(m_Opcode.rt), OffsetReg); } else if (IsMapped(m_Opcode.rt)) { MoveX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rt), OffsetReg); } else { MoveVariableToX86reg(&_GPR[m_Opcode.rt].UW[0], CRegName::GPR_Lo[m_Opcode.rt], OffsetReg); } ShiftRightUnsign(OffsetReg); AddX86RegToX86Reg(Value, OffsetReg); } if (g_System->bUseTlb()) { MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); MoveX86regToX86regPointer(Value, TempReg1, TempReg2); } else { MoveX86regToN64Mem(Value, TempReg1); } } void CX86RecompilerOps::SW() { SW(false); } void CX86RecompilerOps::SW(bool bCheckLLbit) { x86Reg TempReg1, TempReg2; if (m_Opcode.base == 29 && g_System->bFastSP()) { if (bCheckLLbit) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } TempReg1 = Map_MemoryStack(x86_Any, true); if (IsConst(m_Opcode.rt)) { MoveConstToMemoryDisp(GetMipsRegLo(m_Opcode.rt), TempReg1, (uint32_t)((int16_t)m_Opcode.offset)); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToMemory(GetMipsRegMapLo(m_Opcode.rt), TempReg1, (uint32_t)((int16_t)m_Opcode.offset)); } else { TempReg2 = Map_TempReg(x86_Any, m_Opcode.rt, false); MoveX86regToMemory(TempReg2, TempReg1, (uint32_t)((int16_t)m_Opcode.offset)); } } else { if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; if (bCheckLLbit) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (IsConst(m_Opcode.rt)) { SW_Const(GetMipsRegLo(m_Opcode.rt), Address); } else if (IsMapped(m_Opcode.rt)) { SW_Register(GetMipsRegMapLo(m_Opcode.rt), Address); } else { SW_Register(Map_TempReg(x86_Any, m_Opcode.rt, false), Address); } return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (g_System->bDelaySI() || g_System->bDelayDP()) { m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); } if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } Compile_StoreInstructClean(TempReg1, 4); if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); uint8_t * Jump = NULL; if (bCheckLLbit) { CompConstToVariable(1, _LLBit, "_LLBit"); JneLabel8("LLBit_Continue", 0); Jump = *g_RecompPos - 1; } if (IsConst(m_Opcode.rt)) { MoveConstToX86regPointer(GetMipsRegLo(m_Opcode.rt), TempReg1, TempReg2); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToX86regPointer(GetMipsRegMapLo(m_Opcode.rt), TempReg1, TempReg2); } else { MoveX86regToX86regPointer(Map_TempReg(x86_Any, m_Opcode.rt, false), TempReg1, TempReg2); } if (bCheckLLbit) { CPU_Message(" "); CPU_Message(" LLBit_Continue:"); SetJump8(Jump, *g_RecompPos); Map_GPR_32bit(m_Opcode.rt, false, -1); MoveVariableToX86reg(_LLBit, "_LLBit", GetMipsRegMapLo(m_Opcode.rt)); } } else { if (bCheckLLbit) { g_Notify->BreakPoint(__FILE__, __LINE__); } AndConstToX86Reg(TempReg1, 0x1FFFFFFF); if (IsConst(m_Opcode.rt)) { MoveConstToN64Mem(GetMipsRegLo(m_Opcode.rt), TempReg1); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToN64Mem(GetMipsRegMapLo(m_Opcode.rt), TempReg1); } else { MoveX86regToN64Mem(Map_TempReg(x86_Any, m_Opcode.rt, false), TempReg1); } } } } void CX86RecompilerOps::SWR() { x86Reg TempReg1 = x86_Unknown, TempReg2 = x86_Unknown, Value = x86_Unknown, OffsetReg = x86_Unknown, shift = x86_Unknown; if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; uint32_t Offset = Address & 3; Value = Map_TempReg(x86_Any, -1, false); LW_KnownAddress(Value, (Address & ~3)); AndConstToX86Reg(Value, R4300iOp::SWR_MASK[Offset]); TempReg1 = Map_TempReg(x86_Any, m_Opcode.rt, false); ShiftLeftSignImmed(TempReg1, (uint8_t)R4300iOp::SWR_SHIFT[Offset]); AddX86RegToX86Reg(Value, TempReg1); SW_Register(Value, (Address & ~3)); return; } shift = Map_TempReg(x86_ECX, -1, false); if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); } OffsetReg = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, OffsetReg); AndConstToX86Reg(OffsetReg, 3); AndConstToX86Reg(TempReg1, (uint32_t)~3); Value = Map_TempReg(x86_Any, -1, false); if (g_System->bUseTlb()) { MoveX86regPointerToX86reg(TempReg1, TempReg2, Value); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); MoveN64MemToX86reg(Value, TempReg1); } AndVariableDispToX86Reg((void *)R4300iOp::SWR_MASK, "R4300iOp::SWR_MASK", Value, OffsetReg, Multip_x4); if (!IsConst(m_Opcode.rt) || GetMipsRegLo(m_Opcode.rt) != 0) { MoveVariableDispToX86Reg((void *)R4300iOp::SWR_SHIFT, "R4300iOp::SWR_SHIFT", shift, OffsetReg, 4); if (IsConst(m_Opcode.rt)) { MoveConstToX86reg(GetMipsRegLo(m_Opcode.rt), OffsetReg); } else if (IsMapped(m_Opcode.rt)) { MoveX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rt), OffsetReg); } else { MoveVariableToX86reg(&_GPR[m_Opcode.rt].UW[0], CRegName::GPR_Lo[m_Opcode.rt], OffsetReg); } ShiftLeftSign(OffsetReg); AddX86RegToX86Reg(Value, OffsetReg); } if (g_System->bUseTlb()) { MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); MoveX86regToX86regPointer(Value, TempReg1, TempReg2); } else { MoveX86regToN64Mem(Value, TempReg1); } } void CX86RecompilerOps::SDL() { if (m_Opcode.base != 0) { UnMap_GPR(m_Opcode.base, true); } if (m_Opcode.rt != 0) { UnMap_GPR(m_Opcode.rt, true); } m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::SDL, "R4300iOp::SDL"); m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::SDR() { if (m_Opcode.base != 0) { UnMap_GPR(m_Opcode.base, true); } if (m_Opcode.rt != 0) { UnMap_GPR(m_Opcode.rt, true); } m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::SDR, "R4300iOp::SDR"); m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::LL() { LW(true, true); } void CX86RecompilerOps::LWC1() { char Name[50]; CompileCop1Test(); if ((m_Opcode.ft & 1) != 0) { if (RegInStack(m_Opcode.ft - 1, CRegInfo::FPU_Double) || RegInStack(m_Opcode.ft - 1, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.ft - 1, true); } } if (RegInStack(m_Opcode.ft, CRegInfo::FPU_Double) || RegInStack(m_Opcode.ft, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.ft, true); } else { UnMap_FPR(m_Opcode.ft, false); } if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); LW_KnownAddress(TempReg1, Address); x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_S[m_Opcode.ft], Name, TempReg2); MoveX86regToX86Pointer(TempReg1, TempReg2); return; } x86Reg TempReg1; if (IsMapped(m_Opcode.base) && m_Opcode.offset == 0) { if (g_System->bUseTlb()) { ProtectGPR(m_Opcode.base); TempReg1 = GetMipsRegMapLo(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } } x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false), TempReg3; if (g_System->bUseTlb()) { MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); TempReg3 = Map_TempReg(x86_Any, -1, false); MoveX86regPointerToX86reg(TempReg1, TempReg2, TempReg3); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); TempReg3 = Map_TempReg(x86_Any, -1, false); MoveN64MemToX86reg(TempReg3, TempReg1); } sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_S[m_Opcode.ft], Name, TempReg2); MoveX86regToX86Pointer(TempReg3, TempReg2); } void CX86RecompilerOps::LDC1() { x86Reg TempReg1, TempReg2, TempReg3; char Name[50]; CompileCop1Test(); UnMap_FPR(m_Opcode.ft, false); if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; TempReg1 = Map_TempReg(x86_Any, -1, false); LW_KnownAddress(TempReg1, Address); TempReg2 = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_D[m_Opcode.ft], Name, TempReg2); AddConstToX86Reg(TempReg2, 4); MoveX86regToX86Pointer(TempReg1, TempReg2); LW_KnownAddress(TempReg1, Address + 4); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_D[m_Opcode.ft], Name, TempReg2); MoveX86regToX86Pointer(TempReg1, TempReg2); return; } if (IsMapped(m_Opcode.base) && m_Opcode.offset == 0) { if (g_System->bUseTlb()) { ProtectGPR(m_Opcode.base); TempReg1 = GetMipsRegMapLo(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); if (m_Opcode.immediate == 0) { } else if (m_Opcode.immediate == 1) { IncX86reg(TempReg1); } else if (m_Opcode.immediate == 0xFFFF) { DecX86reg(TempReg1); } else { AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } } } TempReg2 = Map_TempReg(x86_Any, -1, false); if (g_System->bUseTlb()) { MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); TempReg3 = Map_TempReg(x86_Any, -1, false); MoveX86regPointerToX86reg(TempReg1, TempReg2, TempReg3); Push(TempReg2); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_D[m_Opcode.ft], Name, TempReg2); AddConstToX86Reg(TempReg2, 4); MoveX86regToX86Pointer(TempReg3, TempReg2); Pop(TempReg2); MoveX86regPointerToX86regDisp8(TempReg1, TempReg2, TempReg3, 4); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_D[m_Opcode.ft], Name, TempReg2); MoveX86regToX86Pointer(TempReg3, TempReg2); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); TempReg3 = Map_TempReg(x86_Any, -1, false); MoveN64MemToX86reg(TempReg3, TempReg1); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_D[m_Opcode.ft], Name, TempReg2); AddConstToX86Reg(TempReg2, 4); MoveX86regToX86Pointer(TempReg3, TempReg2); MoveN64MemDispToX86reg(TempReg3, TempReg1, 4); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_D[m_Opcode.ft], Name, TempReg2); MoveX86regToX86Pointer(TempReg3, TempReg2); } } void CX86RecompilerOps::LD() { if (m_Opcode.rt == 0) { return; } x86Reg TempReg1, TempReg2; if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; Map_GPR_64bit(m_Opcode.rt, -1); LW_KnownAddress(GetMipsRegMapHi(m_Opcode.rt), Address); LW_KnownAddress(GetMipsRegMapLo(m_Opcode.rt), Address + 4); if (g_System->bFastSP() && m_Opcode.rt == 29) { ResetMemoryStack(); } return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base) && m_Opcode.offset == 0) { if (g_System->bUseTlb()) { ProtectGPR(m_Opcode.base); TempReg1 = GetMipsRegMapLo(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } } if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg2, TempReg2, 4); CompileReadTLBMiss(TempReg1, TempReg2); Map_GPR_64bit(m_Opcode.rt, -1); MoveX86regPointerToX86reg(TempReg1, TempReg2, GetMipsRegMapHi(m_Opcode.rt)); MoveX86regPointerToX86regDisp8(TempReg1, TempReg2, GetMipsRegMapLo(m_Opcode.rt), 4); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); Map_GPR_64bit(m_Opcode.rt, -1); MoveN64MemToX86reg(GetMipsRegMapHi(m_Opcode.rt), TempReg1); MoveN64MemDispToX86reg(GetMipsRegMapLo(m_Opcode.rt), TempReg1, 4); } if (g_System->bFastSP() && m_Opcode.rt == 29) { ResetX86Protection(); ResetMemoryStack(); } } void CX86RecompilerOps::SC() { SW(true); } void CX86RecompilerOps::SWC1() { char Name[50]; CompileCop1Test(); if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; UnMap_FPR(m_Opcode.ft, true); x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_S[m_Opcode.ft], Name, TempReg1); MoveX86PointerToX86reg(TempReg1, TempReg1); SW_Register(TempReg1, Address); return; } x86Reg TempReg1; if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); UnMap_FPR(m_Opcode.ft, true); x86Reg TempReg3 = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_S[m_Opcode.ft], Name, TempReg3); MoveX86PointerToX86reg(TempReg3, TempReg3); MoveX86regToX86regPointer(TempReg3, TempReg1, TempReg2); } else { x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); UnMap_FPR(m_Opcode.ft, true); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_S[m_Opcode.ft], Name, TempReg2); MoveX86PointerToX86reg(TempReg2, TempReg2); AndConstToX86Reg(TempReg1, 0x1FFFFFFF); MoveX86regToN64Mem(TempReg2, TempReg1); } } void CX86RecompilerOps::SDC1() { char Name[50]; CompileCop1Test(); if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.ft], Name, TempReg1); AddConstToX86Reg(TempReg1, 4); MoveX86PointerToX86reg(TempReg1, TempReg1); SW_Register(TempReg1, Address); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg(&_FPR_D[m_Opcode.ft], Name, TempReg1); MoveX86PointerToX86reg(TempReg1, TempReg1); SW_Register(TempReg1, Address + 4); return; } x86Reg TempReg1; if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } if (g_System->bUseTlb()) { x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); x86Reg TempReg3 = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.ft], Name, TempReg3); AddConstToX86Reg(TempReg3, 4); MoveX86PointerToX86reg(TempReg3, TempReg3); MoveX86regToX86regPointer(TempReg3, TempReg1, TempReg2); AddConstToX86Reg(TempReg1, 4); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.ft], Name, TempReg3); MoveX86PointerToX86reg(TempReg3, TempReg3); MoveX86regToX86regPointer(TempReg3, TempReg1, TempReg2); } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); x86Reg TempReg3 = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.ft], Name, TempReg3); AddConstToX86Reg(TempReg3, 4); MoveX86PointerToX86reg(TempReg3, TempReg3); MoveX86regToN64Mem(TempReg3, TempReg1); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.ft], Name, TempReg3); MoveX86PointerToX86reg(TempReg3, TempReg3); MoveX86regToN64MemDisp(TempReg3, TempReg1, 4); } } void CX86RecompilerOps::SD() { x86Reg TempReg1, TempReg2; if (IsConst(m_Opcode.base)) { uint32_t Address = GetMipsRegLo(m_Opcode.base) + (int16_t)m_Opcode.offset; if (IsConst(m_Opcode.rt)) { SW_Const(Is64Bit(m_Opcode.rt) ? GetMipsRegHi(m_Opcode.rt) : (GetMipsRegLo_S(m_Opcode.rt) >> 31), Address); SW_Const(GetMipsRegLo(m_Opcode.rt), Address + 4); } else if (IsMapped(m_Opcode.rt)) { SW_Register(Is64Bit(m_Opcode.rt) ? GetMipsRegMapHi(m_Opcode.rt) : Map_TempReg(x86_Any, m_Opcode.rt, true), Address); SW_Register(GetMipsRegMapLo(m_Opcode.rt), Address + 4); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.rt, true); SW_Register(TempReg1, Address); SW_Register(Map_TempReg(TempReg1, m_Opcode.rt, false), Address + 4); } } else { if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } if (IsMapped(m_Opcode.base)) { ProtectGPR(m_Opcode.base); if (m_Opcode.offset != 0) { TempReg1 = Map_TempReg(x86_Any, -1, false); LeaSourceAndOffset(TempReg1, GetMipsRegMapLo(m_Opcode.base), (int16_t)m_Opcode.offset); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); } UnProtectGPR(m_Opcode.base); } else { TempReg1 = Map_TempReg(x86_Any, m_Opcode.base, false); AddConstToX86Reg(TempReg1, (int16_t)m_Opcode.immediate); } Compile_StoreInstructClean(TempReg1, 8); if (g_System->bUseTlb()) { TempReg2 = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); if (IsConst(m_Opcode.rt)) { if (Is64Bit(m_Opcode.rt)) { MoveConstToX86regPointer(GetMipsRegHi(m_Opcode.rt), TempReg1, TempReg2); } else { MoveConstToX86regPointer((GetMipsRegLo_S(m_Opcode.rt) >> 31), TempReg1, TempReg2); } AddConstToX86Reg(TempReg1, 4); MoveConstToX86regPointer(GetMipsRegLo(m_Opcode.rt), TempReg1, TempReg2); } else if (IsMapped(m_Opcode.rt)) { if (Is64Bit(m_Opcode.rt)) { MoveX86regToX86regPointer(GetMipsRegMapHi(m_Opcode.rt), TempReg1, TempReg2); } else { MoveX86regToX86regPointer(Map_TempReg(x86_Any, m_Opcode.rt, true), TempReg1, TempReg2); } AddConstToX86Reg(TempReg1, 4); MoveX86regToX86regPointer(GetMipsRegMapLo(m_Opcode.rt), TempReg1, TempReg2); } else { x86Reg Reg = Map_TempReg(x86_Any, m_Opcode.rt, true); MoveX86regToX86regPointer(Reg, TempReg1, TempReg2); AddConstToX86Reg(TempReg1, 4); MoveX86regToX86regPointer(Map_TempReg(Reg, m_Opcode.rt, false), TempReg1, TempReg2); } } else { AndConstToX86Reg(TempReg1, 0x1FFFFFFF); if (IsConst(m_Opcode.rt)) { if (Is64Bit(m_Opcode.rt)) { MoveConstToN64Mem(GetMipsRegHi(m_Opcode.rt), TempReg1); } else if (IsSigned(m_Opcode.rt)) { MoveConstToN64Mem((GetMipsRegLo_S(m_Opcode.rt) >> 31), TempReg1); } else { MoveConstToN64Mem(0, TempReg1); } MoveConstToN64MemDisp(GetMipsRegLo(m_Opcode.rt), TempReg1, 4); } else if (IsKnown(m_Opcode.rt) && IsMapped(m_Opcode.rt)) { if (Is64Bit(m_Opcode.rt)) { MoveX86regToN64Mem(GetMipsRegMapHi(m_Opcode.rt), TempReg1); } else if (IsSigned(m_Opcode.rt)) { MoveX86regToN64Mem(Map_TempReg(x86_Any, m_Opcode.rt, true), TempReg1); } else { MoveConstToN64Mem(0, TempReg1); } MoveX86regToN64MemDisp(GetMipsRegMapLo(m_Opcode.rt), TempReg1, 4); } else { x86Reg Reg; MoveX86regToN64Mem(Reg = Map_TempReg(x86_Any, m_Opcode.rt, true), TempReg1); MoveX86regToN64MemDisp(Map_TempReg(Reg, m_Opcode.rt, false), TempReg1, 4); } } } } /********************** R4300i OpCodes: Special **********************/ void CX86RecompilerOps::SPECIAL_SLL() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, GetMipsRegLo(m_Opcode.rt) << m_Opcode.sa); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); return; } if (m_Opcode.rd != m_Opcode.rt && IsMapped(m_Opcode.rt)) { switch (m_Opcode.sa) { case 0: Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); break; case 1: ProtectGPR(m_Opcode.rt); Map_GPR_32bit(m_Opcode.rd, true, -1); LeaRegReg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rt), 0, Multip_x2); break; case 2: ProtectGPR(m_Opcode.rt); Map_GPR_32bit(m_Opcode.rd, true, -1); LeaRegReg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rt), 0, Multip_x4); break; case 3: ProtectGPR(m_Opcode.rt); Map_GPR_32bit(m_Opcode.rd, true, -1); LeaRegReg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rt), 0, Multip_x8); break; default: Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftLeftSignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } } else { Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftLeftSignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } } void CX86RecompilerOps::SPECIAL_SRL() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, GetMipsRegLo(m_Opcode.rt) >> m_Opcode.sa); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); return; } Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftRightUnsignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } void CX86RecompilerOps::SPECIAL_SRA() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, GetMipsRegLo_S(m_Opcode.rt) >> m_Opcode.sa); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); return; } Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftRightSignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } void CX86RecompilerOps::SPECIAL_SLLV() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rs)) { uint32_t Shift = (GetMipsRegLo(m_Opcode.rs) & 0x1F); if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, GetMipsRegLo(m_Opcode.rt) << Shift); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftLeftSignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)Shift); } return; } Map_TempReg(x86_ECX, m_Opcode.rs, false); AndConstToX86Reg(x86_ECX, 0x1F); Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftLeftSign(GetMipsRegMapLo(m_Opcode.rd)); } void CX86RecompilerOps::SPECIAL_SRLV() { if (m_Opcode.rd == 0) { return; } if (IsKnown(m_Opcode.rs) && IsConst(m_Opcode.rs)) { uint32_t Shift = (GetMipsRegLo(m_Opcode.rs) & 0x1F); if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, GetMipsRegLo(m_Opcode.rt) >> Shift); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); return; } Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftRightUnsignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)Shift); return; } Map_TempReg(x86_ECX, m_Opcode.rs, false); AndConstToX86Reg(x86_ECX, 0x1F); Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftRightUnsign(GetMipsRegMapLo(m_Opcode.rd)); } void CX86RecompilerOps::SPECIAL_SRAV() { if (m_Opcode.rd == 0) { return; } if (IsKnown(m_Opcode.rs) && IsConst(m_Opcode.rs)) { uint32_t Shift = (GetMipsRegLo(m_Opcode.rs) & 0x1F); if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, GetMipsRegLo_S(m_Opcode.rt) >> Shift); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); return; } Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftRightSignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)Shift); return; } Map_TempReg(x86_ECX, m_Opcode.rs, false); AndConstToX86Reg(x86_ECX, 0x1F); Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); ShiftRightSign(GetMipsRegMapLo(m_Opcode.rd)); } void CX86RecompilerOps::SPECIAL_JR() { if (m_NextInstruction == NORMAL) { if ((m_CompilePC & 0xFFC) == 0xFFC) { if (IsMapped(m_Opcode.rs)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rs), &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); m_RegWorkingSet.WriteBackRegisters(); } else { m_RegWorkingSet.WriteBackRegisters(); MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rs, false), &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); } OverflowDelaySlot(true); return; } m_Section->m_Jump.FallThrough = false; m_Section->m_Jump.LinkLocation = NULL; m_Section->m_Jump.LinkLocation2 = NULL; m_Section->m_Cont.FallThrough = false; m_Section->m_Cont.LinkLocation = NULL; m_Section->m_Cont.LinkLocation2 = NULL; if (DelaySlotEffectsCompare(m_CompilePC, m_Opcode.rs, 0)) { if (IsConst(m_Opcode.rs)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rs), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } else if (IsMapped(m_Opcode.rs)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rs), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rs, false), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } } m_NextInstruction = DO_DELAY_SLOT; } else if (m_NextInstruction == DELAY_SLOT_DONE) { if (DelaySlotEffectsCompare(m_CompilePC, m_Opcode.rs, 0)) { CompileExit(m_CompilePC, (uint32_t)-1, m_RegWorkingSet, CExitInfo::Normal, true, NULL); } else { UpdateCounters(m_RegWorkingSet, true, true); if (IsConst(m_Opcode.rs)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rs), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } else if (IsMapped(m_Opcode.rs)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rs), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rs, false), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } CompileExit((uint32_t)-1, (uint32_t)-1, m_RegWorkingSet, CExitInfo::Normal, true, NULL); if (m_Section->m_JumpSection) { m_Section->GenerateSectionLinkage(); } } m_NextInstruction = END_BLOCK; } else if (bHaveDebugger()) { g_Notify->DisplayError(stdstr_f("WTF\n\nBranch\nNextInstruction = %X", m_NextInstruction).c_str()); } } void CX86RecompilerOps::SPECIAL_JALR() { if (m_NextInstruction == NORMAL) { if (DelaySlotEffectsCompare(m_CompilePC, m_Opcode.rs, 0) && (m_CompilePC & 0xFFC) != 0xFFC) { if (IsConst(m_Opcode.rs)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rs), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } else if (IsMapped(m_Opcode.rs)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rs), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rs, false), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } } UnMap_GPR(m_Opcode.rd, false); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, m_CompilePC + 8); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); if ((m_CompilePC & 0xFFC) == 0xFFC) { if (IsMapped(m_Opcode.rs)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rs), &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); m_RegWorkingSet.WriteBackRegisters(); } else { m_RegWorkingSet.WriteBackRegisters(); MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rs, false), &R4300iOp::m_JumpToLocation, "R4300iOp::m_JumpToLocation"); } OverflowDelaySlot(true); return; } m_Section->m_Jump.FallThrough = false; m_Section->m_Jump.LinkLocation = NULL; m_Section->m_Jump.LinkLocation2 = NULL; m_Section->m_Cont.FallThrough = false; m_Section->m_Cont.LinkLocation = NULL; m_Section->m_Cont.LinkLocation2 = NULL; m_NextInstruction = DO_DELAY_SLOT; } else if (m_NextInstruction == DELAY_SLOT_DONE) { if (DelaySlotEffectsCompare(m_CompilePC, m_Opcode.rs, 0)) { CompileExit(m_CompilePC, (uint32_t)-1, m_RegWorkingSet, CExitInfo::Normal, true, NULL); } else { UpdateCounters(m_RegWorkingSet, true, true); if (IsConst(m_Opcode.rs)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rs), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } else if (IsMapped(m_Opcode.rs)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rs), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rs, false), _PROGRAM_COUNTER, "PROGRAM_COUNTER"); } CompileExit((uint32_t)-1, (uint32_t)-1, m_RegWorkingSet, CExitInfo::Normal, true, NULL); if (m_Section->m_JumpSection) { m_Section->GenerateSectionLinkage(); } } m_NextInstruction = END_BLOCK; } else if (bHaveDebugger()) { g_Notify->DisplayError(stdstr_f("WTF\n\nBranch\nNextInstruction = %X", m_NextInstruction).c_str()); } } void CX86RecompilerOps::SPECIAL_SYSCALL() { CompileExit(m_CompilePC, (uint32_t)-1, m_RegWorkingSet, CExitInfo::DoSysCall, true, NULL); m_NextInstruction = END_BLOCK; } void CX86RecompilerOps::SPECIAL_MFLO() { if (m_Opcode.rd == 0) { return; } Map_GPR_64bit(m_Opcode.rd, -1); MoveVariableToX86reg(&_RegLO->UW[0], "_RegLO->UW[0]", GetMipsRegMapLo(m_Opcode.rd)); MoveVariableToX86reg(&_RegLO->UW[1], "_RegLO->UW[1]", GetMipsRegMapHi(m_Opcode.rd)); } void CX86RecompilerOps::SPECIAL_MTLO() { if (IsKnown(m_Opcode.rs) && IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { MoveConstToVariable(GetMipsRegHi(m_Opcode.rs), &_RegLO->UW[1], "_RegLO->UW[1]"); } else if (IsSigned(m_Opcode.rs) && ((GetMipsRegLo(m_Opcode.rs) & 0x80000000) != 0)) { MoveConstToVariable(0xFFFFFFFF, &_RegLO->UW[1], "_RegLO->UW[1]"); } else { MoveConstToVariable(0, &_RegLO->UW[1], "_RegLO->UW[1]"); } MoveConstToVariable(GetMipsRegLo(m_Opcode.rs), &_RegLO->UW[0], "_RegLO->UW[0]"); } else if (IsKnown(m_Opcode.rs) && IsMapped(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { MoveX86regToVariable(GetMipsRegMapHi(m_Opcode.rs), &_RegLO->UW[1], "_RegLO->UW[1]"); } else if (IsSigned(m_Opcode.rs)) { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rs, true), &_RegLO->UW[1], "_RegLO->UW[1]"); } else { MoveConstToVariable(0, &_RegLO->UW[1], "_RegLO->UW[1]"); } MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rs), &_RegLO->UW[0], "_RegLO->UW[0]"); } else { x86Reg reg = Map_TempReg(x86_Any, m_Opcode.rs, true); MoveX86regToVariable(reg, &_RegLO->UW[1], "_RegLO->UW[1]"); MoveX86regToVariable(Map_TempReg(reg, m_Opcode.rs, false), &_RegLO->UW[0], "_RegLO->UW[0]"); } } void CX86RecompilerOps::SPECIAL_MFHI() { if (m_Opcode.rd == 0) { return; } Map_GPR_64bit(m_Opcode.rd, -1); MoveVariableToX86reg(&_RegHI->UW[0], "_RegHI->UW[0]", GetMipsRegMapLo(m_Opcode.rd)); MoveVariableToX86reg(&_RegHI->UW[1], "_RegHI->UW[1]", GetMipsRegMapHi(m_Opcode.rd)); } void CX86RecompilerOps::SPECIAL_MTHI() { if (IsKnown(m_Opcode.rs) && IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { MoveConstToVariable(GetMipsRegHi(m_Opcode.rs), &_RegHI->UW[1], "_RegHI->UW[1]"); } else if (IsSigned(m_Opcode.rs) && ((GetMipsRegLo(m_Opcode.rs) & 0x80000000) != 0)) { MoveConstToVariable(0xFFFFFFFF, &_RegHI->UW[1], "_RegHI->UW[1]"); } else { MoveConstToVariable(0, &_RegHI->UW[1], "_RegHI->UW[1]"); } MoveConstToVariable(GetMipsRegLo(m_Opcode.rs), &_RegHI->UW[0], "_RegHI->UW[0]"); } else if (IsKnown(m_Opcode.rs) && IsMapped(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rs)) { MoveX86regToVariable(GetMipsRegMapHi(m_Opcode.rs), &_RegHI->UW[1], "_RegHI->UW[1]"); } else if (IsSigned(m_Opcode.rs)) { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rs, true), &_RegHI->UW[1], "_RegHI->UW[1]"); } else { MoveConstToVariable(0, &_RegHI->UW[1], "_RegHI->UW[1]"); } MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rs), &_RegHI->UW[0], "_RegHI->UW[0]"); } else { x86Reg reg = Map_TempReg(x86_Any, m_Opcode.rs, true); MoveX86regToVariable(reg, &_RegHI->UW[1], "_RegHI->UW[1]"); MoveX86regToVariable(Map_TempReg(reg, m_Opcode.rs, false), &_RegHI->UW[0], "_RegHI->UW[0]"); } } void CX86RecompilerOps::SPECIAL_DSLLV() { uint8_t * Jump[2]; if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rs)) { //uint32_t Shift = (GetMipsRegLo(m_Opcode.rs) & 0x3F); CX86RecompilerOps::UnknownOpcode(); return; } Map_TempReg(x86_ECX, m_Opcode.rs, false); AndConstToX86Reg(x86_ECX, 0x3F); Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); CompConstToX86reg(x86_ECX, 0x20); JaeLabel8("MORE32", 0); Jump[0] = *g_RecompPos - 1; ShiftLeftDouble(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rd)); ShiftLeftSign(GetMipsRegMapLo(m_Opcode.rd)); JmpLabel8("continue", 0); Jump[1] = *g_RecompPos - 1; //MORE32: CPU_Message(""); CPU_Message(" MORE32:"); SetJump8(Jump[0], *g_RecompPos); MoveX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapHi(m_Opcode.rd)); XorX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rd)); AndConstToX86Reg(x86_ECX, 0x1F); ShiftLeftSign(GetMipsRegMapHi(m_Opcode.rd)); //continue: CPU_Message(""); CPU_Message(" continue:"); SetJump8(Jump[1], *g_RecompPos); } void CX86RecompilerOps::SPECIAL_DSRLV() { uint8_t * Jump[2]; if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rs)) { uint32_t Shift = (GetMipsRegLo(m_Opcode.rs) & 0x3F); if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsReg(m_Opcode.rd, Is64Bit(m_Opcode.rt) ? GetMipsReg(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt)); m_RegWorkingSet.SetMipsReg(m_Opcode.rd, GetMipsReg(m_Opcode.rd) >> Shift); if ((GetMipsRegHi(m_Opcode.rd) == 0) && (GetMipsRegLo(m_Opcode.rd) & 0x80000000) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if ((GetMipsRegHi(m_Opcode.rd) == 0xFFFFFFFF) && (GetMipsRegLo(m_Opcode.rd) & 0x80000000) != 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } return; } if (m_Opcode.rd == m_Opcode.rt) { CX86RecompilerOps::UnknownOpcode(); return; } Map_TempReg(x86_ECX, -1, false); MoveConstToX86reg(Shift, x86_ECX); Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); if ((Shift & 0x20) == 0x20) { MoveX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rd)); XorX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapHi(m_Opcode.rd)); AndConstToX86Reg(x86_ECX, 0x1F); ShiftRightUnsign(GetMipsRegMapLo(m_Opcode.rd)); } else { ShiftRightDouble(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapHi(m_Opcode.rd)); ShiftRightUnsign(GetMipsRegMapHi(m_Opcode.rd)); } } else { Map_TempReg(x86_ECX, m_Opcode.rs, false); AndConstToX86Reg(x86_ECX, 0x3F); Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); CompConstToX86reg(x86_ECX, 0x20); JaeLabel8("MORE32", 0); Jump[0] = *g_RecompPos - 1; ShiftRightDouble(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapHi(m_Opcode.rd)); ShiftRightUnsign(GetMipsRegMapHi(m_Opcode.rd)); JmpLabel8("continue", 0); Jump[1] = *g_RecompPos - 1; //MORE32: CPU_Message(""); CPU_Message(" MORE32:"); SetJump8(Jump[0], *g_RecompPos); MoveX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rd)); XorX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapHi(m_Opcode.rd)); AndConstToX86Reg(x86_ECX, 0x1F); ShiftRightUnsign(GetMipsRegMapLo(m_Opcode.rd)); //continue: CPU_Message(""); CPU_Message(" continue:"); SetJump8(Jump[1], *g_RecompPos); } } void CX86RecompilerOps::SPECIAL_DSRAV() { uint8_t * Jump[2]; if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rs)) { //uint32_t Shift = (GetMipsRegLo(m_Opcode.rs) & 0x3F); CX86RecompilerOps::UnknownOpcode(); return; } Map_TempReg(x86_ECX, m_Opcode.rs, false); AndConstToX86Reg(x86_ECX, 0x3F); Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); CompConstToX86reg(x86_ECX, 0x20); JaeLabel8("MORE32", 0); Jump[0] = *g_RecompPos - 1; ShiftRightDouble(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapHi(m_Opcode.rd)); ShiftRightSign(GetMipsRegMapHi(m_Opcode.rd)); JmpLabel8("continue", 0); Jump[1] = *g_RecompPos - 1; //MORE32: CPU_Message(""); CPU_Message(" MORE32:"); SetJump8(Jump[0], *g_RecompPos); MoveX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rd)); ShiftRightSignImmed(GetMipsRegMapHi(m_Opcode.rd), 0x1F); AndConstToX86Reg(x86_ECX, 0x1F); ShiftRightSign(GetMipsRegMapLo(m_Opcode.rd)); //continue: CPU_Message(""); CPU_Message(" continue:"); SetJump8(Jump[1], *g_RecompPos); } void CX86RecompilerOps::SPECIAL_MULT() { m_RegWorkingSet.SetX86Protected(x86_EDX, true); Map_TempReg(x86_EAX, m_Opcode.rs, false); m_RegWorkingSet.SetX86Protected(x86_EDX, false); Map_TempReg(x86_EDX, m_Opcode.rt, false); imulX86reg(x86_EDX); MoveX86regToVariable(x86_EAX, &_RegLO->UW[0], "_RegLO->UW[0]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[0], "_RegHI->UW[0]"); ShiftRightSignImmed(x86_EAX, 31); /* paired */ ShiftRightSignImmed(x86_EDX, 31); MoveX86regToVariable(x86_EAX, &_RegLO->UW[1], "_RegLO->UW[1]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[1], "_RegHI->UW[1]"); } void CX86RecompilerOps::SPECIAL_MULTU() { m_RegWorkingSet.SetX86Protected(x86_EDX, true); Map_TempReg(x86_EAX, m_Opcode.rs, false); m_RegWorkingSet.SetX86Protected(x86_EDX, false); Map_TempReg(x86_EDX, m_Opcode.rt, false); MulX86reg(x86_EDX); MoveX86regToVariable(x86_EAX, &_RegLO->UW[0], "_RegLO->UW[0]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[0], "_RegHI->UW[0]"); ShiftRightSignImmed(x86_EAX, 31); /* paired */ ShiftRightSignImmed(x86_EDX, 31); MoveX86regToVariable(x86_EAX, &_RegLO->UW[1], "_RegLO->UW[1]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[1], "_RegHI->UW[1]"); } void CX86RecompilerOps::SPECIAL_DIV() { if (IsConst(m_Opcode.rt)) { if (GetMipsRegLo(m_Opcode.rt) == 0) { MoveConstToVariable(0, &_RegLO->UW[0], "_RegLO->UW[0]"); MoveConstToVariable(0, &_RegLO->UW[1], "_RegLO->UW[1]"); MoveConstToVariable(0, &_RegHI->UW[0], "_RegHI->UW[0]"); MoveConstToVariable(0, &_RegHI->UW[1], "_RegHI->UW[1]"); return; } } else { if (IsMapped(m_Opcode.rt)) { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rt), 0); } else { CompConstToVariable(0, &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); } CompileExit(m_CompilePC, m_CompilePC, m_RegWorkingSet, CExitInfo::DivByZero, false, JeLabel32); } /* lo = (SD)rs / (SD)rt; hi = (SD)rs % (SD)rt; */ m_RegWorkingSet.SetX86Protected(x86_EDX, true); Map_TempReg(x86_EAX, m_Opcode.rs, false); /* edx is the signed portion to eax */ m_RegWorkingSet.SetX86Protected(x86_EDX, false); Map_TempReg(x86_EDX, -1, false); MoveX86RegToX86Reg(x86_EAX, x86_EDX); ShiftRightSignImmed(x86_EDX, 31); if (IsMapped(m_Opcode.rt)) { idivX86reg(GetMipsRegMapLo(m_Opcode.rt)); } else { idivX86reg(Map_TempReg(x86_Any, m_Opcode.rt, false)); } MoveX86regToVariable(x86_EAX, &_RegLO->UW[0], "_RegLO->UW[0]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[0], "_RegHI->UW[0]"); ShiftRightSignImmed(x86_EAX, 31); /* paired */ ShiftRightSignImmed(x86_EDX, 31); MoveX86regToVariable(x86_EAX, &_RegLO->UW[1], "_RegLO->UW[1]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[1], "_RegHI->UW[1]"); } void CX86RecompilerOps::SPECIAL_DIVU() { uint8_t *Jump[2]; x86Reg Reg; if (IsConst(m_Opcode.rt)) { if (GetMipsRegLo(m_Opcode.rt) == 0) { MoveConstToVariable(0, &_RegLO->UW[0], "_RegLO->UW[0]"); MoveConstToVariable(0, &_RegLO->UW[1], "_RegLO->UW[1]"); MoveConstToVariable(0, &_RegHI->UW[0], "_RegHI->UW[0]"); MoveConstToVariable(0, &_RegHI->UW[1], "_RegHI->UW[1]"); return; } Jump[1] = NULL; } else { if (IsMapped(m_Opcode.rt)) { CompConstToX86reg(GetMipsRegMapLo(m_Opcode.rt), 0); } else { CompConstToVariable(0, &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); } JneLabel8("NoExcept", 0); Jump[0] = *g_RecompPos - 1; MoveConstToVariable(0, &_RegLO->UW[0], "_RegLO->UW[0]"); MoveConstToVariable(0, &_RegLO->UW[1], "_RegLO->UW[1]"); MoveConstToVariable(0, &_RegHI->UW[0], "_RegHI->UW[0]"); MoveConstToVariable(0, &_RegHI->UW[1], "_RegHI->UW[1]"); JmpLabel8("EndDivu", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" NoExcept:"); SetJump8(Jump[0], *g_RecompPos); } /* lo = (UD)rs / (UD)rt; hi = (UD)rs % (UD)rt; */ m_RegWorkingSet.SetX86Protected(x86_EAX, true); Map_TempReg(x86_EDX, 0, false); m_RegWorkingSet.SetX86Protected(x86_EAX, false); Map_TempReg(x86_EAX, m_Opcode.rs, false); Reg = Map_TempReg(x86_Any, m_Opcode.rt, false); DivX86reg(Reg); MoveX86regToVariable(x86_EAX, &_RegLO->UW[0], "_RegLO->UW[0]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[0], "_RegHI->UW[0]"); /* wouldnt these be zero (???) */ ShiftRightSignImmed(x86_EAX, 31); /* paired */ ShiftRightSignImmed(x86_EDX, 31); MoveX86regToVariable(x86_EAX, &_RegLO->UW[1], "_RegLO->UW[1]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[1], "_RegHI->UW[1]"); if (Jump[1] != NULL) { CPU_Message(""); CPU_Message(" EndDivu:"); SetJump8(Jump[1], *g_RecompPos); } } void CX86RecompilerOps::SPECIAL_DMULT() { if (m_Opcode.rs != 0) { UnMap_GPR(m_Opcode.rs, true); } if (m_Opcode.rs != 0) { UnMap_GPR(m_Opcode.rt, true); } m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::SPECIAL_DMULT, "R4300iOp::SPECIAL_DMULT"); m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::SPECIAL_DMULTU() { UnMap_GPR(m_Opcode.rs, true); UnMap_GPR(m_Opcode.rt, true); m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::SPECIAL_DMULTU, "R4300iOp::SPECIAL_DMULTU"); m_RegWorkingSet.AfterCallDirect(); #ifdef toremove /* _RegLO->UDW = (uint64)_GPR[m_Opcode.rs].UW[0] * (uint64)_GPR[m_Opcode.rt].UW[0]; */ X86Protected(x86_EDX) = true; Map_TempReg(x86_EAX, m_Opcode.rs, false); X86Protected(x86_EDX) = false; Map_TempReg(x86_EDX, m_Opcode.rt, false); MulX86reg(x86_EDX); MoveX86regToVariable(x86_EAX, &_RegLO->UW[0], "_RegLO->UW[0]"); MoveX86regToVariable(x86_EDX, &_RegLO->UW[1], "_RegLO->UW[1]"); /* _RegHI->UDW = (uint64)_GPR[m_Opcode.rs].UW[1] * (uint64)_GPR[m_Opcode.rt].UW[1]; */ Map_TempReg(x86_EAX, m_Opcode.rs, true); Map_TempReg(x86_EDX, m_Opcode.rt, true); MulX86reg(x86_EDX); MoveX86regToVariable(x86_EAX, &_RegHI->UW[0], "_RegHI->UW[0]"); MoveX86regToVariable(x86_EDX, &_RegHI->UW[1], "_RegHI->UW[1]"); /* Tmp[0].UDW = (uint64)_GPR[m_Opcode.rs].UW[1] * (uint64)_GPR[m_Opcode.rt].UW[0]; */ Map_TempReg(x86_EAX, m_Opcode.rs, true); Map_TempReg(x86_EDX, m_Opcode.rt, false); Map_TempReg(x86_EBX, -1, false); Map_TempReg(x86_ECX, -1, false); MulX86reg(x86_EDX); MoveX86RegToX86Reg(x86_EAX, x86_EBX); /* EDX:EAX -> ECX:EBX */ MoveX86RegToX86Reg(x86_EDX, x86_ECX); /* Tmp[1].UDW = (uint64)_GPR[m_Opcode.rs].UW[0] * (uint64)_GPR[m_Opcode.rt].UW[1]; */ Map_TempReg(x86_EAX, m_Opcode.rs, false); Map_TempReg(x86_EDX, m_Opcode.rt, true); MulX86reg(x86_EDX); Map_TempReg(x86_ESI, -1, false); Map_TempReg(x86_EDI, -1, false); MoveX86RegToX86Reg(x86_EAX, x86_ESI); /* EDX:EAX -> EDI:ESI */ MoveX86RegToX86Reg(x86_EDX, x86_EDI); /* Tmp[2].UDW = (uint64)_RegLO->UW[1] + (uint64)Tmp[0].UW[0] + (uint64)Tmp[1].UW[0]; */ XorX86RegToX86Reg(x86_EDX, x86_EDX); MoveVariableToX86reg(&_RegLO->UW[1], "_RegLO->UW[1]", x86_EAX); AddX86RegToX86Reg(x86_EAX, x86_EBX); AddConstToX86Reg(x86_EDX, 0); AddX86RegToX86Reg(x86_EAX, x86_ESI); AddConstToX86Reg(x86_EDX, 0); /* EDX:EAX */ /* _RegLO->UDW += ((uint64)Tmp[0].UW[0] + (uint64)Tmp[1].UW[0]) << 32; */ /* [low+4] += ebx + esi */ AddX86regToVariable(x86_EBX, &_RegLO->UW[1], "_RegLO->UW[1]"); AddX86regToVariable(x86_ESI, &_RegLO->UW[1], "_RegLO->UW[1]"); /* _RegHI->UDW += (uint64)Tmp[0].UW[1] + (uint64)Tmp[1].UW[1] + Tmp[2].UW[1]; */ /* [hi] += ecx + edi + edx */ AddX86regToVariable(x86_ECX, &_RegHI->UW[0], "_RegHI->UW[0]"); AdcConstToVariable(&_RegHI->UW[1], "_RegHI->UW[1]", 0); AddX86regToVariable(x86_EDI, &_RegHI->UW[0], "_RegHI->UW[0]"); AdcConstToVariable(&_RegHI->UW[1], "_RegHI->UW[1]", 0); AddX86regToVariable(x86_EDX, &_RegHI->UW[0], "_RegHI->UW[0]"); AdcConstToVariable(&_RegHI->UW[1], "_RegHI->UW[1]", 0); #endif } void CX86RecompilerOps::SPECIAL_DDIV() { UnMap_GPR(m_Opcode.rs, true); UnMap_GPR(m_Opcode.rt, true); m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::SPECIAL_DDIV, "R4300iOp::SPECIAL_DDIV"); m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::SPECIAL_DDIVU() { UnMap_GPR(m_Opcode.rs, true); UnMap_GPR(m_Opcode.rt, true); m_RegWorkingSet.BeforeCallDirect(); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::SPECIAL_DDIVU, "R4300iOp::SPECIAL_DDIVU"); m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::SPECIAL_ADD() { if (m_Opcode.rd == 0) { return; } int source1 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rt : m_Opcode.rs; int source2 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rs : m_Opcode.rt; if (IsConst(source1) && IsConst(source2)) { uint32_t temp = GetMipsRegLo(source1) + GetMipsRegLo(source2); if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, temp); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); return; } Map_GPR_32bit(m_Opcode.rd, true, source1); if (IsConst(source2)) { AddConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegLo(source2)); } else if (IsKnown(source2) && IsMapped(source2)) { AddX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } else { AddVariableToX86reg(GetMipsRegMapLo(m_Opcode.rd), &_GPR[source2].W[0], CRegName::GPR_Lo[source2]); } if (g_System->bFastSP() && m_Opcode.rd == 29) { ResetMemoryStack(); } } void CX86RecompilerOps::SPECIAL_ADDU() { if (m_Opcode.rd == 0) { return; } int source1 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rt : m_Opcode.rs; int source2 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rs : m_Opcode.rt; if (IsConst(source1) && IsConst(source2)) { uint32_t temp = GetMipsRegLo(source1) + GetMipsRegLo(source2); if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, temp); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); return; } Map_GPR_32bit(m_Opcode.rd, true, source1); if (IsConst(source2)) { AddConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegLo(source2)); } else if (IsKnown(source2) && IsMapped(source2)) { AddX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } else { AddVariableToX86reg(GetMipsRegMapLo(m_Opcode.rd), &_GPR[source2].W[0], CRegName::GPR_Lo[source2]); } if (g_System->bFastSP() && m_Opcode.rd == 29) { ResetMemoryStack(); } } void CX86RecompilerOps::SPECIAL_SUB() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { uint32_t temp = GetMipsRegLo(m_Opcode.rs) - GetMipsRegLo(m_Opcode.rt); if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, temp); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { if (m_Opcode.rd == m_Opcode.rt) { x86Reg Reg = Map_TempReg(x86_Any, m_Opcode.rt, false); Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rs); SubX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), Reg); return; } Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rs); if (IsConst(m_Opcode.rt)) { SubConstFromX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegLo(m_Opcode.rt)); } else if (IsMapped(m_Opcode.rt)) { SubX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rt)); } else { SubVariableFromX86reg(GetMipsRegMapLo(m_Opcode.rd), &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); } } if (g_System->bFastSP() && m_Opcode.rd == 29) { ResetMemoryStack(); } } void CX86RecompilerOps::SPECIAL_SUBU() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { uint32_t temp = GetMipsRegLo(m_Opcode.rs) - GetMipsRegLo(m_Opcode.rt); if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, temp); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { if (m_Opcode.rd == m_Opcode.rt) { x86Reg Reg = Map_TempReg(x86_Any, m_Opcode.rt, false); Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rs); SubX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), Reg); return; } Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rs); if (IsConst(m_Opcode.rt)) { SubConstFromX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegLo(m_Opcode.rt)); } else if (IsMapped(m_Opcode.rt)) { SubX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rt)); } else { SubVariableFromX86reg(GetMipsRegMapLo(m_Opcode.rd), &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); } } if (g_System->bFastSP() && m_Opcode.rd == 29) { ResetMemoryStack(); } } void CX86RecompilerOps::SPECIAL_AND() { if (IsKnown(m_Opcode.rt) && IsKnown(m_Opcode.rs)) { if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { m_RegWorkingSet.SetMipsReg(m_Opcode.rd, (Is64Bit(m_Opcode.rt) ? GetMipsReg(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt)) & (Is64Bit(m_Opcode.rs) ? GetMipsReg(m_Opcode.rs) : (int64_t)GetMipsRegLo_S(m_Opcode.rs)) ); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } } else { m_RegWorkingSet.SetMipsReg(m_Opcode.rd, GetMipsRegLo(m_Opcode.rt) & GetMipsReg(m_Opcode.rs)); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } } else if (IsMapped(m_Opcode.rt) && IsMapped(m_Opcode.rs)) { int source1 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rt : m_Opcode.rs; int source2 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rs : m_Opcode.rt; ProtectGPR(source1); ProtectGPR(source2); if (Is32Bit(source1) && Is32Bit(source2)) { bool Sign = (IsSigned(m_Opcode.rt) && IsSigned(m_Opcode.rs)); Map_GPR_32bit(m_Opcode.rd, Sign, source1); AndX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } else if (Is32Bit(source1) || Is32Bit(source2)) { if (IsUnsigned(Is32Bit(source1) ? source1 : source2)) { Map_GPR_32bit(m_Opcode.rd, false, source1); AndX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } else { Map_GPR_64bit(m_Opcode.rd, source1); if (Is32Bit(source2)) { AndX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), Map_TempReg(x86_Any, source2, true)); } else { AndX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapHi(source2)); } AndX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } } else { Map_GPR_64bit(m_Opcode.rd, source1); AndX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapHi(source2)); AndX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } } else { int ConstReg = IsConst(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; int MappedReg = IsConst(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (Is64Bit(ConstReg)) { if (Is32Bit(MappedReg) && IsUnsigned(MappedReg)) { if (GetMipsRegLo(ConstReg) == 0) { Map_GPR_32bit(m_Opcode.rd, false, 0); } else { uint32_t Value = GetMipsRegLo(ConstReg); Map_GPR_32bit(m_Opcode.rd, false, MappedReg); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), Value); } } else { int64_t Value = GetMipsReg(ConstReg); Map_GPR_64bit(m_Opcode.rd, MappedReg); AndConstToX86Reg(GetMipsRegMapHi(m_Opcode.rd), (uint32_t)(Value >> 32)); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), (uint32_t)(Value & 0xFFFFFFFF)); } } else if (Is64Bit(MappedReg)) { uint32_t Value = GetMipsRegLo(ConstReg); if (Value != 0) { Map_GPR_32bit(m_Opcode.rd, IsSigned(ConstReg), MappedReg); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), Value); } else { Map_GPR_32bit(m_Opcode.rd, IsSigned(ConstReg), 0); } } else { uint32_t Value = GetMipsRegLo(ConstReg); bool Sign = false; if (IsSigned(ConstReg) && IsSigned(MappedReg)) { Sign = true; } if (Value != 0) { Map_GPR_32bit(m_Opcode.rd, Sign, MappedReg); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), Value); } else { Map_GPR_32bit(m_Opcode.rd, false, 0); } } } } else if (IsKnown(m_Opcode.rt) || IsKnown(m_Opcode.rs)) { uint32_t KnownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t UnknownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (IsConst(KnownReg)) { if (Is64Bit(KnownReg)) { uint64_t Value = GetMipsReg(KnownReg); Map_GPR_64bit(m_Opcode.rd, UnknownReg); AndConstToX86Reg(GetMipsRegMapHi(m_Opcode.rd), (uint32_t)(Value >> 32)); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), (uint32_t)(Value & 0xFFFFFFFF)); } else { uint32_t Value = GetMipsRegLo(KnownReg); Map_GPR_32bit(m_Opcode.rd, IsSigned(KnownReg), UnknownReg); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), Value); } } else { ProtectGPR(KnownReg); if (KnownReg == m_Opcode.rd) { if (Is64Bit(KnownReg) || !g_System->b32BitCore()) { Map_GPR_64bit(m_Opcode.rd, KnownReg); AndVariableToX86Reg(&_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg], GetMipsRegMapHi(m_Opcode.rd)); AndVariableToX86Reg(&_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg], GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_32bit(m_Opcode.rd, IsSigned(KnownReg), KnownReg); AndVariableToX86Reg(&_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg], GetMipsRegMapLo(m_Opcode.rd)); } } else { if (Is64Bit(KnownReg)) { Map_GPR_64bit(m_Opcode.rd, UnknownReg); AndX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapHi(KnownReg)); AndX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(KnownReg)); } else { Map_GPR_32bit(m_Opcode.rd, IsSigned(KnownReg), UnknownReg); AndX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(KnownReg)); } } } } else { if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); } else { Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); AndVariableToX86Reg(&_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs], GetMipsRegMapHi(m_Opcode.rd)); } AndVariableToX86Reg(&_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs], GetMipsRegMapLo(m_Opcode.rd)); } } void CX86RecompilerOps::SPECIAL_OR() { if (IsKnown(m_Opcode.rt) && IsKnown(m_Opcode.rs)) { if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { m_RegWorkingSet.SetMipsReg(m_Opcode.rd, (Is64Bit(m_Opcode.rt) ? GetMipsReg(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt)) | (Is64Bit(m_Opcode.rs) ? GetMipsReg(m_Opcode.rs) : (int64_t)GetMipsRegLo_S(m_Opcode.rs)) ); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } } else { m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, GetMipsRegLo(m_Opcode.rt) | GetMipsRegLo(m_Opcode.rs)); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } } else if (IsMapped(m_Opcode.rt) && IsMapped(m_Opcode.rs)) { int source1 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rt : m_Opcode.rs; int source2 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rs : m_Opcode.rt; ProtectGPR(m_Opcode.rt); ProtectGPR(m_Opcode.rs); if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { Map_GPR_64bit(m_Opcode.rd, source1); if (Is64Bit(source2)) { OrX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapHi(source2)); } else { OrX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), Map_TempReg(x86_Any, source2, true)); } } else { ProtectGPR(source2); Map_GPR_32bit(m_Opcode.rd, true, source1); } OrX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } else { uint32_t ConstReg = IsConst(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t MappedReg = IsConst(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { uint64_t Value; if (Is64Bit(ConstReg)) { Value = GetMipsReg(ConstReg); } else { Value = IsSigned(ConstReg) ? (int64_t)GetMipsRegLo_S(ConstReg) : GetMipsRegLo(ConstReg); } Map_GPR_64bit(m_Opcode.rd, MappedReg); if ((Value >> 32) != 0) { OrConstToX86Reg((uint32_t)(Value >> 32), GetMipsRegMapHi(m_Opcode.rd)); } uint32_t dwValue = (uint32_t)(Value & 0xFFFFFFFF); if (dwValue != 0) { OrConstToX86Reg(dwValue, GetMipsRegMapLo(m_Opcode.rd)); } } else { int Value = GetMipsRegLo(ConstReg); Map_GPR_32bit(m_Opcode.rd, true, MappedReg); if (Value != 0) { OrConstToX86Reg(Value, GetMipsRegMapLo(m_Opcode.rd)); } } } } else if (IsKnown(m_Opcode.rt) || IsKnown(m_Opcode.rs)) { int KnownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; int UnknownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (IsConst(KnownReg)) { uint64_t Value = Is64Bit(KnownReg) ? GetMipsReg(KnownReg) : GetMipsRegLo_S(KnownReg); uint32_t dwValue = (uint32_t)(Value & 0xFFFFFFFF); if (g_System->b32BitCore() && Is32Bit(KnownReg)) { Map_GPR_32bit(m_Opcode.rd, true, UnknownReg); if (dwValue != 0) { OrConstToX86Reg(dwValue, GetMipsRegMapLo(m_Opcode.rd)); } } else { Map_GPR_64bit(m_Opcode.rd, UnknownReg); if ((Value >> 32) != 0) { OrConstToX86Reg((uint32_t)(Value >> 32), GetMipsRegMapHi(m_Opcode.rd)); } if (dwValue != 0) { OrConstToX86Reg(dwValue, GetMipsRegMapLo(m_Opcode.rd)); } } } else { if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rd, true, KnownReg); OrVariableToX86Reg(&_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg], GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_64bit(m_Opcode.rd, KnownReg); OrVariableToX86Reg(&_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg], GetMipsRegMapHi(m_Opcode.rd)); OrVariableToX86Reg(&_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg], GetMipsRegMapLo(m_Opcode.rd)); } } } else { if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); OrVariableToX86Reg(&_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs], GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); OrVariableToX86Reg(&_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs], GetMipsRegMapHi(m_Opcode.rd)); OrVariableToX86Reg(&_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs], GetMipsRegMapLo(m_Opcode.rd)); } } if (g_System->bFastSP() && m_Opcode.rd == 29) { ResetX86Protection(); ResetMemoryStack(); } } void CX86RecompilerOps::SPECIAL_XOR() { if (m_Opcode.rd == 0) return; if (m_Opcode.rt == m_Opcode.rs) { UnMap_GPR(m_Opcode.rd, false); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, 0); return; } if (IsKnown(m_Opcode.rt) && IsKnown(m_Opcode.rs)) { if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { if (bHaveDebugger()) { g_Notify->DisplayError("XOR 1"); } CX86RecompilerOps::UnknownOpcode(); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, GetMipsRegLo(m_Opcode.rt) ^ GetMipsRegLo(m_Opcode.rs)); } } else if (IsMapped(m_Opcode.rt) && IsMapped(m_Opcode.rs)) { int source1 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rt : m_Opcode.rs; int source2 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rs : m_Opcode.rt; ProtectGPR(source1); ProtectGPR(source2); if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { Map_GPR_64bit(m_Opcode.rd, source1); if (Is64Bit(source2)) { XorX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapHi(source2)); } else if (IsSigned(source2)) { XorX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), Map_TempReg(x86_Any, source2, true)); } XorX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } else { if (IsSigned(m_Opcode.rt) != IsSigned(m_Opcode.rs)) { Map_GPR_32bit(m_Opcode.rd, true, source1); } else { Map_GPR_32bit(m_Opcode.rd, IsSigned(m_Opcode.rt), source1); } XorX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } } else { uint32_t ConstReg = IsConst(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t MappedReg = IsConst(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { uint32_t ConstHi, ConstLo; ConstHi = Is32Bit(ConstReg) ? (uint32_t)(GetMipsRegLo_S(ConstReg) >> 31) : GetMipsRegHi(ConstReg); ConstLo = GetMipsRegLo(ConstReg); Map_GPR_64bit(m_Opcode.rd, MappedReg); if (ConstHi != 0) { XorConstToX86Reg(GetMipsRegMapHi(m_Opcode.rd), ConstHi); } if (ConstLo != 0) { XorConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), ConstLo); } } else { int Value = GetMipsRegLo(ConstReg); if (IsSigned(m_Opcode.rt) != IsSigned(m_Opcode.rs)) { Map_GPR_32bit(m_Opcode.rd, true, MappedReg); } else { Map_GPR_32bit(m_Opcode.rd, IsSigned(MappedReg), MappedReg); } if (Value != 0) { XorConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), Value); } } } } else if (IsKnown(m_Opcode.rt) || IsKnown(m_Opcode.rs)) { int KnownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; int UnknownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (IsConst(KnownReg)) { uint64_t Value; if (Is64Bit(KnownReg)) { Value = GetMipsReg(KnownReg); Map_GPR_64bit(m_Opcode.rd, UnknownReg); if ((Value >> 32) != 0) { XorConstToX86Reg(GetMipsRegMapHi(m_Opcode.rd), (uint32_t)(Value >> 32)); } } else { Map_GPR_32bit(m_Opcode.rd, true, UnknownReg); if (IsSigned(KnownReg)) { Value = (int)GetMipsRegLo(KnownReg); } else { Value = GetMipsRegLo(KnownReg); } } uint32_t dwValue = (uint32_t)(Value & 0xFFFFFFFF); if (dwValue != 0) { XorConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), dwValue); } } else { if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rd, true, KnownReg); XorVariableToX86reg(&_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg], GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_64bit(m_Opcode.rd, KnownReg); XorVariableToX86reg(&_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg], GetMipsRegMapHi(m_Opcode.rd)); XorVariableToX86reg(&_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg], GetMipsRegMapLo(m_Opcode.rd)); } } } else if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); XorVariableToX86reg(&_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs], GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); XorVariableToX86reg(&_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs], GetMipsRegMapHi(m_Opcode.rd)); XorVariableToX86reg(&_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs], GetMipsRegMapLo(m_Opcode.rd)); } } void CX86RecompilerOps::SPECIAL_NOR() { if (IsKnown(m_Opcode.rt) && IsKnown(m_Opcode.rs)) { if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rd)) UnMap_GPR(m_Opcode.rd, false); if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { m_RegWorkingSet.SetMipsReg(m_Opcode.rd, ~((Is64Bit(m_Opcode.rt) ? GetMipsReg(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt)) | (Is64Bit(m_Opcode.rs) ? GetMipsReg(m_Opcode.rs) : (int64_t)GetMipsRegLo_S(m_Opcode.rs))) ); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } } else { m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, ~(GetMipsRegLo(m_Opcode.rt) | GetMipsRegLo(m_Opcode.rs))); m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } } else if (IsMapped(m_Opcode.rt) && IsMapped(m_Opcode.rs)) { int source1 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rt : m_Opcode.rs; int source2 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rs : m_Opcode.rt; ProtectGPR(m_Opcode.rt); ProtectGPR(m_Opcode.rs); if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { Map_GPR_64bit(m_Opcode.rd, source1); if (Is64Bit(source2)) { OrX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapHi(source2)); } else { OrX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), Map_TempReg(x86_Any, source2, true)); } } else { ProtectGPR(source2); Map_GPR_32bit(m_Opcode.rd, true, source1); } OrX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); } else { uint32_t ConstReg = IsConst(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t MappedReg = IsConst(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { uint64_t Value; if (Is64Bit(ConstReg)) { Value = GetMipsReg(ConstReg); } else { Value = IsSigned(ConstReg) ? (int64_t)GetMipsRegLo_S(ConstReg) : GetMipsRegLo(ConstReg); } Map_GPR_64bit(m_Opcode.rd, MappedReg); if ((Value >> 32) != 0) { OrConstToX86Reg((uint32_t)(Value >> 32), GetMipsRegMapHi(m_Opcode.rd)); } uint32_t dwValue = (uint32_t)(Value & 0xFFFFFFFF); if (dwValue != 0) { OrConstToX86Reg(dwValue, GetMipsRegMapLo(m_Opcode.rd)); } } else { int Value = GetMipsRegLo(ConstReg); Map_GPR_32bit(m_Opcode.rd, true, MappedReg); if (Value != 0) { OrConstToX86Reg(Value, GetMipsRegMapLo(m_Opcode.rd)); } } } } else if (IsKnown(m_Opcode.rt) || IsKnown(m_Opcode.rs)) { int KnownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; int UnknownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; if (IsConst(KnownReg)) { uint64_t Value = Is64Bit(KnownReg) ? GetMipsReg(KnownReg) : GetMipsRegLo_S(KnownReg); uint32_t dwValue = (uint32_t)(Value & 0xFFFFFFFF); if (g_System->b32BitCore() && Is32Bit(KnownReg)) { Map_GPR_32bit(m_Opcode.rd, true, UnknownReg); if (dwValue != 0) { OrConstToX86Reg(dwValue, GetMipsRegMapLo(m_Opcode.rd)); } } else { Map_GPR_64bit(m_Opcode.rd, UnknownReg); if ((Value >> 32) != 0) { OrConstToX86Reg((uint32_t)(Value >> 32), GetMipsRegMapHi(m_Opcode.rd)); } if (dwValue != 0) { OrConstToX86Reg(dwValue, GetMipsRegMapLo(m_Opcode.rd)); } } } else { if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rd, true, KnownReg); OrVariableToX86Reg(&_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg], GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_64bit(m_Opcode.rd, KnownReg); OrVariableToX86Reg(&_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg], GetMipsRegMapHi(m_Opcode.rd)); OrVariableToX86Reg(&_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg], GetMipsRegMapLo(m_Opcode.rd)); } } } else { if (g_System->b32BitCore()) { Map_GPR_32bit(m_Opcode.rd, true, m_Opcode.rt); OrVariableToX86Reg(&_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs], GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); OrVariableToX86Reg(&_GPR[m_Opcode.rs].W[1], CRegName::GPR_Hi[m_Opcode.rs], GetMipsRegMapHi(m_Opcode.rd)); OrVariableToX86Reg(&_GPR[m_Opcode.rs].W[0], CRegName::GPR_Lo[m_Opcode.rs], GetMipsRegMapLo(m_Opcode.rd)); } } if (IsMapped(m_Opcode.rd)) { if (Is64Bit(m_Opcode.rd)) { NotX86Reg(GetMipsRegMapHi(m_Opcode.rd)); } NotX86Reg(GetMipsRegMapLo(m_Opcode.rd)); } } void CX86RecompilerOps::SPECIAL_SLT() { if (m_Opcode.rd == 0) { return; } if (IsKnown(m_Opcode.rt) && IsKnown(m_Opcode.rs)) { if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { g_Notify->DisplayError("1"); CX86RecompilerOps::UnknownOpcode(); } else { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); if (GetMipsRegLo_S(m_Opcode.rs) < GetMipsRegLo_S(m_Opcode.rt)) { m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, 1); } else { m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, 0); } } } else if (IsMapped(m_Opcode.rt) && IsMapped(m_Opcode.rs)) { ProtectGPR(m_Opcode.rt); ProtectGPR(m_Opcode.rs); if ((Is64Bit(m_Opcode.rt) && Is64Bit(m_Opcode.rs)) || (!g_System->b32BitCore() && (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)))) { uint8_t *Jump[2]; CompX86RegToX86Reg( Is64Bit(m_Opcode.rs) ? GetMipsRegMapHi(m_Opcode.rs) : Map_TempReg(x86_Any, m_Opcode.rs, true), Is64Bit(m_Opcode.rt) ? GetMipsRegMapHi(m_Opcode.rt) : Map_TempReg(x86_Any, m_Opcode.rt, true) ); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; SetlVariable(&m_BranchCompare, "m_BranchCompare"); JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rs), GetMipsRegMapLo(m_Opcode.rt)); SetbVariable(&m_BranchCompare, "m_BranchCompare"); CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_32bit(m_Opcode.rd, true, -1); CompX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rs), GetMipsRegMapLo(m_Opcode.rt)); if (GetMipsRegMapLo(m_Opcode.rd) > x86_EBX) { SetlVariable(&m_BranchCompare, "m_BranchCompare"); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { Setl(GetMipsRegMapLo(m_Opcode.rd)); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), 1); } } } else { uint32_t ConstReg = IsConst(m_Opcode.rs) ? m_Opcode.rs : m_Opcode.rt; uint32_t MappedReg = IsConst(m_Opcode.rs) ? m_Opcode.rt : m_Opcode.rs; ProtectGPR(MappedReg); if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { uint8_t *Jump[2]; CompConstToX86reg( Is64Bit(MappedReg) ? GetMipsRegMapHi(MappedReg) : Map_TempReg(x86_Any, MappedReg, true), Is64Bit(ConstReg) ? GetMipsRegHi(ConstReg) : (GetMipsRegLo_S(ConstReg) >> 31) ); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; if (MappedReg == m_Opcode.rs) { SetlVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetgVariable(&m_BranchCompare, "m_BranchCompare"); } JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompConstToX86reg(GetMipsRegMapLo(MappedReg), GetMipsRegLo(ConstReg)); if (MappedReg == m_Opcode.rs) { SetbVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetaVariable(&m_BranchCompare, "m_BranchCompare"); } CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { uint32_t Constant = GetMipsRegLo(ConstReg); Map_GPR_32bit(m_Opcode.rd, true, -1); CompConstToX86reg(GetMipsRegMapLo(MappedReg), Constant); if (GetMipsRegMapLo(m_Opcode.rd) > x86_EBX) { if (MappedReg == m_Opcode.rs) { SetlVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetgVariable(&m_BranchCompare, "m_BranchCompare"); } MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { if (MappedReg == m_Opcode.rs) { Setl(GetMipsRegMapLo(m_Opcode.rd)); } else { Setg(GetMipsRegMapLo(m_Opcode.rd)); } AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), 1); } } } } else if (IsKnown(m_Opcode.rt) || IsKnown(m_Opcode.rs)) { uint32_t KnownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t UnknownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; uint8_t *Jump[2]; if (!g_System->b32BitCore()) { if (Is64Bit(KnownReg)) { if (IsConst(KnownReg)) { CompConstToVariable(GetMipsRegHi(KnownReg), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else { CompX86regToVariable(GetMipsRegMapHi(KnownReg), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } } else { if (IsConst(KnownReg)) { CompConstToVariable((GetMipsRegLo_S(KnownReg) >> 31), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else { ProtectGPR(KnownReg); CompX86regToVariable(Map_TempReg(x86_Any, KnownReg, true), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } } JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; if (KnownReg == (IsConst(KnownReg) ? m_Opcode.rs : m_Opcode.rt)) { SetgVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetlVariable(&m_BranchCompare, "m_BranchCompare"); } JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); if (IsConst(KnownReg)) { CompConstToVariable(GetMipsRegLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } else { CompX86regToVariable(GetMipsRegMapLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } if (KnownReg == (IsConst(KnownReg) ? m_Opcode.rs : m_Opcode.rt)) { SetaVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetbVariable(&m_BranchCompare, "m_BranchCompare"); } CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { if (IsMapped(KnownReg)) { ProtectGPR(KnownReg); } bool bConstant = IsConst(KnownReg); uint32_t Value = IsConst(KnownReg) ? GetMipsRegLo(KnownReg) : 0; Map_GPR_32bit(m_Opcode.rd, true, -1); if (bConstant) { CompConstToVariable(Value, &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } else { CompX86regToVariable(GetMipsRegMapLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } if (GetMipsRegMapLo(m_Opcode.rd) > x86_EBX) { if (KnownReg == (bConstant ? m_Opcode.rs : m_Opcode.rt)) { SetgVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetlVariable(&m_BranchCompare, "m_BranchCompare"); } MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { if (KnownReg == (bConstant ? m_Opcode.rs : m_Opcode.rt)) { Setg(GetMipsRegMapLo(m_Opcode.rd)); } else { Setl(GetMipsRegMapLo(m_Opcode.rd)); } AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), 1); } } } else if (g_System->b32BitCore()) { x86Reg Reg = Map_TempReg(x86_Any, m_Opcode.rs, false); Map_GPR_32bit(m_Opcode.rd, false, -1); CompX86regToVariable(Reg, &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); if (GetMipsRegMapLo(m_Opcode.rd) > x86_EBX) { SetlVariable(&m_BranchCompare, "m_BranchCompare"); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { Setl(GetMipsRegMapLo(m_Opcode.rd)); AndConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), 1); } } else { uint8_t *Jump[2] = { NULL, NULL }; x86Reg Reg = Map_TempReg(x86_Any, m_Opcode.rs, true); CompX86regToVariable(Reg, &_GPR[m_Opcode.rt].W[1], CRegName::GPR_Hi[m_Opcode.rt]); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; SetlVariable(&m_BranchCompare, "m_BranchCompare"); JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompX86regToVariable(Map_TempReg(Reg, m_Opcode.rs, false), &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); SetbVariable(&m_BranchCompare, "m_BranchCompare"); if (Jump[1]) { CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); } Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } } void CX86RecompilerOps::SPECIAL_SLTU() { if (m_Opcode.rd == 0) { return; } if (IsKnown(m_Opcode.rt) && IsKnown(m_Opcode.rs)) { if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { g_Notify->DisplayError("1"); CX86RecompilerOps::UnknownOpcode(); } else { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); if (GetMipsRegLo(m_Opcode.rs) < GetMipsRegLo(m_Opcode.rt)) { m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, 1); } else { m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, 0); } } } else if (IsMapped(m_Opcode.rt) && IsMapped(m_Opcode.rs)) { ProtectGPR(m_Opcode.rt); ProtectGPR(m_Opcode.rs); if ((Is64Bit(m_Opcode.rt) && Is64Bit(m_Opcode.rs)) || (!g_System->b32BitCore() && (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)))) { uint8_t *Jump[2]; CompX86RegToX86Reg( Is64Bit(m_Opcode.rs) ? GetMipsRegMapHi(m_Opcode.rs) : Map_TempReg(x86_Any, m_Opcode.rs, true), Is64Bit(m_Opcode.rt) ? GetMipsRegMapHi(m_Opcode.rt) : Map_TempReg(x86_Any, m_Opcode.rt, true) ); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; SetbVariable(&m_BranchCompare, "m_BranchCompare"); JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rs), GetMipsRegMapLo(m_Opcode.rt)); SetbVariable(&m_BranchCompare, "m_BranchCompare"); CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { CompX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rs), GetMipsRegMapLo(m_Opcode.rt)); SetbVariable(&m_BranchCompare, "m_BranchCompare"); Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } } else { if (Is64Bit(m_Opcode.rt) || Is64Bit(m_Opcode.rs)) { uint32_t ConstHi, ConstLo, ConstReg, MappedReg; x86Reg MappedRegHi, MappedRegLo; uint8_t *Jump[2]; ConstReg = IsConst(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; MappedReg = IsConst(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; ConstLo = GetMipsRegLo_S(ConstReg); ConstHi = GetMipsRegLo_S(ConstReg) >> 31; if (Is64Bit(ConstReg)) { ConstHi = GetMipsRegHi(ConstReg); } ProtectGPR(MappedReg); MappedRegLo = GetMipsRegMapLo(MappedReg); MappedRegHi = GetMipsRegMapHi(MappedReg); if (Is32Bit(MappedReg)) { MappedRegHi = Map_TempReg(x86_Any, MappedReg, true); } Map_GPR_32bit(m_Opcode.rd, true, -1); CompConstToX86reg(MappedRegHi, ConstHi); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; if (MappedReg == m_Opcode.rs) { SetbVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetaVariable(&m_BranchCompare, "m_BranchCompare"); } JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompConstToX86reg(MappedRegLo, ConstLo); if (MappedReg == m_Opcode.rs) { SetbVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetaVariable(&m_BranchCompare, "m_BranchCompare"); } CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { uint32_t Const = IsConst(m_Opcode.rs) ? GetMipsRegLo(m_Opcode.rs) : GetMipsRegLo(m_Opcode.rt); uint32_t MappedReg = IsConst(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; CompConstToX86reg(GetMipsRegMapLo(MappedReg), Const); if (MappedReg == m_Opcode.rs) { SetbVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetaVariable(&m_BranchCompare, "m_BranchCompare"); } Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } } } else if (IsKnown(m_Opcode.rt) || IsKnown(m_Opcode.rs)) { uint32_t KnownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rt : m_Opcode.rs; uint32_t UnknownReg = IsKnown(m_Opcode.rt) ? m_Opcode.rs : m_Opcode.rt; uint8_t *Jump[2] = { NULL, NULL }; ProtectGPR(KnownReg); if (g_System->b32BitCore()) { uint32_t TestReg = IsConst(KnownReg) ? m_Opcode.rs : m_Opcode.rt; if (IsConst(KnownReg)) { uint32_t Value = GetMipsRegLo(KnownReg); Map_GPR_32bit(m_Opcode.rd, true, -1); CompConstToVariable(Value, &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } else { CompX86regToVariable(GetMipsRegMapLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } if (KnownReg == TestReg) { SetaVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetbVariable(&m_BranchCompare, "m_BranchCompare"); } } else { if (IsConst(KnownReg)) { if (Is64Bit(KnownReg)) { CompConstToVariable(GetMipsRegHi(KnownReg), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else { CompConstToVariable((GetMipsRegLo_S(KnownReg) >> 31), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } } else { if (Is64Bit(KnownReg)) { CompX86regToVariable(GetMipsRegMapHi(KnownReg), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } else { ProtectGPR(KnownReg); CompX86regToVariable(Map_TempReg(x86_Any, KnownReg, true), &_GPR[UnknownReg].W[1], CRegName::GPR_Hi[UnknownReg]); } } JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; if (KnownReg == (IsConst(KnownReg) ? m_Opcode.rs : m_Opcode.rt)) { SetaVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetbVariable(&m_BranchCompare, "m_BranchCompare"); } JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); if (IsConst(KnownReg)) { CompConstToVariable(GetMipsRegLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } else { CompX86regToVariable(GetMipsRegMapLo(KnownReg), &_GPR[UnknownReg].W[0], CRegName::GPR_Lo[UnknownReg]); } if (KnownReg == (IsConst(KnownReg) ? m_Opcode.rs : m_Opcode.rt)) { SetaVariable(&m_BranchCompare, "m_BranchCompare"); } else { SetbVariable(&m_BranchCompare, "m_BranchCompare"); } if (Jump[1]) { CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); } } Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else if (g_System->b32BitCore()) { x86Reg Reg = Map_TempReg(x86_Any, m_Opcode.rs, false); Map_GPR_32bit(m_Opcode.rd, false, -1); CompX86regToVariable(Reg, &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); SetbVariable(&m_BranchCompare, "m_BranchCompare"); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } else { uint8_t *Jump[2] = { NULL, NULL }; x86Reg Reg = Map_TempReg(x86_Any, m_Opcode.rs, true); CompX86regToVariable(Reg, &_GPR[m_Opcode.rt].W[1], CRegName::GPR_Hi[m_Opcode.rt]); JeLabel8("Low Compare", 0); Jump[0] = *g_RecompPos - 1; SetbVariable(&m_BranchCompare, "m_BranchCompare"); JmpLabel8("Continue", 0); Jump[1] = *g_RecompPos - 1; CPU_Message(""); CPU_Message(" Low Compare:"); SetJump8(Jump[0], *g_RecompPos); CompX86regToVariable(Map_TempReg(Reg, m_Opcode.rs, false), &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); SetbVariable(&m_BranchCompare, "m_BranchCompare"); if (Jump[1]) { CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump[1], *g_RecompPos); } Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&m_BranchCompare, "m_BranchCompare", GetMipsRegMapLo(m_Opcode.rd)); } } void CX86RecompilerOps::SPECIAL_DADD() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsReg(m_Opcode.rd, Is64Bit(m_Opcode.rs) ? GetMipsReg(m_Opcode.rs) : (int64_t)GetMipsRegLo_S(m_Opcode.rs) + Is64Bit(m_Opcode.rt) ? GetMipsReg(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt) ); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } } else { int source1 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rt : m_Opcode.rs; int source2 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rs : m_Opcode.rt; if (IsMapped(source2)) { ProtectGPR(source2); } Map_GPR_64bit(m_Opcode.rd, source1); if (IsConst(source2)) { AddConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegLo(source2)); AddConstToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegHi(source2)); } else if (IsMapped(source2)) { x86Reg HiReg = Is64Bit(source2) ? GetMipsRegMapHi(source2) : Map_TempReg(x86_Any, source2, true); AddX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); AdcX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), HiReg); } else { AddVariableToX86reg(GetMipsRegMapLo(m_Opcode.rd), &_GPR[source2].W[0], CRegName::GPR_Lo[source2]); AdcVariableToX86reg(GetMipsRegMapHi(m_Opcode.rd), &_GPR[source2].W[1], CRegName::GPR_Hi[source2]); } } } void CX86RecompilerOps::SPECIAL_DADDU() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { int64_t ValRs = Is64Bit(m_Opcode.rs) ? GetMipsReg(m_Opcode.rs) : (int64_t)GetMipsRegLo_S(m_Opcode.rs); int64_t ValRt = Is64Bit(m_Opcode.rt) ? GetMipsReg(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt); if (IsMapped(m_Opcode.rd)) UnMap_GPR(m_Opcode.rd, false); m_RegWorkingSet.SetMipsReg(m_Opcode.rd, ValRs + ValRt); if ((GetMipsRegHi(m_Opcode.rd) == 0) && (GetMipsRegLo(m_Opcode.rd) & 0x80000000) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if ((GetMipsRegHi(m_Opcode.rd) == 0xFFFFFFFF) && (GetMipsRegLo(m_Opcode.rd) & 0x80000000) != 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } } else { int source1 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rt : m_Opcode.rs; int source2 = m_Opcode.rd == m_Opcode.rt ? m_Opcode.rs : m_Opcode.rt; if (IsMapped(source2)) { ProtectGPR(source2); } Map_GPR_64bit(m_Opcode.rd, source1); if (IsConst(source2)) { uint32_t LoReg = GetMipsRegLo(source2); AddConstToX86Reg(GetMipsRegMapLo(m_Opcode.rd), LoReg); if (LoReg != 0) { AdcConstToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegHi(source2)); } else { AddConstToX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegHi(source2)); } } else if (IsMapped(source2)) { x86Reg HiReg = Is64Bit(source2) ? GetMipsRegMapHi(source2) : Map_TempReg(x86_Any, source2, true); AddX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(source2)); AdcX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), HiReg); } else { AddVariableToX86reg(GetMipsRegMapLo(m_Opcode.rd), &_GPR[source2].W[0], CRegName::GPR_Lo[source2]); AdcVariableToX86reg(GetMipsRegMapHi(m_Opcode.rd), &_GPR[source2].W[1], CRegName::GPR_Hi[source2]); } } } void CX86RecompilerOps::SPECIAL_DSUB() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsReg(m_Opcode.rd, Is64Bit(m_Opcode.rs) ? GetMipsReg(m_Opcode.rs) : (int64_t)GetMipsRegLo_S(m_Opcode.rs) - Is64Bit(m_Opcode.rt) ? GetMipsReg(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt) ); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } } else { if (m_Opcode.rd == m_Opcode.rt) { x86Reg HiReg = Map_TempReg(x86_Any, m_Opcode.rt, true); x86Reg LoReg = Map_TempReg(x86_Any, m_Opcode.rt, false); Map_GPR_64bit(m_Opcode.rd, m_Opcode.rs); SubX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), LoReg); SbbX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), HiReg); return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } Map_GPR_64bit(m_Opcode.rd, m_Opcode.rs); if (IsConst(m_Opcode.rt)) { SubConstFromX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegLo(m_Opcode.rt)); SbbConstFromX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegHi(m_Opcode.rt)); } else if (IsMapped(m_Opcode.rt)) { x86Reg HiReg = Is64Bit(m_Opcode.rt) ? GetMipsRegMapHi(m_Opcode.rt) : Map_TempReg(x86_Any, m_Opcode.rt, true); SubX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rt)); SbbX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), HiReg); } else { SubVariableFromX86reg(GetMipsRegMapLo(m_Opcode.rd), &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); SbbVariableFromX86reg(GetMipsRegMapHi(m_Opcode.rd), &_GPR[m_Opcode.rt].W[1], CRegName::GPR_Hi[m_Opcode.rt]); } } } void CX86RecompilerOps::SPECIAL_DSUBU() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt) && IsConst(m_Opcode.rs)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsReg(m_Opcode.rd, Is64Bit(m_Opcode.rs) ? GetMipsReg(m_Opcode.rs) : (int64_t)GetMipsRegLo_S(m_Opcode.rs) - Is64Bit(m_Opcode.rt) ? GetMipsReg(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt) ); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } } else { if (m_Opcode.rd == m_Opcode.rt) { x86Reg HiReg = Map_TempReg(x86_Any, m_Opcode.rt, true); x86Reg LoReg = Map_TempReg(x86_Any, m_Opcode.rt, false); Map_GPR_64bit(m_Opcode.rd, m_Opcode.rs); SubX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), LoReg); SbbX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), HiReg); return; } if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); } Map_GPR_64bit(m_Opcode.rd, m_Opcode.rs); if (IsConst(m_Opcode.rt)) { SubConstFromX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegLo(m_Opcode.rt)); SbbConstFromX86Reg(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegHi(m_Opcode.rt)); } else if (IsMapped(m_Opcode.rt)) { x86Reg HiReg = Is64Bit(m_Opcode.rt) ? GetMipsRegMapHi(m_Opcode.rt) : Map_TempReg(x86_Any, m_Opcode.rt, true); SubX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rt)); SbbX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rd), HiReg); } else { SubVariableFromX86reg(GetMipsRegMapLo(m_Opcode.rd), &_GPR[m_Opcode.rt].W[0], CRegName::GPR_Lo[m_Opcode.rt]); SbbVariableFromX86reg(GetMipsRegMapHi(m_Opcode.rd), &_GPR[m_Opcode.rt].W[1], CRegName::GPR_Hi[m_Opcode.rt]); } } } void CX86RecompilerOps::SPECIAL_DSLL() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } int64_t Value = Is64Bit(m_Opcode.rt) ? GetMipsReg_S(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt); m_RegWorkingSet.SetMipsReg(m_Opcode.rd, Value << m_Opcode.sa); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } return; } Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); ShiftLeftDoubleImmed(GetMipsRegMapHi(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); ShiftLeftSignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } void CX86RecompilerOps::SPECIAL_DSRL() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } int64_t Value = Is64Bit(m_Opcode.rt) ? GetMipsReg_S(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt); m_RegWorkingSet.SetMipsReg(m_Opcode.rd, Value >> m_Opcode.sa); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } return; } Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); ShiftRightDoubleImmed(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapHi(m_Opcode.rd), (uint8_t)m_Opcode.sa); ShiftRightUnsignImmed(GetMipsRegMapHi(m_Opcode.rd), (uint8_t)m_Opcode.sa); } void CX86RecompilerOps::SPECIAL_DSRA() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt)) { if (IsMapped(m_Opcode.rd)) { UnMap_GPR(m_Opcode.rd, false); } int64_t Value = Is64Bit(m_Opcode.rt) ? GetMipsReg_S(m_Opcode.rt) : (int64_t)GetMipsRegLo_S(m_Opcode.rt); m_RegWorkingSet.SetMipsReg_S(m_Opcode.rd, Value >> m_Opcode.sa); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } return; } Map_GPR_64bit(m_Opcode.rd, m_Opcode.rt); ShiftRightDoubleImmed(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapHi(m_Opcode.rd), (uint8_t)m_Opcode.sa); ShiftRightSignImmed(GetMipsRegMapHi(m_Opcode.rd), (uint8_t)m_Opcode.sa); } void CX86RecompilerOps::SPECIAL_DSLL32() { if (m_Opcode.rd == 0) { return; } if (IsConst(m_Opcode.rt)) { if (m_Opcode.rt != m_Opcode.rd) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegHi(m_Opcode.rd, GetMipsRegLo(m_Opcode.rt) << m_Opcode.sa); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, 0); if (GetMipsRegLo_S(m_Opcode.rd) < 0 && GetMipsRegHi_S(m_Opcode.rd) == -1) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else if (GetMipsRegLo_S(m_Opcode.rd) >= 0 && GetMipsRegHi_S(m_Opcode.rd) == 0) { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); } else { m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); } } else if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); Map_GPR_64bit(m_Opcode.rd, -1); if (m_Opcode.rt != m_Opcode.rd) { MoveX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rt), GetMipsRegMapHi(m_Opcode.rd)); } else { CPU_Message(" regcache: switch hi (%s) with lo (%s) for %s", x86_Name(GetMipsRegMapHi(m_Opcode.rt)), x86_Name(GetMipsRegMapLo(m_Opcode.rt)), CRegName::GPR[m_Opcode.rt]); x86Reg HiReg = GetMipsRegMapHi(m_Opcode.rt); m_RegWorkingSet.SetMipsRegMapHi(m_Opcode.rt, GetMipsRegMapLo(m_Opcode.rt)); m_RegWorkingSet.SetMipsRegMapLo(m_Opcode.rt, HiReg); } if ((uint8_t)m_Opcode.sa != 0) { ShiftLeftSignImmed(GetMipsRegMapHi(m_Opcode.rd), (uint8_t)m_Opcode.sa); } XorX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rd)); } else { Map_GPR_64bit(m_Opcode.rd, -1); MoveVariableToX86reg(&_GPR[m_Opcode.rt], CRegName::GPR_Hi[m_Opcode.rt], GetMipsRegMapHi(m_Opcode.rd)); if ((uint8_t)m_Opcode.sa != 0) { ShiftLeftSignImmed(GetMipsRegMapHi(m_Opcode.rd), (uint8_t)m_Opcode.sa); } XorX86RegToX86Reg(GetMipsRegMapLo(m_Opcode.rd), GetMipsRegMapLo(m_Opcode.rd)); } } void CX86RecompilerOps::SPECIAL_DSRL32() { if (IsConst(m_Opcode.rt)) { if (m_Opcode.rt != m_Opcode.rd) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_64); m_RegWorkingSet.SetMipsReg(m_Opcode.rd, (uint32_t)(GetMipsRegHi(m_Opcode.rt) >> m_Opcode.sa)); } else if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); if (Is64Bit(m_Opcode.rt)) { if (m_Opcode.rt == m_Opcode.rd) { CPU_Message(" regcache: switch hi (%s) with lo (%s) for %s", x86_Name(GetMipsRegMapHi(m_Opcode.rt)), x86_Name(GetMipsRegMapLo(m_Opcode.rt)), CRegName::GPR[m_Opcode.rt]); x86Reg HiReg = GetMipsRegMapHi(m_Opcode.rt); m_RegWorkingSet.SetMipsRegMapHi(m_Opcode.rt, GetMipsRegMapLo(m_Opcode.rt)); m_RegWorkingSet.SetMipsRegMapLo(m_Opcode.rt, HiReg); Map_GPR_32bit(m_Opcode.rd, false, -1); } else { Map_GPR_32bit(m_Opcode.rd, false, -1); MoveX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rt), GetMipsRegMapLo(m_Opcode.rd)); } if ((uint8_t)m_Opcode.sa != 0) { ShiftRightUnsignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } } else { CX86RecompilerOps::UnknownOpcode(); } } else { Map_GPR_32bit(m_Opcode.rd, false, -1); MoveVariableToX86reg(&_GPR[m_Opcode.rt].UW[1], CRegName::GPR_Hi[m_Opcode.rt], GetMipsRegMapLo(m_Opcode.rd)); if ((uint8_t)m_Opcode.sa != 0) { ShiftRightUnsignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } } } void CX86RecompilerOps::SPECIAL_DSRA32() { if (IsConst(m_Opcode.rt)) { if (m_Opcode.rt != m_Opcode.rd) { UnMap_GPR(m_Opcode.rd, false); } m_RegWorkingSet.SetMipsRegState(m_Opcode.rd, CRegInfo::STATE_CONST_32_SIGN); m_RegWorkingSet.SetMipsRegLo(m_Opcode.rd, (uint32_t)(GetMipsReg_S(m_Opcode.rt) >> (m_Opcode.sa + 32))); } else if (IsMapped(m_Opcode.rt)) { ProtectGPR(m_Opcode.rt); if (Is64Bit(m_Opcode.rt)) { if (m_Opcode.rt == m_Opcode.rd) { CPU_Message(" regcache: switch hi (%s) with lo (%s) for %s", x86_Name(GetMipsRegMapHi(m_Opcode.rt)), x86_Name(GetMipsRegMapLo(m_Opcode.rt)), CRegName::GPR[m_Opcode.rt]); x86Reg HiReg = GetMipsRegMapHi(m_Opcode.rt); m_RegWorkingSet.SetMipsRegMapHi(m_Opcode.rt, GetMipsRegMapLo(m_Opcode.rt)); m_RegWorkingSet.SetMipsRegMapLo(m_Opcode.rt, HiReg); Map_GPR_32bit(m_Opcode.rd, true, -1); } else { Map_GPR_32bit(m_Opcode.rd, true, -1); MoveX86RegToX86Reg(GetMipsRegMapHi(m_Opcode.rt), GetMipsRegMapLo(m_Opcode.rd)); } if ((uint8_t)m_Opcode.sa != 0) { ShiftRightSignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } } else { CX86RecompilerOps::UnknownOpcode(); } } else { Map_GPR_32bit(m_Opcode.rd, true, -1); MoveVariableToX86reg(&_GPR[m_Opcode.rt].UW[1], CRegName::GPR_Lo[m_Opcode.rt], GetMipsRegMapLo(m_Opcode.rd)); if ((uint8_t)m_Opcode.sa != 0) { ShiftRightSignImmed(GetMipsRegMapLo(m_Opcode.rd), (uint8_t)m_Opcode.sa); } } } /************************** COP0 functions **************************/ void CX86RecompilerOps::COP0_MF() { switch (m_Opcode.rd) { case 9: //Count m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); #else PushImm32((uint32_t)g_SystemTimer); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); } Map_GPR_32bit(m_Opcode.rt, true, -1); MoveVariableToX86reg(&_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd], GetMipsRegMapLo(m_Opcode.rt)); } void CX86RecompilerOps::COP0_MT() { uint8_t *Jump; switch (m_Opcode.rd) { case 0: //Index case 2: //EntryLo0 case 3: //EntryLo1 case 4: //Context case 5: //PageMask case 10: //Entry Hi case 14: //EPC case 16: //Config case 18: //WatchLo case 19: //WatchHi case 28: //Tag lo case 29: //Tag Hi case 30: //ErrEPC if (IsConst(m_Opcode.rt)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rt, false), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } if (m_Opcode.rd == 4) //Context { AndConstToVariable(0xFF800000, &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } break; case 11: //Compare m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); #else PushImm32((uint32_t)g_SystemTimer); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); if (IsConst(m_Opcode.rt)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rt, false), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } AndConstToVariable((uint32_t)~CAUSE_IP7, &g_Reg->FAKE_CAUSE_REGISTER, "FAKE_CAUSE_REGISTER"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::UpdateCompareTimer), "CSystemTimer::UpdateCompareTimer"); #else PushImm32((uint32_t)g_SystemTimer); Call_Direct(AddressOf(&CSystemTimer::UpdateCompareTimer), "CSystemTimer::UpdateCompareTimer"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 9: //Count m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); #else PushImm32((uint32_t)g_SystemTimer); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); if (IsConst(m_Opcode.rt)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rt, false), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } m_RegWorkingSet.BeforeCallDirect(); MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::UpdateCompareTimer), "CSystemTimer::UpdateCompareTimer"); m_RegWorkingSet.AfterCallDirect(); break; case 12: //Status { x86Reg OldStatusReg = Map_TempReg(x86_Any, -1, false); MoveVariableToX86reg(&_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd], OldStatusReg); if (IsConst(m_Opcode.rt)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rt, false), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } XorVariableToX86reg(&_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd], OldStatusReg); TestConstToX86Reg(STATUS_FR, OldStatusReg); JeLabel8("FpuFlagFine", 0); Jump = *g_RecompPos - 1; m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::FixFpuLocations), "CRegisters::FixFpuLocations"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::FixFpuLocations), "CRegisters::FixFpuLocations"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); SetJump8(Jump, *g_RecompPos); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); } break; case 6: //Wired m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); #else PushImm32((uint32_t)g_SystemTimer); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); if (IsConst(m_Opcode.rt)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rt), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rt, false), &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); } break; case 13: //cause AndConstToVariable(0xFFFFCFF, &_CP0[m_Opcode.rd], CRegName::Cop0[m_Opcode.rd]); if (IsConst(m_Opcode.rt)) { if ((GetMipsRegLo(m_Opcode.rt) & 0x300) != 0 && bHaveDebugger()) { g_Notify->DisplayError("Set IP0 or IP1"); } } /*else if (bHaveDebugger()) { UnknownOpcode(); return; }*/ m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; default: UnknownOpcode(); } } /************************** COP0 CO functions ***********************/ void CX86RecompilerOps::COP0_CO_TLBR(void) { if (!g_System->bUseTlb()) { return; } m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_TLB, x86_ECX); Call_Direct(AddressOf(&CTLB::ReadEntry), "CTLB::ReadEntry"); #else PushImm32((uint32_t)g_TLB); Call_Direct(AddressOf(&CTLB::ReadEntry), "CTLB::ReadEntry"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::COP0_CO_TLBWI(void) { if (!g_System->bUseTlb()) { return; } m_RegWorkingSet.BeforeCallDirect(); PushImm32("false", 0); MoveVariableToX86reg(&g_Reg->INDEX_REGISTER, "INDEX_REGISTER", x86_ECX); AndConstToX86Reg(x86_ECX, 0x1F); Push(x86_ECX); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_TLB, x86_ECX); Call_Direct(AddressOf(&CTLB::WriteEntry), "CTLB::WriteEntry"); #else PushImm32((uint32_t)g_TLB); Call_Direct(AddressOf(&CTLB::WriteEntry), "CTLB::WriteEntry"); AddConstToX86Reg(x86_ESP, 12); #endif m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::COP0_CO_TLBWR(void) { if (!g_System->bUseTlb()) { return; } m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); #else PushImm32((uint32_t)g_SystemTimer); Call_Direct(AddressOf(&CSystemTimer::UpdateTimers), "CSystemTimer::UpdateTimers"); AddConstToX86Reg(x86_ESP, 4); #endif PushImm32("true", true); MoveVariableToX86reg(&g_Reg->RANDOM_REGISTER, "RANDOM_REGISTER", x86_ECX); AndConstToX86Reg(x86_ECX, 0x1F); Push(x86_ECX); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_TLB, x86_ECX); Call_Direct(AddressOf(&CTLB::WriteEntry), "CTLB::WriteEntry"); #else PushImm32((uint32_t)g_TLB); Call_Direct(AddressOf(&CTLB::WriteEntry), "CTLB::WriteEntry"); AddConstToX86Reg(x86_ESP, 12); #endif m_RegWorkingSet.AfterCallDirect(); } void CX86RecompilerOps::COP0_CO_TLBP(void) { if (!g_System->bUseTlb()) { return; } m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_TLB, x86_ECX); Call_Direct(AddressOf(&CTLB::Probe), "CTLB::TLB_Probe"); #else PushImm32((uint32_t)g_TLB); Call_Direct(AddressOf(&CTLB::Probe), "CTLB::TLB_Probe"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); } void x86_compiler_COP0_CO_ERET() { if ((g_Reg->STATUS_REGISTER & STATUS_ERL) != 0) { g_Reg->m_PROGRAM_COUNTER = g_Reg->ERROREPC_REGISTER; g_Reg->STATUS_REGISTER &= ~STATUS_ERL; } else { g_Reg->m_PROGRAM_COUNTER = g_Reg->EPC_REGISTER; g_Reg->STATUS_REGISTER &= ~STATUS_EXL; } g_Reg->m_LLBit = 0; g_Reg->CheckInterrupts(); } void CX86RecompilerOps::COP0_CO_ERET(void) { m_RegWorkingSet.WriteBackRegisters(); Call_Direct((void *)x86_compiler_COP0_CO_ERET, "x86_compiler_COP0_CO_ERET"); UpdateCounters(m_RegWorkingSet, true, true); CompileExit(m_CompilePC, (uint32_t)-1, m_RegWorkingSet, CExitInfo::Normal, true, NULL); m_NextInstruction = END_BLOCK; } /************************** FPU Options **************************/ void CX86RecompilerOps::ChangeDefaultRoundingModel() { switch ((_FPCR[31] & 3)) { case 0: *_RoundingModel = FE_TONEAREST; break; case 1: *_RoundingModel = FE_TOWARDZERO; break; case 2: *_RoundingModel = FE_UPWARD; break; case 3: *_RoundingModel = FE_DOWNWARD; break; } } /************************** COP1 functions **************************/ void CX86RecompilerOps::COP1_MF() { CompileCop1Test(); UnMap_FPR(m_Opcode.fs, true); Map_GPR_32bit(m_Opcode.rt, true, -1); x86Reg TempReg = Map_TempReg(x86_Any, -1, false); char Name[100]; sprintf(Name, "_FPR_S[%d]", m_Opcode.fs); MoveVariableToX86reg((uint8_t *)&_FPR_S[m_Opcode.fs], Name, TempReg); MoveX86PointerToX86reg(GetMipsRegMapLo(m_Opcode.rt), TempReg); } void CX86RecompilerOps::COP1_DMF() { x86Reg TempReg; char Name[50]; CompileCop1Test(); UnMap_FPR(m_Opcode.fs, true); Map_GPR_64bit(m_Opcode.rt, -1); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", m_Opcode.fs); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.fs], Name, TempReg); AddConstToX86Reg(TempReg, 4); MoveX86PointerToX86reg(GetMipsRegMapHi(m_Opcode.rt), TempReg); sprintf(Name, "_FPR_D[%d]", m_Opcode.fs); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.fs], Name, TempReg); MoveX86PointerToX86reg(GetMipsRegMapLo(m_Opcode.rt), TempReg); } void CX86RecompilerOps::COP1_CF() { CompileCop1Test(); if (m_Opcode.fs != 31 && m_Opcode.fs != 0) { UnknownOpcode(); return; } Map_GPR_32bit(m_Opcode.rt, true, -1); MoveVariableToX86reg(&_FPCR[m_Opcode.fs], CRegName::FPR_Ctrl[m_Opcode.fs], GetMipsRegMapLo(m_Opcode.rt)); } void CX86RecompilerOps::COP1_MT() { CompileCop1Test(); if ((m_Opcode.fs & 1) != 0) { if (RegInStack(m_Opcode.fs - 1, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs - 1, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs - 1, true); } } UnMap_FPR(m_Opcode.fs, true); x86Reg TempReg = Map_TempReg(x86_Any, -1, false); char Name[50]; sprintf(Name, "_FPR_S[%d]", m_Opcode.fs); MoveVariableToX86reg((uint8_t *)&_FPR_S[m_Opcode.fs], Name, TempReg); if (IsConst(m_Opcode.rt)) { MoveConstToX86Pointer(GetMipsRegLo(m_Opcode.rt), TempReg); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToX86Pointer(GetMipsRegMapLo(m_Opcode.rt), TempReg); } else { MoveX86regToX86Pointer(Map_TempReg(x86_Any, m_Opcode.rt, false), TempReg); } } void CX86RecompilerOps::COP1_DMT() { x86Reg TempReg; CompileCop1Test(); if ((m_Opcode.fs & 1) == 0) { if (RegInStack(m_Opcode.fs + 1, CRegInfo::FPU_Float) || RegInStack(m_Opcode.fs + 1, CRegInfo::FPU_Dword)) { UnMap_FPR(m_Opcode.fs + 1, true); } } UnMap_FPR(m_Opcode.fs, true); TempReg = Map_TempReg(x86_Any, -1, false); char Name[50]; sprintf(Name, "_FPR_D[%d]", m_Opcode.fs); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.fs], Name, TempReg); if (IsConst(m_Opcode.rt)) { MoveConstToX86Pointer(GetMipsRegLo(m_Opcode.rt), TempReg); AddConstToX86Reg(TempReg, 4); if (Is64Bit(m_Opcode.rt)) { MoveConstToX86Pointer(GetMipsRegHi(m_Opcode.rt), TempReg); } else { MoveConstToX86Pointer(GetMipsRegLo_S(m_Opcode.rt) >> 31, TempReg); } } else if (IsMapped(m_Opcode.rt)) { MoveX86regToX86Pointer(GetMipsRegMapLo(m_Opcode.rt), TempReg); AddConstToX86Reg(TempReg, 4); if (Is64Bit(m_Opcode.rt)) { MoveX86regToX86Pointer(GetMipsRegMapHi(m_Opcode.rt), TempReg); } else { MoveX86regToX86Pointer(Map_TempReg(x86_Any, m_Opcode.rt, true), TempReg); } } else { x86Reg Reg = Map_TempReg(x86_Any, m_Opcode.rt, false); MoveX86regToX86Pointer(Reg, TempReg); AddConstToX86Reg(TempReg, 4); MoveX86regToX86Pointer(Map_TempReg(Reg, m_Opcode.rt, true), TempReg); } } void CX86RecompilerOps::COP1_CT() { CompileCop1Test(); if (m_Opcode.fs != 31) { UnknownOpcode(); return; } if (IsConst(m_Opcode.rt)) { MoveConstToVariable(GetMipsRegLo(m_Opcode.rt), &_FPCR[m_Opcode.fs], CRegName::FPR_Ctrl[m_Opcode.fs]); } else if (IsMapped(m_Opcode.rt)) { MoveX86regToVariable(GetMipsRegMapLo(m_Opcode.rt), &_FPCR[m_Opcode.fs], CRegName::FPR_Ctrl[m_Opcode.fs]); } else { MoveX86regToVariable(Map_TempReg(x86_Any, m_Opcode.rt, false), &_FPCR[m_Opcode.fs], CRegName::FPR_Ctrl[m_Opcode.fs]); } m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)ChangeDefaultRoundingModel, "ChangeDefaultRoundingModel"); m_RegWorkingSet.AfterCallDirect(); m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); } /************************** COP1: S functions ************************/ void CX86RecompilerOps::COP1_S_ADD() { uint32_t Reg1 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.ft : m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.fs : m_Opcode.ft; CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); Load_FPR_ToTop(m_Opcode.fd, Reg1, CRegInfo::FPU_Float); if (RegInStack(Reg2, CRegInfo::FPU_Float)) { fpuAddReg(StackPosition(Reg2)); } else { x86Reg TempReg; UnMap_FPR(Reg2, true); TempReg = Map_TempReg(x86_Any, -1, false); char Name[50]; sprintf(Name, "_FPR_S[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_S[Reg2], Name, TempReg); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fd, CRegInfo::FPU_Float); fpuAddDwordRegPointer(TempReg); } UnMap_FPR(m_Opcode.fd, true); } void CX86RecompilerOps::COP1_S_SUB() { uint32_t Reg1 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.ft : m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.fs : m_Opcode.ft; x86Reg TempReg; char Name[50]; CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); if (m_Opcode.fd == m_Opcode.ft) { UnMap_FPR(m_Opcode.fd, true); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_S[m_Opcode.ft], Name, TempReg); fpuSubDwordRegPointer(TempReg); } else { Load_FPR_ToTop(m_Opcode.fd, Reg1, CRegInfo::FPU_Float); if (RegInStack(Reg2, CRegInfo::FPU_Float)) { fpuSubReg(StackPosition(Reg2)); } else { UnMap_FPR(Reg2, true); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fd, CRegInfo::FPU_Float); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_S[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_S[Reg2], Name, TempReg); fpuSubDwordRegPointer(TempReg); } } UnMap_FPR(m_Opcode.fd, true); } void CX86RecompilerOps::COP1_S_MUL() { uint32_t Reg1 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.ft : m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.fs : m_Opcode.ft; CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); Load_FPR_ToTop(m_Opcode.fd, Reg1, CRegInfo::FPU_Float); if (RegInStack(Reg2, CRegInfo::FPU_Float)) { fpuMulReg(StackPosition(Reg2)); } else { UnMap_FPR(Reg2, true); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fd, CRegInfo::FPU_Float); x86Reg TempReg = Map_TempReg(x86_Any, -1, false); char Name[50]; sprintf(Name, "_FPR_S[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_S[Reg2], Name, TempReg); fpuMulDwordRegPointer(TempReg); } UnMap_FPR(m_Opcode.fd, true); } void CX86RecompilerOps::COP1_S_DIV() { uint32_t Reg1 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.ft : m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.fs : m_Opcode.ft; char Name[50]; CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); if (m_Opcode.fd == m_Opcode.ft) { UnMap_FPR(m_Opcode.fd, true); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); x86Reg TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_S[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_S[m_Opcode.ft], Name, TempReg); fpuDivDwordRegPointer(TempReg); } else { Load_FPR_ToTop(m_Opcode.fd, Reg1, CRegInfo::FPU_Float); if (RegInStack(Reg2, CRegInfo::FPU_Float)) { fpuDivReg(StackPosition(Reg2)); } else { UnMap_FPR(Reg2, true); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fd, CRegInfo::FPU_Float); x86Reg TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_S[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_S[Reg2], Name, TempReg); fpuDivDwordRegPointer(TempReg); } } UnMap_FPR(m_Opcode.fd, true); } void CX86RecompilerOps::COP1_S_ABS() { CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); fpuAbs(); UnMap_FPR(m_Opcode.fd, true); } void CX86RecompilerOps::COP1_S_NEG() { CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); fpuNeg(); UnMap_FPR(m_Opcode.fd, true); } void CX86RecompilerOps::COP1_S_SQRT() { CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); fpuSqrt(); UnMap_FPR(m_Opcode.fd, true); } void CX86RecompilerOps::COP1_S_MOV() { CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } void CX86RecompilerOps::COP1_S_ROUND_L() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Qword, CRegInfo::RoundNearest); } void CX86RecompilerOps::COP1_S_TRUNC_L() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Qword, CRegInfo::RoundTruncate); } void CX86RecompilerOps::COP1_S_CEIL_L() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Qword, CRegInfo::RoundUp); } void CX86RecompilerOps::COP1_S_FLOOR_L() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Qword, CRegInfo::RoundDown); } void CX86RecompilerOps::COP1_S_ROUND_W() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Dword, CRegInfo::RoundNearest); } void CX86RecompilerOps::COP1_S_TRUNC_W() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Dword, CRegInfo::RoundTruncate); } void CX86RecompilerOps::COP1_S_CEIL_W() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Dword, CRegInfo::RoundUp); } void CX86RecompilerOps::COP1_S_FLOOR_W() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Dword, CRegInfo::RoundDown); } void CX86RecompilerOps::COP1_S_CVT_D() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Double, CRegInfo::RoundDefault); } void CX86RecompilerOps::COP1_S_CVT_W() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Dword, CRegInfo::RoundDefault); } void CX86RecompilerOps::COP1_S_CVT_L() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Float)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Float); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Float, CRegInfo::FPU_Qword, CRegInfo::RoundDefault); } void CX86RecompilerOps::COP1_S_CMP() { uint32_t Reg1 = m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft; uint32_t cmp = 0; if ((m_Opcode.funct & 4) == 0) { Reg1 = RegInStack(m_Opcode.ft, CRegInfo::FPU_Float) ? m_Opcode.ft : m_Opcode.fs; Reg2 = RegInStack(m_Opcode.ft, CRegInfo::FPU_Float) ? m_Opcode.fs : m_Opcode.ft; } CompileCop1Test(); if ((m_Opcode.funct & 7) == 0) { CX86RecompilerOps::UnknownOpcode(); } if ((m_Opcode.funct & 2) != 0) { cmp |= 0x4000; } if ((m_Opcode.funct & 4) != 0) { cmp |= 0x0100; } Load_FPR_ToTop(Reg1, Reg1, CRegInfo::FPU_Float); Map_TempReg(x86_EAX, 0, false); if (RegInStack(Reg2, CRegInfo::FPU_Float)) { fpuComReg(StackPosition(Reg2), false); } else { UnMap_FPR(Reg2, true); Load_FPR_ToTop(Reg1, Reg1, CRegInfo::FPU_Float); x86Reg TempReg = Map_TempReg(x86_Any, -1, false); char Name[50]; sprintf(Name, "_FPR_S[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_S[Reg2], Name, TempReg); fpuComDwordRegPointer(TempReg, false); } AndConstToVariable((uint32_t)~FPCSR_C, &_FPCR[31], "_FPCR[31]"); fpuStoreStatus(); x86Reg Reg = Map_TempReg(x86_Any8Bit, 0, false); TestConstToX86Reg(cmp, x86_EAX); Setnz(Reg); if (cmp != 0) { TestConstToX86Reg(cmp, x86_EAX); Setnz(Reg); if ((m_Opcode.funct & 1) != 0) { x86Reg Reg2 = Map_TempReg(x86_Any8Bit, 0, false); AndConstToX86Reg(x86_EAX, 0x4300); CompConstToX86reg(x86_EAX, 0x4300); Setz(Reg2); OrX86RegToX86Reg(Reg, Reg2); } } else if ((m_Opcode.funct & 1) != 0) { AndConstToX86Reg(x86_EAX, 0x4300); CompConstToX86reg(x86_EAX, 0x4300); Setz(Reg); } ShiftLeftSignImmed(Reg, 23); OrX86RegToVariable(&_FPCR[31], "_FPCR[31]", Reg); } /************************** COP1: D functions ************************/ void CX86RecompilerOps::COP1_D_ADD() { uint32_t Reg1 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.ft : m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.fs : m_Opcode.ft; char Name[50]; CompileCop1Test(); Load_FPR_ToTop(m_Opcode.fd, Reg1, CRegInfo::FPU_Double); if (RegInStack(Reg2, CRegInfo::FPU_Double)) { fpuAddReg(StackPosition(Reg2)); } else { x86Reg TempReg; UnMap_FPR(Reg2, true); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_D[Reg2], Name, TempReg); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fd, CRegInfo::FPU_Double); fpuAddQwordRegPointer(TempReg); } } void CX86RecompilerOps::COP1_D_SUB() { uint32_t Reg1 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.ft : m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.fs : m_Opcode.ft; x86Reg TempReg; char Name[50]; CompileCop1Test(); if (m_Opcode.fd == m_Opcode.ft) { UnMap_FPR(m_Opcode.fd, true); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.ft], Name, TempReg); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); fpuSubQwordRegPointer(TempReg); } else { Load_FPR_ToTop(m_Opcode.fd, Reg1, CRegInfo::FPU_Double); if (RegInStack(Reg2, CRegInfo::FPU_Double)) { fpuSubReg(StackPosition(Reg2)); } else { UnMap_FPR(Reg2, true); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_D[Reg2], Name, TempReg); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fd, CRegInfo::FPU_Double); fpuSubQwordRegPointer(TempReg); } } } void CX86RecompilerOps::COP1_D_MUL() { uint32_t Reg1 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.ft : m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.fs : m_Opcode.ft; x86Reg TempReg; char Name[50]; CompileCop1Test(); FixRoundModel(CRegInfo::RoundDefault); Load_FPR_ToTop(m_Opcode.fd, Reg1, CRegInfo::FPU_Double); if (RegInStack(Reg2, CRegInfo::FPU_Double)) { fpuMulReg(StackPosition(Reg2)); } else { UnMap_FPR(Reg2, true); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fd, CRegInfo::FPU_Double); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_D[Reg2], Name, TempReg); fpuMulQwordRegPointer(TempReg); } } void CX86RecompilerOps::COP1_D_DIV() { uint32_t Reg1 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.ft : m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft == m_Opcode.fd ? m_Opcode.fs : m_Opcode.ft; x86Reg TempReg; char Name[50]; CompileCop1Test(); if (m_Opcode.fd == m_Opcode.ft) { UnMap_FPR(m_Opcode.fd, true); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", m_Opcode.ft); MoveVariableToX86reg((uint8_t *)&_FPR_D[m_Opcode.ft], Name, TempReg); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); fpuDivQwordRegPointer(TempReg); } else { Load_FPR_ToTop(m_Opcode.fd, Reg1, CRegInfo::FPU_Double); if (RegInStack(Reg2, CRegInfo::FPU_Double)) { fpuDivReg(StackPosition(Reg2)); } else { UnMap_FPR(Reg2, true); TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_D[Reg2], Name, TempReg); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fd, CRegInfo::FPU_Double); fpuDivQwordRegPointer(TempReg); } } } void CX86RecompilerOps::COP1_D_ABS() { CompileCop1Test(); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); fpuAbs(); } void CX86RecompilerOps::COP1_D_NEG() { CompileCop1Test(); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); fpuNeg(); } void CX86RecompilerOps::COP1_D_SQRT() { CompileCop1Test(); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); fpuSqrt(); } void CX86RecompilerOps::COP1_D_MOV() { CompileCop1Test(); Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } void CX86RecompilerOps::COP1_D_ROUND_L() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Qword, CRegInfo::RoundNearest); } void CX86RecompilerOps::COP1_D_TRUNC_L() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Qword, CRegInfo::RoundTruncate); } void CX86RecompilerOps::COP1_D_CEIL_L() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Qword, CRegInfo::RoundUp); } void CX86RecompilerOps::COP1_D_FLOOR_L() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Qword, CRegInfo::RoundDown); } void CX86RecompilerOps::COP1_D_ROUND_W() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Dword, CRegInfo::RoundNearest); } void CX86RecompilerOps::COP1_D_TRUNC_W() { CompileCop1Test(); if (RegInStack(m_Opcode.fd, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fd, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fd, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Dword, CRegInfo::RoundTruncate); } void CX86RecompilerOps::COP1_D_CEIL_W() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Dword, CRegInfo::RoundUp); } void CX86RecompilerOps::COP1_D_FLOOR_W() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Dword, CRegInfo::RoundDown); } void CX86RecompilerOps::COP1_D_CVT_S() { CompileCop1Test(); if (RegInStack(m_Opcode.fd, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fd, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fd, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Float, CRegInfo::RoundDefault); } void CX86RecompilerOps::COP1_D_CVT_W() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Dword, CRegInfo::RoundDefault); } void CX86RecompilerOps::COP1_D_CVT_L() { CompileCop1Test(); if (RegInStack(m_Opcode.fs, CRegInfo::FPU_Double) || RegInStack(m_Opcode.fs, CRegInfo::FPU_Qword)) { UnMap_FPR(m_Opcode.fs, true); } if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Double)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Double); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Double, CRegInfo::FPU_Qword, CRegInfo::RoundDefault); } void CX86RecompilerOps::COP1_D_CMP() { uint32_t Reg1 = m_Opcode.fs; uint32_t Reg2 = m_Opcode.ft; uint32_t cmp = 0; if ((m_Opcode.funct & 4) == 0) { Reg1 = RegInStack(m_Opcode.ft, CRegInfo::FPU_Double) ? m_Opcode.ft : m_Opcode.fs; Reg2 = RegInStack(m_Opcode.ft, CRegInfo::FPU_Double) ? m_Opcode.fs : m_Opcode.ft; } CompileCop1Test(); if ((m_Opcode.funct & 7) == 0) { CX86RecompilerOps::UnknownOpcode(); } if ((m_Opcode.funct & 2) != 0) { cmp |= 0x4000; } if ((m_Opcode.funct & 4) != 0) { cmp |= 0x0100; } Load_FPR_ToTop(Reg1, Reg1, CRegInfo::FPU_Double); Map_TempReg(x86_EAX, 0, false); if (RegInStack(Reg2, CRegInfo::FPU_Double)) { fpuComReg(StackPosition(Reg2), false); } else { char Name[50]; UnMap_FPR(Reg2, true); x86Reg TempReg = Map_TempReg(x86_Any, -1, false); sprintf(Name, "_FPR_D[%d]", Reg2); MoveVariableToX86reg((uint8_t *)&_FPR_D[Reg2], Name, TempReg); Load_FPR_ToTop(Reg1, Reg1, CRegInfo::FPU_Double); fpuComQwordRegPointer(TempReg, false); } AndConstToVariable((uint32_t)~FPCSR_C, &_FPCR[31], "_FPCR[31]"); fpuStoreStatus(); x86Reg Reg = Map_TempReg(x86_Any8Bit, 0, false); TestConstToX86Reg(cmp, x86_EAX); Setnz(Reg); if (cmp != 0) { TestConstToX86Reg(cmp, x86_EAX); Setnz(Reg); if ((m_Opcode.funct & 1) != 0) { x86Reg Reg2 = Map_TempReg(x86_Any8Bit, 0, false); AndConstToX86Reg(x86_EAX, 0x4300); CompConstToX86reg(x86_EAX, 0x4300); Setz(Reg2); OrX86RegToX86Reg(Reg, Reg2); } } else if ((m_Opcode.funct & 1) != 0) { AndConstToX86Reg(x86_EAX, 0x4300); CompConstToX86reg(x86_EAX, 0x4300); Setz(Reg); } ShiftLeftSignImmed(Reg, 23); OrX86RegToVariable(&_FPCR[31], "_FPCR[31]", Reg); } /************************** COP1: W functions ************************/ void CX86RecompilerOps::COP1_W_CVT_S() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Dword)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Dword); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Dword, CRegInfo::FPU_Float, CRegInfo::RoundDefault); } void CX86RecompilerOps::COP1_W_CVT_D() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Dword)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Dword); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Dword, CRegInfo::FPU_Double, CRegInfo::RoundDefault); } /************************** COP1: L functions ************************/ void CX86RecompilerOps::COP1_L_CVT_S() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Qword)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Qword); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Qword, CRegInfo::FPU_Float, CRegInfo::RoundDefault); } void CX86RecompilerOps::COP1_L_CVT_D() { CompileCop1Test(); if (m_Opcode.fd != m_Opcode.fs || !RegInStack(m_Opcode.fd, CRegInfo::FPU_Qword)) { Load_FPR_ToTop(m_Opcode.fd, m_Opcode.fs, CRegInfo::FPU_Qword); } ChangeFPURegFormat(m_Opcode.fd, CRegInfo::FPU_Qword, CRegInfo::FPU_Double, CRegInfo::RoundDefault); } /************************** Other functions **************************/ void CX86RecompilerOps::UnknownOpcode() { CPU_Message(" %X Unhandled Opcode: %s", m_CompilePC, R4300iOpcodeName(m_Opcode.Hex, m_CompilePC)); m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet, false, true); MoveConstToVariable(m_CompilePC, &g_Reg->m_PROGRAM_COUNTER, "PROGRAM_COUNTER"); if (g_SyncSystem) { #ifdef _WIN32 MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); MoveConstToVariable(m_Opcode.Hex, &R4300iOp::m_Opcode.Hex, "R4300iOp::m_Opcode.Hex"); Call_Direct((void *)R4300iOp::UnknownOpcode, "R4300iOp::UnknownOpcode"); Ret(); if (m_NextInstruction == NORMAL) { m_NextInstruction = END_BLOCK; } } void CX86RecompilerOps::EnterCodeBlock() { #ifdef _DEBUG Push(x86_ESI); #else Push(x86_EDI); Push(x86_ESI); Push(x86_EBX); #endif } void CX86RecompilerOps::ExitCodeBlock() { if (g_SyncSystem) { #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } #ifdef _DEBUG Pop(x86_ESI); #else Pop(x86_EBX); Pop(x86_ESI); Pop(x86_EDI); #endif Ret(); } void CX86RecompilerOps::CompileExitCode() { for (EXIT_LIST::iterator ExitIter = m_ExitInfo.begin(); ExitIter != m_ExitInfo.end(); ExitIter++) { CPU_Message(""); CPU_Message(" $Exit_%d", ExitIter->ID); SetJump32(ExitIter->JumpLoc, (uint32_t *)*g_RecompPos); m_NextInstruction = ExitIter->NextInstruction; CompileExit((uint32_t)-1, ExitIter->TargetPC, ExitIter->ExitRegSet, ExitIter->reason, true, NULL); } } void CX86RecompilerOps::CompileCop1Test() { if (m_RegWorkingSet.GetFpuBeenUsed()) { return; } TestVariable(STATUS_CU1, &g_Reg->STATUS_REGISTER, "STATUS_REGISTER"); CompileExit(m_CompilePC, m_CompilePC, m_RegWorkingSet, CExitInfo::COP1_Unuseable, false, JeLabel32); m_RegWorkingSet.SetFpuBeenUsed(true); } void CX86RecompilerOps::CompileInPermLoop(CRegInfo & RegSet, uint32_t ProgramCounter) { MoveConstToVariable(ProgramCounter, _PROGRAM_COUNTER, "PROGRAM_COUNTER"); RegSet.WriteBackRegisters(); UpdateCounters(RegSet, false, true); Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop"); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::TimerDone), "CSystemTimer::TimerDone"); #else PushImm32((uint32_t)g_SystemTimer); Call_Direct(AddressOf(&CSystemTimer::TimerDone), "CSystemTimer::TimerDone"); AddConstToX86Reg(x86_ESP, 4); #endif CPU_Message("CompileSystemCheck 3"); CompileSystemCheck((uint32_t)-1, RegSet); if (g_SyncSystem) { #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } } bool CX86RecompilerOps::SetupRegisterForLoop(CCodeBlock * BlockInfo, const CRegInfo & RegSet) { CRegInfo OriginalReg = m_RegWorkingSet; if (!LoopAnalysis(BlockInfo, m_Section).SetupRegisterForLoop()) { return false; } for (int i = 1; i < 32; i++) { if (OriginalReg.GetMipsRegState(i) != RegSet.GetMipsRegState(i)) { UnMap_GPR(i, true); } } return true; } void CX86RecompilerOps::SyncRegState(const CRegInfo & SyncTo) { ResetX86Protection(); bool changed = false; UnMap_AllFPRs(); if (m_RegWorkingSet.GetRoundingModel() != SyncTo.GetRoundingModel()) { m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); } x86Reg MemStackReg = Get_MemoryStack(); x86Reg TargetStackReg = SyncTo.Get_MemoryStack(); //CPU_Message("MemoryStack for Original State = %s",MemStackReg > 0?x86_Name(MemStackReg):"Not Mapped"); if (MemStackReg != TargetStackReg) { if (TargetStackReg == x86_Unknown) { UnMap_X86reg(MemStackReg); } else if (MemStackReg == x86_Unknown) { UnMap_X86reg(TargetStackReg); CPU_Message(" regcache: allocate %s as Memory Stack", x86_Name(TargetStackReg)); m_RegWorkingSet.SetX86Mapped(TargetStackReg, CRegInfo::Stack_Mapped); MoveVariableToX86reg(&g_Recompiler->MemoryStackPos(), "MemoryStack", TargetStackReg); } else { UnMap_X86reg(TargetStackReg); CPU_Message(" regcache: change allocation of Memory Stack from %s to %s", x86_Name(MemStackReg), x86_Name(TargetStackReg)); m_RegWorkingSet.SetX86Mapped(TargetStackReg, CRegInfo::Stack_Mapped); m_RegWorkingSet.SetX86Mapped(MemStackReg, CRegInfo::NotMapped); MoveX86RegToX86Reg(MemStackReg, TargetStackReg); } } for (int i = 1; i < 32; i++) { if (GetMipsRegState(i) == SyncTo.GetMipsRegState(i) || (g_System->b32BitCore() && GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_ZERO && SyncTo.GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_SIGN) || (g_System->b32BitCore() && GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_SIGN && SyncTo.GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_ZERO)) { switch (GetMipsRegState(i)) { case CRegInfo::STATE_UNKNOWN: continue; case CRegInfo::STATE_MAPPED_64: if (GetMipsRegMapHi(i) == SyncTo.GetMipsRegMapHi(i) && GetMipsRegMapLo(i) == SyncTo.GetMipsRegMapLo(i)) { continue; } break; case CRegInfo::STATE_MAPPED_32_ZERO: case CRegInfo::STATE_MAPPED_32_SIGN: if (GetMipsRegMapLo(i) == SyncTo.GetMipsRegMapLo(i)) { continue; } break; case CRegInfo::STATE_CONST_64: if (GetMipsReg(i) != SyncTo.GetMipsReg(i)) { g_Notify->BreakPoint(__FILE__, __LINE__); } continue; case CRegInfo::STATE_CONST_32_SIGN: if (GetMipsRegLo(i) != SyncTo.GetMipsRegLo(i)) { CPU_Message("Value of const is different Reg %d (%s) Value: 0x%08X to 0x%08X", i, CRegName::GPR[i], GetMipsRegLo(i), SyncTo.GetMipsRegLo(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } continue; default: CPU_Message("Unhandled Reg state %d\nin SyncRegState", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } } changed = true; switch (SyncTo.GetMipsRegState(i)) { case CRegInfo::STATE_UNKNOWN: UnMap_GPR(i, true); break; case CRegInfo::STATE_MAPPED_64: { x86Reg Reg = SyncTo.GetMipsRegMapLo(i); x86Reg x86RegHi = SyncTo.GetMipsRegMapHi(i); UnMap_X86reg(Reg); UnMap_X86reg(x86RegHi); switch (GetMipsRegState(i)) { case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg); MoveVariableToX86reg(&_GPR[i].UW[1], CRegName::GPR_Hi[i], x86RegHi); break; case CRegInfo::STATE_MAPPED_64: MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); MoveX86RegToX86Reg(GetMipsRegMapHi(i), x86RegHi); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapHi(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_MAPPED_32_SIGN: MoveX86RegToX86Reg(GetMipsRegMapLo(i), x86RegHi); ShiftRightSignImmed(x86RegHi, 31); MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_MAPPED_32_ZERO: XorX86RegToX86Reg(x86RegHi, x86RegHi); MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_CONST_64: MoveConstToX86reg(GetMipsRegHi(i), x86RegHi); MoveConstToX86reg(GetMipsRegLo(i), Reg); break; case CRegInfo::STATE_CONST_32_SIGN: MoveConstToX86reg(GetMipsRegLo_S(i) >> 31, x86RegHi); MoveConstToX86reg(GetMipsRegLo(i), Reg); break; default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); continue; } m_RegWorkingSet.SetMipsRegMapLo(i, Reg); m_RegWorkingSet.SetMipsRegMapHi(i, x86RegHi); m_RegWorkingSet.SetMipsRegState(i, CRegInfo::STATE_MAPPED_64); m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped); m_RegWorkingSet.SetX86Mapped(x86RegHi, CRegInfo::GPR_Mapped); m_RegWorkingSet.SetX86MapOrder(Reg, 1); m_RegWorkingSet.SetX86MapOrder(x86RegHi, 1); } break; case CRegInfo::STATE_MAPPED_32_SIGN: { x86Reg Reg = SyncTo.GetMipsRegMapLo(i); UnMap_X86reg(Reg); switch (GetMipsRegState(i)) { case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg); break; case CRegInfo::STATE_CONST_32_SIGN: MoveConstToX86reg(GetMipsRegLo(i), Reg); break; case CRegInfo::STATE_MAPPED_32_SIGN: MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_MAPPED_32_ZERO: if (GetMipsRegMapLo(i) != Reg) { MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); } break; case CRegInfo::STATE_MAPPED_64: MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapHi(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_CONST_64: CPU_Message("hi %X\nLo %X", GetMipsRegHi(i), GetMipsRegLo(i)); default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } m_RegWorkingSet.SetMipsRegMapLo(i, Reg); m_RegWorkingSet.SetMipsRegState(i, CRegInfo::STATE_MAPPED_32_SIGN); m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped); m_RegWorkingSet.SetX86MapOrder(Reg, 1); } break; case CRegInfo::STATE_MAPPED_32_ZERO: { x86Reg Reg = SyncTo.GetMipsRegMapLo(i); UnMap_X86reg(Reg); switch (GetMipsRegState(i)) { case CRegInfo::STATE_MAPPED_64: case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg); break; case CRegInfo::STATE_MAPPED_32_ZERO: MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); break; case CRegInfo::STATE_MAPPED_32_SIGN: if (g_System->b32BitCore()) { MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg); m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped); } else { CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } break; case CRegInfo::STATE_CONST_32_SIGN: if (!g_System->b32BitCore() && GetMipsRegLo_S(i) < 0) { CPU_Message("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO"); CPU_Message("%s: %X", CRegName::GPR[i], GetMipsRegLo_S(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } MoveConstToX86reg(GetMipsRegLo(i), Reg); break; default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d", GetMipsRegState(i)); g_Notify->BreakPoint(__FILE__, __LINE__); } m_RegWorkingSet.SetMipsRegMapLo(i, Reg); m_RegWorkingSet.SetMipsRegState(i, SyncTo.GetMipsRegState(i)); m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped); m_RegWorkingSet.SetX86MapOrder(Reg, 1); } break; default: CPU_Message("%d - %d reg: %s (%d)", SyncTo.GetMipsRegState(i), GetMipsRegState(i), CRegName::GPR[i], i); g_Notify->BreakPoint(__FILE__, __LINE__); changed = false; } } } CRegInfo & CX86RecompilerOps::GetRegWorkingSet(void) { return m_RegWorkingSet; } void CX86RecompilerOps::SetRegWorkingSet(const CRegInfo & RegInfo) { m_RegWorkingSet = RegInfo; } bool CX86RecompilerOps::InheritParentInfo() { if (m_Section->m_CompiledLocation == NULL) { m_Section->m_CompiledLocation = *g_RecompPos; m_Section->DisplaySectionInformation(); m_Section->m_CompiledLocation = NULL; } else { m_Section->DisplaySectionInformation(); } if (m_Section->m_ParentSection.empty()) { SetRegWorkingSet(m_Section->m_RegEnter); return true; } if (m_Section->m_ParentSection.size() == 1) { CCodeSection * Parent = *(m_Section->m_ParentSection.begin()); if (Parent->m_CompiledLocation == NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); } CJumpInfo * JumpInfo = m_Section == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump; m_Section->m_RegEnter = JumpInfo->RegSet; LinkJump(*JumpInfo, m_Section->m_SectionID); SetRegWorkingSet(m_Section->m_RegEnter); return true; } //Multiple Parents BLOCK_PARENT_LIST ParentList; CCodeSection::SECTION_LIST::iterator iter; for (iter = m_Section->m_ParentSection.begin(); iter != m_Section->m_ParentSection.end(); iter++) { CCodeSection * Parent = *iter; BLOCK_PARENT BlockParent; if (Parent->m_CompiledLocation == NULL) { continue; } if (Parent->m_JumpSection != Parent->m_ContinueSection) { BlockParent.Parent = Parent; BlockParent.JumpInfo = m_Section == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump; ParentList.push_back(BlockParent); } else { BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Cont; ParentList.push_back(BlockParent); BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Jump; ParentList.push_back(BlockParent); } } size_t NoOfCompiledParents = ParentList.size(); if (NoOfCompiledParents == 0) { g_Notify->BreakPoint(__FILE__, __LINE__); return false; } // Add all the uncompiled blocks to the end of the list for (iter = m_Section->m_ParentSection.begin(); iter != m_Section->m_ParentSection.end(); iter++) { CCodeSection * Parent = *iter; BLOCK_PARENT BlockParent; if (Parent->m_CompiledLocation != NULL) { continue; } if (Parent->m_JumpSection != Parent->m_ContinueSection) { BlockParent.Parent = Parent; BlockParent.JumpInfo = m_Section == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump; ParentList.push_back(BlockParent); } else { BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Cont; ParentList.push_back(BlockParent); BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Jump; ParentList.push_back(BlockParent); } } int FirstParent = -1; for (size_t i = 0; i < NoOfCompiledParents; i++) { if (!ParentList[i].JumpInfo->FallThrough) { continue; } if (FirstParent != -1) { g_Notify->BreakPoint(__FILE__, __LINE__); } FirstParent = i; } if (FirstParent == -1) { FirstParent = 0; } //Link First Parent to start CCodeSection * Parent = ParentList[FirstParent].Parent; CJumpInfo * JumpInfo = ParentList[FirstParent].JumpInfo; SetRegWorkingSet(JumpInfo->RegSet); m_RegWorkingSet.ResetX86Protection(); LinkJump(*JumpInfo, m_Section->m_SectionID, Parent->m_SectionID); if (JumpInfo->ExitReason == CExitInfo::Normal_NoSysCheck) { if (JumpInfo->RegSet.GetBlockCycleCount() != 0) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (JumpInfo->JumpPC != (uint32_t)-1) { g_Notify->BreakPoint(__FILE__, __LINE__); } } else { UpdateCounters(JumpInfo->RegSet, m_Section->m_EnterPC < JumpInfo->JumpPC, true); if (JumpInfo->JumpPC == (uint32_t)-1) { g_Notify->BreakPoint(__FILE__, __LINE__); } if (m_Section->m_EnterPC <= JumpInfo->JumpPC) { CPU_Message("CompileSystemCheck 10"); CompileSystemCheck(m_Section->m_EnterPC, GetRegWorkingSet()); } } JumpInfo->FallThrough = false; //Fix up initial state UnMap_AllFPRs(); //determine loop reg usage if (m_Section->m_InLoop && ParentList.size() > 1) { if (!SetupRegisterForLoop(m_Section->m_BlockInfo, m_Section->m_RegEnter)) { return false; } m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); } for (size_t i = 0; i < ParentList.size(); i++) { x86Reg MemoryStackPos; int i2; if (i == (size_t)FirstParent) { continue; } Parent = ParentList[i].Parent; if (Parent->m_CompiledLocation == NULL) { continue; } CRegInfo * RegSet = &ParentList[i].JumpInfo->RegSet; if (m_RegWorkingSet.GetRoundingModel() != RegSet->GetRoundingModel()) { m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); } //Find Parent MapRegState MemoryStackPos = x86_Unknown; for (i2 = 0; i2 < sizeof(x86_Registers) / sizeof(x86_Registers[0]); i2++) { if (RegSet->GetX86Mapped(x86_Registers[i2]) == CRegInfo::Stack_Mapped) { MemoryStackPos = x86_Registers[i2]; break; } } if (MemoryStackPos == x86_Unknown) { // if the memory stack position is not mapped then unmap it x86Reg MemStackReg = Get_MemoryStack(); if (MemStackReg != x86_Unknown) { UnMap_X86reg(MemStackReg); } } for (i2 = 1; i2 < 32; i2++) { if (Is32BitMapped(i2)) { switch (RegSet->GetMipsRegState(i2)) { case CRegInfo::STATE_MAPPED_64: Map_GPR_64bit(i2, i2); break; case CRegInfo::STATE_MAPPED_32_ZERO: break; case CRegInfo::STATE_MAPPED_32_SIGN: if (IsUnsigned(i2)) { m_RegWorkingSet.SetMipsRegState(i2, CRegInfo::STATE_MAPPED_32_SIGN); } break; case CRegInfo::STATE_CONST_64: Map_GPR_64bit(i2, i2); break; case CRegInfo::STATE_CONST_32_SIGN: if ((RegSet->GetMipsRegLo_S(i2) < 0) && IsUnsigned(i2)) { m_RegWorkingSet.SetMipsRegState(i2, CRegInfo::STATE_MAPPED_32_SIGN); } break; case CRegInfo::STATE_UNKNOWN: if (g_System->b32BitCore()) { Map_GPR_32bit(i2, true, i2); } else { //Map_GPR_32bit(i2,true,i2); Map_GPR_64bit(i2, i2); //?? //UnMap_GPR(Section,i2,true); ?? } break; default: CPU_Message("Unknown CPU State(%d) in InheritParentInfo", GetMipsRegState(i2)); g_Notify->BreakPoint(__FILE__, __LINE__); } } if (IsConst(i2)) { if (GetMipsRegState(i2) != RegSet->GetMipsRegState(i2)) { switch (RegSet->GetMipsRegState(i2)) { case CRegInfo::STATE_MAPPED_64: Map_GPR_64bit(i2, i2); break; case CRegInfo::STATE_MAPPED_32_ZERO: if (Is32Bit(i2)) { Map_GPR_32bit(i2, (GetMipsRegLo(i2) & 0x80000000) != 0, i2); } else { g_Notify->BreakPoint(__FILE__, __LINE__); } break; case CRegInfo::STATE_MAPPED_32_SIGN: if (Is32Bit(i2)) { Map_GPR_32bit(i2, true, i2); } else { g_Notify->BreakPoint(__FILE__, __LINE__); } break; case CRegInfo::STATE_UNKNOWN: if (g_System->b32BitCore()) { Map_GPR_32bit(i2, true, i2); } else { Map_GPR_64bit(i2, i2); } break; default: CPU_Message("Unknown CPU State(%d) in InheritParentInfo", RegSet->GetMipsRegState(i2)); g_Notify->BreakPoint(__FILE__, __LINE__); break; } } else if (Is32Bit(i2) && GetMipsRegLo(i2) != RegSet->GetMipsRegLo(i2)) { Map_GPR_32bit(i2, true, i2); } else if (Is64Bit(i2) && GetMipsReg(i2) != RegSet->GetMipsReg(i2)) { Map_GPR_32bit(i2, true, i2); } } ResetX86Protection(); } if (MemoryStackPos > 0) { Map_MemoryStack(MemoryStackPos, true); } } m_Section->m_RegEnter = m_RegWorkingSet; //Sync registers for different blocks stdstr_f Label("Section_%d", m_Section->m_SectionID); int CurrentParent = FirstParent; bool NeedSync = false; for (size_t i = 0; i < NoOfCompiledParents; i++) { CRegInfo * RegSet; int i2; if (i == (size_t)FirstParent) { continue; } Parent = ParentList[i].Parent; JumpInfo = ParentList[i].JumpInfo; RegSet = &ParentList[i].JumpInfo->RegSet; if (JumpInfo->RegSet.GetBlockCycleCount() != 0) { NeedSync = true; } for (i2 = 0; !NeedSync && i2 < 8; i2++) { if (m_RegWorkingSet.FpuMappedTo(i2) == (uint32_t)-1) { NeedSync = true; } } for (i2 = 0; !NeedSync && i2 < sizeof(x86_Registers) / sizeof(x86_Registers[0]); i2++) { if (m_RegWorkingSet.GetX86Mapped(x86_Registers[i2]) == CRegInfo::Stack_Mapped) { if (m_RegWorkingSet.GetX86Mapped(x86_Registers[i2]) != RegSet->GetX86Mapped(x86_Registers[i2])) { NeedSync = true; } break; } } for (i2 = 0; !NeedSync && i2 < 32; i2++) { if (NeedSync == true) { break; } if (m_RegWorkingSet.GetMipsRegState(i2) != RegSet->GetMipsRegState(i2)) { NeedSync = true; continue; } switch (m_RegWorkingSet.GetMipsRegState(i2)) { case CRegInfo::STATE_UNKNOWN: break; case CRegInfo::STATE_MAPPED_64: if (GetMipsRegMapHi(i2) != RegSet->GetMipsRegMapHi(i2) || GetMipsRegMapLo(i2) != RegSet->GetMipsRegMapLo(i2)) { NeedSync = true; } break; case CRegInfo::STATE_MAPPED_32_ZERO: case CRegInfo::STATE_MAPPED_32_SIGN: if (GetMipsRegMapLo(i2) != RegSet->GetMipsRegMapLo(i2)) { //DisplayError(L"Parent: %d",Parent->SectionID); NeedSync = true; } break; case CRegInfo::STATE_CONST_32_SIGN: if (GetMipsRegLo(i2) != RegSet->GetMipsRegLo(i2)) { g_Notify->BreakPoint(__FILE__, __LINE__); NeedSync = true; } break; default: WriteTrace(TraceRecompiler, TraceError, "Unhandled Reg state %d\nin InheritParentInfo", GetMipsRegState(i2)); g_Notify->BreakPoint(__FILE__, __LINE__); } } if (NeedSync == false) { continue; } Parent = ParentList[CurrentParent].Parent; JumpInfo = ParentList[CurrentParent].JumpInfo; JmpLabel32(Label.c_str(), 0); JumpInfo->LinkLocation = (uint32_t *)(*g_RecompPos - 4); JumpInfo->LinkLocation2 = NULL; CurrentParent = i; Parent = ParentList[CurrentParent].Parent; JumpInfo = ParentList[CurrentParent].JumpInfo; CPU_Message(" Section_%d (from %d):", m_Section->m_SectionID, Parent->m_SectionID); if (JumpInfo->LinkLocation != NULL) { SetJump32(JumpInfo->LinkLocation, (uint32_t *)*g_RecompPos); JumpInfo->LinkLocation = NULL; if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2, (uint32_t *)*g_RecompPos); JumpInfo->LinkLocation2 = NULL; } } m_RegWorkingSet = JumpInfo->RegSet; if (m_Section->m_EnterPC < JumpInfo->JumpPC) { UpdateCounters(m_RegWorkingSet, true, true); CPU_Message("CompileSystemCheck 11"); CompileSystemCheck(m_Section->m_EnterPC, m_RegWorkingSet); } else { UpdateCounters(m_RegWorkingSet, false, true); } SyncRegState(m_Section->m_RegEnter); //Sync m_Section->m_RegEnter = m_RegWorkingSet; } for (size_t i = 0; i < NoOfCompiledParents; i++) { Parent = ParentList[i].Parent; JumpInfo = ParentList[i].JumpInfo; LinkJump(*JumpInfo); } CPU_Message(" Section_%d:", m_Section->m_SectionID); m_Section->m_RegEnter.SetBlockCycleCount(0); return true; } void CX86RecompilerOps::LinkJump(CJumpInfo & JumpInfo, uint32_t SectionID, uint32_t FromSectionID) { if (JumpInfo.LinkLocation != NULL) { if (SectionID != -1) { if (FromSectionID != -1) { CPU_Message(" Section_%d (from %d):", SectionID, FromSectionID); } else { CPU_Message(" Section_%d:", SectionID); } } SetJump32(JumpInfo.LinkLocation, (uint32_t *)*g_RecompPos); JumpInfo.LinkLocation = NULL; if (JumpInfo.LinkLocation2 != NULL) { SetJump32(JumpInfo.LinkLocation2, (uint32_t *)*g_RecompPos); JumpInfo.LinkLocation2 = NULL; } } } void CX86RecompilerOps::JumpToSection(CCodeSection * Section) { char Label[100]; sprintf(Label, "Section_%d", Section->m_SectionID); JmpLabel32(Label, 0); SetJump32(((uint32_t *)*g_RecompPos) - 1, (uint32_t *)(Section->m_CompiledLocation)); } void CX86RecompilerOps::JumpToUnknown(CJumpInfo * JumpInfo) { JmpLabel32(JumpInfo->BranchLabel.c_str(), 0); JumpInfo->LinkLocation = (uint32_t*)(*g_RecompPos - 4); } void CX86RecompilerOps::SetCurrentPC(uint32_t ProgramCounter) { m_CompilePC = ProgramCounter; __except_try() { if (!g_MMU->LW_VAddr(m_CompilePC, m_Opcode.Hex)) { g_Notify->FatalError(GS(MSG_FAIL_LOAD_WORD)); } } __except_catch() { g_Notify->FatalError(GS(MSG_UNKNOWN_MEM_ACTION)); } } uint32_t CX86RecompilerOps::GetCurrentPC(void) { return m_CompilePC; } void CX86RecompilerOps::SetCurrentSection(CCodeSection * section) { m_Section = section; } void CX86RecompilerOps::SetNextStepType(STEP_TYPE StepType) { m_NextInstruction = StepType; } STEP_TYPE CX86RecompilerOps::GetNextStepType(void) { return m_NextInstruction; } const OPCODE & CX86RecompilerOps::GetOpcode(void) const { return m_Opcode; } void CX86RecompilerOps::UpdateSyncCPU(CRegInfo & RegSet, uint32_t Cycles) { if (!g_SyncSystem) { return; } WriteX86Comment("Updating Sync CPU"); RegSet.BeforeCallDirect(); PushImm32(stdstr_f("%d", Cycles).c_str(), Cycles); PushImm32("g_SyncSystem", (uint32_t)g_SyncSystem); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_System, x86_ECX); Call_Direct(AddressOf(&CN64System::UpdateSyncCPU), "CN64System::UpdateSyncCPU"); #else PushImm32((uint32_t)g_System); Call_Direct(AddressOf(&CN64System::UpdateSyncCPU), "CN64System::UpdateSyncCPU"); AddConstToX86Reg(x86_ESP, 12); #endif RegSet.AfterCallDirect(); } void CX86RecompilerOps::UpdateCounters(CRegInfo & RegSet, bool CheckTimer, bool ClearValues) { if (RegSet.GetBlockCycleCount() != 0) { UpdateSyncCPU(RegSet, RegSet.GetBlockCycleCount()); WriteX86Comment("Update Counter"); SubConstFromVariable(RegSet.GetBlockCycleCount(), g_NextTimer, "g_NextTimer"); // updates compare flag if (ClearValues) { RegSet.SetBlockCycleCount(0); } } else if (CheckTimer) { CompConstToVariable(0, g_NextTimer, "g_NextTimer"); } if (CheckTimer) { JnsLabel8("Continue_From_Timer_Test", 0); uint8_t * Jump = *g_RecompPos - 1; RegSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX); Call_Direct(AddressOf(&CSystemTimer::TimerDone), "CSystemTimer::TimerDone"); #else PushImm32((uint32_t)g_SystemTimer); Call_Direct(AddressOf(&CSystemTimer::TimerDone), "CSystemTimer::TimerDone"); AddConstToX86Reg(x86_ESP, 4); #endif RegSet.AfterCallDirect(); CPU_Message(""); CPU_Message(" $Continue_From_Timer_Test:"); SetJump8(Jump, *g_RecompPos); } } void CX86RecompilerOps::CompileSystemCheck(uint32_t TargetPC, const CRegInfo & RegSet) { CompConstToVariable(0, (void *)&g_SystemEvents->DoSomething(), "g_SystemEvents->DoSomething()"); JeLabel32("Continue_From_Interrupt_Test", 0); uint32_t * Jump = (uint32_t *)(*g_RecompPos - 4); if (TargetPC != (uint32_t)-1) { MoveConstToVariable(TargetPC, &g_Reg->m_PROGRAM_COUNTER, "PROGRAM_COUNTER"); } CRegInfo RegSetCopy(RegSet); RegSetCopy.WriteBackRegisters(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemEvents, x86_ECX); Call_Direct(AddressOf(&CSystemEvents::ExecuteEvents), "CSystemEvents::ExecuteEvents"); #else PushImm32((uint32_t)g_SystemEvents); Call_Direct(AddressOf(&CSystemEvents::ExecuteEvents), "CSystemEvents::ExecuteEvents"); AddConstToX86Reg(x86_ESP, 4); #endif ExitCodeBlock(); CPU_Message(""); CPU_Message(" $Continue_From_Interrupt_Test:"); SetJump32(Jump, (uint32_t *)*g_RecompPos); } void CX86RecompilerOps::OverflowDelaySlot(bool TestTimer) { m_RegWorkingSet.WriteBackRegisters(); UpdateCounters(m_RegWorkingSet, false, true); MoveConstToVariable(CompilePC() + 4, _PROGRAM_COUNTER, "PROGRAM_COUNTER"); if (g_SyncSystem) { #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } MoveConstToVariable(JUMP, &R4300iOp::m_NextInstruction, "R4300iOp::m_NextInstruction"); if (TestTimer) { MoveConstToVariable(TestTimer, &R4300iOp::m_TestTimer, "R4300iOp::m_TestTimer"); } PushImm32("g_System->CountPerOp()", g_System->CountPerOp()); Call_Direct((void *)CInterpreterCPU::ExecuteOps, "CInterpreterCPU::ExecuteOps"); AddConstToX86Reg(x86_ESP, 4); if (g_System->bFastSP() && g_Recompiler) { #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Recompiler, x86_ECX); Call_Direct(AddressOf(&CRecompiler::ResetMemoryStackPos), "CRecompiler::ResetMemoryStackPos"); #else PushImm32((uint32_t)g_Recompiler); Call_Direct(AddressOf(&CRecompiler::ResetMemoryStackPos), "CRecompiler::ResetMemoryStackPos"); AddConstToX86Reg(x86_ESP, 4); #endif } if (g_SyncSystem) { UpdateSyncCPU(m_RegWorkingSet, g_System->CountPerOp()); } ExitCodeBlock(); m_NextInstruction = END_BLOCK; } void CX86RecompilerOps::CompileExit(uint32_t JumpPC, uint32_t TargetPC, CRegInfo &ExitRegSet, CExitInfo::EXIT_REASON reason) { CompileExit(JumpPC, TargetPC, ExitRegSet, reason, true, NULL); } void CX86RecompilerOps::CompileExit(uint32_t JumpPC, uint32_t TargetPC, CRegInfo &ExitRegSet, CExitInfo::EXIT_REASON reason, bool CompileNow, void(*x86Jmp)(const char * Label, uint32_t Value)) { if (!CompileNow) { char String[100]; sprintf(String, "Exit_%d", m_ExitInfo.size()); if (x86Jmp == NULL) { g_Notify->BreakPoint(__FILE__, __LINE__); return; } x86Jmp(String, 0); CExitInfo ExitInfo; ExitInfo.ID = m_ExitInfo.size(); ExitInfo.TargetPC = TargetPC; ExitInfo.ExitRegSet = ExitRegSet; ExitInfo.reason = reason; ExitInfo.NextInstruction = m_NextInstruction; ExitInfo.JumpLoc = (uint32_t *)(*g_RecompPos - 4); m_ExitInfo.push_back(ExitInfo); return; } //CPU_Message("CompileExit: %d",reason); ExitRegSet.WriteBackRegisters(); if (TargetPC != (uint32_t)-1) { MoveConstToVariable(TargetPC, &g_Reg->m_PROGRAM_COUNTER, "PROGRAM_COUNTER"); UpdateCounters(ExitRegSet, TargetPC <= JumpPC && JumpPC != -1, reason == CExitInfo::Normal); } else { UpdateCounters(ExitRegSet, false, reason == CExitInfo::Normal); } switch (reason) { case CExitInfo::Normal: case CExitInfo::Normal_NoSysCheck: ExitRegSet.SetBlockCycleCount(0); if (TargetPC != (uint32_t)-1) { if (TargetPC <= JumpPC && reason == CExitInfo::Normal) { CPU_Message("CompileSystemCheck 1"); CompileSystemCheck((uint32_t)-1, ExitRegSet); } } else { if (reason == CExitInfo::Normal) { CPU_Message("CompileSystemCheck 2"); CompileSystemCheck((uint32_t)-1, ExitRegSet); } } if (g_SyncSystem) { #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); #else PushImm32((uint32_t)g_BaseSystem); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); AddConstToX86Reg(x86_ESP, 4); #endif } #ifdef LinkBlocks if (bSMM_ValidFunc == false) { if (LookUpMode() == FuncFind_ChangeMemory) { g_Notify->BreakPoint(__FILE__, __LINE__); // uint8_t * Jump, * Jump2; // if (TargetPC >= 0x80000000 && TargetPC < 0xC0000000) { // uint32_t pAddr = TargetPC & 0x1FFFFFFF; // // MoveVariableToX86reg((uint8_t *)RDRAM + pAddr,"RDRAM + pAddr",x86_EAX); // Jump2 = NULL; // } else { // MoveConstToX86reg((TargetPC >> 12),x86_ECX); // MoveConstToX86reg(TargetPC,x86_EBX); // MoveVariableDispToX86Reg(TLB_ReadMap,"TLB_ReadMap",x86_ECX,x86_ECX,4); // TestX86RegToX86Reg(x86_ECX,x86_ECX); // JeLabel8("NoTlbEntry",0); // Jump2 = *g_RecompPos - 1; // MoveX86regPointerToX86reg(x86_ECX, x86_EBX,x86_EAX); // } // MoveX86RegToX86Reg(x86_EAX,x86_ECX); // AndConstToX86Reg(x86_ECX,0xFFFF0000); // CompConstToX86reg(x86_ECX,0x7C7C0000); // JneLabel8("NoCode",0); // Jump = *g_RecompPos - 1; // AndConstToX86Reg(x86_EAX,0xFFFF); // ShiftLeftSignImmed(x86_EAX,4); // AddConstToX86Reg(x86_EAX,0xC); // MoveVariableDispToX86Reg(OrigMem,"OrigMem",x86_ECX,x86_EAX,1); // JmpDirectReg(x86_ECX); // CPU_Message(" NoCode:"); // *((uint8_t *)(Jump))=(uint8_t)(*g_RecompPos - Jump - 1); // if (Jump2 != NULL) { // CPU_Message(" NoTlbEntry:"); // *((uint8_t *)(Jump2))=(uint8_t)(*g_RecompPos - Jump2 - 1); // } } else if (LookUpMode() == FuncFind_VirtualLookup) { MoveConstToX86reg(TargetPC, x86_EDX); MoveConstToX86reg((uint32_t)&m_Functions, x86_ECX); Call_Direct(AddressOf(&CFunctionMap::CompilerFindFunction), "CFunctionMap::CompilerFindFunction"); MoveX86RegToX86Reg(x86_EAX, x86_ECX); JecxzLabel8("NullPointer", 0); uint8_t * Jump = *g_RecompPos - 1; MoveX86PointerToX86regDisp(x86_EBX, x86_ECX, 0xC); JmpDirectReg(x86_EBX); CPU_Message(" NullPointer:"); *((uint8_t *)(Jump)) = (uint8_t)(*g_RecompPos - Jump - 1); } else if (LookUpMode() == FuncFind_PhysicalLookup) { uint8_t * Jump2 = NULL; if (TargetPC >= 0x80000000 && TargetPC < 0x90000000) { uint32_t pAddr = TargetPC & 0x1FFFFFFF; MoveVariableToX86reg((uint8_t *)JumpTable + pAddr, "JumpTable + pAddr", x86_ECX); } else if (TargetPC >= 0x90000000 && TargetPC < 0xC0000000) { } else { MoveConstToX86reg((TargetPC >> 12), x86_ECX); MoveConstToX86reg(TargetPC, x86_EBX); MoveVariableDispToX86Reg(TLB_ReadMap, "TLB_ReadMap", x86_ECX, x86_ECX, 4); TestX86RegToX86Reg(x86_ECX, x86_ECX); JeLabel8("NoTlbEntry", 0); Jump2 = *g_RecompPos - 1; AddConstToX86Reg(x86_ECX, (uint32_t)JumpTable - (uint32_t)RDRAM); MoveX86regPointerToX86reg(x86_ECX, x86_EBX, x86_ECX); } if (TargetPC < 0x90000000 || TargetPC >= 0xC0000000) { JecxzLabel8("NullPointer", 0); uint8_t * Jump = *g_RecompPos - 1; MoveX86PointerToX86regDisp(x86_EAX, x86_ECX, 0xC); JmpDirectReg(x86_EAX); CPU_Message(" NullPointer:"); *((uint8_t *)(Jump)) = (uint8_t)(*g_RecompPos - Jump - 1); if (Jump2 != NULL) { CPU_Message(" NoTlbEntry:"); *((uint8_t *)(Jump2)) = (uint8_t)(*g_RecompPos - Jump2 - 1); } } } } ExitCodeBlock(); #else ExitCodeBlock(); #endif break; case CExitInfo::DoCPU_Action: #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_SystemEvents, x86_ECX); Call_Direct(AddressOf(&CSystemEvents::ExecuteEvents), "CSystemEvents::ExecuteEvents"); #else PushImm32((uint32_t)g_SystemEvents); Call_Direct(AddressOf(&CSystemEvents::ExecuteEvents), "CSystemEvents::ExecuteEvents"); AddConstToX86Reg(x86_ESP, 4); #endif ExitCodeBlock(); break; case CExitInfo::DoSysCall: { bool bDelay = m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT; PushImm32(bDelay ? "true" : "false", bDelay); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::DoSysCallException), "CRegisters::DoSysCallException"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::DoSysCallException), "CRegisters::DoSysCallException"); AddConstToX86Reg(x86_ESP, 4); #endif ExitCodeBlock(); } break; case CExitInfo::COP1_Unuseable: { bool bDelay = m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT; PushImm32("1", 1); PushImm32(bDelay ? "true" : "false", bDelay); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::DoCopUnusableException), "CRegisters::DoCopUnusableException"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::DoCopUnusableException), "CRegisters::DoCopUnusableException"); AddConstToX86Reg(x86_ESP, 12); #endif ExitCodeBlock(); } break; case CExitInfo::ExitResetRecompCode: g_Notify->BreakPoint(__FILE__, __LINE__); #ifdef legacycode if (m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT) { X86BreakPoint(__FILEW__, __LINE__); } if (g_SyncSystem) { MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX); Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem"); } X86BreakPoint(__FILEW__, __LINE__); MoveVariableToX86reg(g_Recomp, "g_Recomp", x86_ECX); Call_Direct(AddressOf(ResetRecompCode), "ResetRecompCode"); #endif ExitCodeBlock(); break; case CExitInfo::TLBReadMiss: MoveVariableToX86reg(g_TLBLoadAddress, "g_TLBLoadAddress", x86_EDX); Push(x86_EDX); PushImm32(m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::DoTLBReadMiss), "CRegisters::DoTLBReadMiss"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::DoTLBReadMiss), "CRegisters::DoTLBReadMiss"); AddConstToX86Reg(x86_ESP, 12); #endif ExitCodeBlock(); break; case CExitInfo::TLBWriteMiss: X86BreakPoint(__FILE__, __LINE__); ExitCodeBlock(); break; case CExitInfo::DivByZero: AddConstToVariable(4, _PROGRAM_COUNTER, "PROGRAM_COUNTER"); if (!g_System->b32BitCore()) { MoveConstToVariable(0, &_RegHI->UW[1], "_RegHI->UW[1]"); MoveConstToVariable(0, &_RegLO->UW[1], "_RegLO->UW[1]"); } MoveConstToVariable(0, &_RegHI->UW[0], "_RegHI->UW[0]"); MoveConstToVariable(0, &_RegLO->UW[0], "_RegLO->UW[0]"); ExitCodeBlock(); break; default: WriteTrace(TraceRecompiler, TraceError, "how did you want to exit on reason (%d) ???", reason); g_Notify->BreakPoint(__FILE__, __LINE__); } } void CX86RecompilerOps::Compile_StoreInstructClean(x86Reg AddressReg, int32_t Length) { if (!g_System->bSMM_StoreInstruc()) { return; } g_Notify->BreakPoint(__FILE__, __LINE__); /* stdstr_f strLen("%d",Length); UnMap_AllFPRs(); /*x86Reg StoreTemp1 = Map_TempReg(x86_Any,-1,false); MoveX86RegToX86Reg(AddressReg, StoreTemp1); AndConstToX86Reg(StoreTemp1,0xFFC);*/ m_RegWorkingSet.BeforeCallDirect(); PushImm32("CRecompiler::Remove_StoreInstruc", CRecompiler::Remove_StoreInstruc); PushImm32(Length); Push(AddressReg); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Recompiler, x86_ECX); Call_Direct(AddressOf(&CRecompiler::ClearRecompCode_Virt), "CRecompiler::ClearRecompCode_Virt"); #else PushImm32((uint32_t)g_Recompiler); Call_Direct(AddressOf(&CRecompiler::ClearRecompCode_Virt), "CRecompiler::ClearRecompCode_Virt"); AddConstToX86Reg(x86_ESP, 16); #endif m_RegWorkingSet.AfterCallDirect(); /*JmpLabel8("MemCheckDone",0); uint8_t * MemCheckDone = *g_RecompPos - 1; CPU_Message(" "); CPU_Message(" NotDelaySlot:"); SetJump8(NotDelaySlotJump,*g_RecompPos); MoveX86RegToX86Reg(AddressReg, StoreTemp1); ShiftRightUnsignImmed(StoreTemp1,12); LeaRegReg(StoreTemp1,StoreTemp1,(uint32_t)&(g_Recompiler->FunctionTable()[0]),Multip_x4); CompConstToX86regPointer(StoreTemp1,0); JeLabel8("MemCheckDone",0); uint8_t * MemCheckDone2 = *g_RecompPos - 1; m_RegWorkingSet.BeforeCallDirect(); PushImm32("CRecompiler::Remove_StoreInstruc",CRecompiler::Remove_StoreInstruc); PushImm32(strLen.c_str(),Length); Push(AddressReg); MoveConstToX86reg((uint32_t)g_Recompiler,x86_ECX); Call_Direct(AddressOf(&CRecompiler::ClearRecompCode_Virt), "CRecompiler::ClearRecompCode_Virt"); m_RegWorkingSet.AfterCallDirect(); CPU_Message(" "); CPU_Message(" MemCheckDone:"); SetJump8(MemCheckDone,*g_RecompPos); SetJump8(MemCheckDone2,*g_RecompPos); X86Protected(StoreTemp1) = false;*/ } void CX86RecompilerOps::SB_Const(uint8_t Value, uint32_t VAddr) { char VarName[100]; uint32_t PAddr; if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr, TempReg1); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); MoveConstByteToX86regPointer(Value, TempReg1, TempReg2); return; } if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { CPU_Message("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s, \nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } return; } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: sprintf(VarName, "RDRAM + %X", PAddr); MoveConstByteToVariable(Value, PAddr + g_MMU->Rdram(), VarName); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %02X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } } void CX86RecompilerOps::SB_Register(x86Reg Reg, uint32_t VAddr) { char VarName[100]; uint32_t PAddr; if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { m_RegWorkingSet.SetX86Protected(Reg, true); x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr, TempReg1); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); MoveX86regByteToX86regPointer(Reg, TempReg1, TempReg2); return; } if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { CPU_Message("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } return; } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: sprintf(VarName, "RDRAM + %X", PAddr); MoveX86regByteToVariable(Reg, PAddr + g_MMU->Rdram(), VarName); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } } void CX86RecompilerOps::SH_Const(uint16_t Value, uint32_t VAddr) { char VarName[100]; uint32_t PAddr; if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr, TempReg1); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); MoveConstHalfToX86regPointer(Value, TempReg1, TempReg2); return; } if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { CPU_Message("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } return; } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: sprintf(VarName, "RDRAM + %X", PAddr); MoveConstHalfToVariable(Value, PAddr + g_MMU->Rdram(), VarName); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %04X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } } void CX86RecompilerOps::SH_Register(x86Reg Reg, uint32_t VAddr) { char VarName[100]; uint32_t PAddr; if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { m_RegWorkingSet.SetX86Protected(Reg, true); x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr, TempReg1); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); MoveX86regHalfToX86regPointer(Reg, TempReg1, TempReg2); return; } if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { CPU_Message("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } return; } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: sprintf(VarName, "RDRAM + %X", PAddr); MoveX86regHalfToVariable(Reg, PAddr + g_MMU->Rdram(), VarName); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, PAddr).c_str()); } } } void CX86RecompilerOps::SW_Const(uint32_t Value, uint32_t VAddr) { char VarName[100]; uint8_t * Jump; uint32_t PAddr; if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr, TempReg1); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); MoveConstToX86regPointer(Value, TempReg1, TempReg2); return; } if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { CPU_Message("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } return; } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: sprintf(VarName, "RDRAM + %X", PAddr); MoveConstToVariable(Value, PAddr + g_MMU->Rdram(), VarName); break; case 0x03F00000: switch (PAddr) { case 0x03F00000: MoveConstToVariable(Value, &g_Reg->RDRAM_CONFIG_REG, "RDRAM_CONFIG_REG"); break; case 0x03F00004: MoveConstToVariable(Value, &g_Reg->RDRAM_DEVICE_ID_REG, "RDRAM_DEVICE_ID_REG"); break; case 0x03F00008: MoveConstToVariable(Value, &g_Reg->RDRAM_DELAY_REG, "RDRAM_DELAY_REG"); break; case 0x03F0000C: MoveConstToVariable(Value, &g_Reg->RDRAM_MODE_REG, "RDRAM_MODE_REG"); break; case 0x03F00010: MoveConstToVariable(Value, &g_Reg->RDRAM_REF_INTERVAL_REG, "RDRAM_REF_INTERVAL_REG"); break; case 0x03F00014: MoveConstToVariable(Value, &g_Reg->RDRAM_REF_ROW_REG, "RDRAM_REF_ROW_REG"); break; case 0x03F00018: MoveConstToVariable(Value, &g_Reg->RDRAM_RAS_INTERVAL_REG, "RDRAM_RAS_INTERVAL_REG"); break; case 0x03F0001C: MoveConstToVariable(Value, &g_Reg->RDRAM_MIN_INTERVAL_REG, "RDRAM_MIN_INTERVAL_REG"); break; case 0x03F00020: MoveConstToVariable(Value, &g_Reg->RDRAM_ADDR_SELECT_REG, "RDRAM_ADDR_SELECT_REG"); break; case 0x03F00024: MoveConstToVariable(Value, &g_Reg->RDRAM_DEVICE_MANUF_REG, "RDRAM_DEVICE_MANUF_REG"); break; case 0x03F04004: break; case 0x03F08004: break; case 0x03F80004: break; case 0x03F80008: break; case 0x03F8000C: break; case 0x03F80014: break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x04000000: if (PAddr < 0x04002000) { sprintf(VarName, "RDRAM + %X", PAddr); MoveConstToVariable(Value, PAddr + g_MMU->Rdram(), VarName); break; } switch (PAddr) { case 0x04040000: MoveConstToVariable(Value, &g_Reg->SP_MEM_ADDR_REG, "SP_MEM_ADDR_REG"); break; case 0x04040004: MoveConstToVariable(Value, &g_Reg->SP_DRAM_ADDR_REG, "SP_DRAM_ADDR_REG"); break; case 0x04040008: MoveConstToVariable(Value, &g_Reg->SP_RD_LEN_REG, "SP_RD_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CDMA *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CDMA::SP_DMA_READ), "CDMA::SP_DMA_READ"); #else PushImm32((uint32_t)((CDMA *)g_MMU)); Call_Direct(AddressOf(&CDMA::SP_DMA_READ), "CDMA::SP_DMA_READ"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04040010: { m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); PushImm32(Value); PushImm32(PAddr); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)(g_MMU), x86_ECX); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); #else PushImm32((uint32_t)(g_MMU)); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); AddConstToX86Reg(x86_ESP, 12); #endif m_RegWorkingSet.AfterCallDirect(); } break; case 0x0404001C: MoveConstToVariable(0, &g_Reg->SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG"); break; case 0x04080000: MoveConstToVariable(Value & 0xFFC, &g_Reg->SP_PC_REG, "SP_PC_REG"); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x04100000: switch (PAddr) { case 0x0410000C: m_RegWorkingSet.BeforeCallDirect(); PushImm32(Value); PushImm32(PAddr); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)(g_MMU), x86_ECX); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); m_RegWorkingSet.AfterCallDirect(); #else PushImm32((uint32_t)(g_MMU)); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); AddConstToX86Reg(x86_ESP, 12); #endif break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x04300000: switch (PAddr) { case 0x04300000: { uint32_t ModValue; ModValue = 0x7F; if ((Value & MI_CLR_INIT) != 0) { ModValue |= MI_MODE_INIT; } if ((Value & MI_CLR_EBUS) != 0) { ModValue |= MI_MODE_EBUS; } if ((Value & MI_CLR_RDRAM) != 0) { ModValue |= MI_MODE_RDRAM; } if (ModValue != 0) { AndConstToVariable(~ModValue, &g_Reg->MI_MODE_REG, "MI_MODE_REG"); } ModValue = (Value & 0x7F); if ((Value & MI_SET_INIT) != 0) { ModValue |= MI_MODE_INIT; } if ((Value & MI_SET_EBUS) != 0) { ModValue |= MI_MODE_EBUS; } if ((Value & MI_SET_RDRAM) != 0) { ModValue |= MI_MODE_RDRAM; } if (ModValue != 0) { OrConstToVariable(ModValue, &g_Reg->MI_MODE_REG, "MI_MODE_REG"); } if ((Value & MI_CLR_DP_INTR) != 0) { AndConstToVariable((uint32_t)~MI_INTR_DP, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); AndConstToVariable((uint32_t)~MI_INTR_DP, &g_Reg->m_GfxIntrReg, "m_GfxIntrReg"); } } break; case 0x0430000C: { uint32_t ModValue; ModValue = 0; if ((Value & MI_INTR_MASK_CLR_SP) != 0) { ModValue |= MI_INTR_MASK_SP; } if ((Value & MI_INTR_MASK_CLR_SI) != 0) { ModValue |= MI_INTR_MASK_SI; } if ((Value & MI_INTR_MASK_CLR_AI) != 0) { ModValue |= MI_INTR_MASK_AI; } if ((Value & MI_INTR_MASK_CLR_VI) != 0) { ModValue |= MI_INTR_MASK_VI; } if ((Value & MI_INTR_MASK_CLR_PI) != 0) { ModValue |= MI_INTR_MASK_PI; } if ((Value & MI_INTR_MASK_CLR_DP) != 0) { ModValue |= MI_INTR_MASK_DP; } if (ModValue != 0) { AndConstToVariable(~ModValue, &g_Reg->MI_INTR_MASK_REG, "MI_INTR_MASK_REG"); } ModValue = 0; if ((Value & MI_INTR_MASK_SET_SP) != 0) { ModValue |= MI_INTR_MASK_SP; } if ((Value & MI_INTR_MASK_SET_SI) != 0) { ModValue |= MI_INTR_MASK_SI; } if ((Value & MI_INTR_MASK_SET_AI) != 0) { ModValue |= MI_INTR_MASK_AI; } if ((Value & MI_INTR_MASK_SET_VI) != 0) { ModValue |= MI_INTR_MASK_VI; } if ((Value & MI_INTR_MASK_SET_PI) != 0) { ModValue |= MI_INTR_MASK_PI; } if ((Value & MI_INTR_MASK_SET_DP) != 0) { ModValue |= MI_INTR_MASK_DP; } if (ModValue != 0) { OrConstToVariable(ModValue, &g_Reg->MI_INTR_MASK_REG, "MI_INTR_MASK_REG"); } } break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x04400000: switch (PAddr) { case 0x04400000: if (g_Plugins->Gfx()->ViStatusChanged != NULL) { CompConstToVariable(Value, &g_Reg->VI_STATUS_REG, "VI_STATUS_REG"); JeLabel8("Continue", 0); Jump = *g_RecompPos - 1; MoveConstToVariable(Value, &g_Reg->VI_STATUS_REG, "VI_STATUS_REG"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)g_Plugins->Gfx()->ViStatusChanged, "ViStatusChanged"); m_RegWorkingSet.AfterCallDirect(); CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump, *g_RecompPos); } break; case 0x04400004: MoveConstToVariable((Value & 0xFFFFFF), &g_Reg->VI_ORIGIN_REG, "VI_ORIGIN_REG"); break; case 0x04400008: if (g_Plugins->Gfx()->ViWidthChanged != NULL) { CompConstToVariable(Value, &g_Reg->VI_WIDTH_REG, "VI_WIDTH_REG"); JeLabel8("Continue", 0); Jump = *g_RecompPos - 1; MoveConstToVariable(Value, &g_Reg->VI_WIDTH_REG, "VI_WIDTH_REG"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)g_Plugins->Gfx()->ViWidthChanged, "ViWidthChanged"); m_RegWorkingSet.AfterCallDirect(); CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump, *g_RecompPos); } break; case 0x0440000C: MoveConstToVariable(Value, &g_Reg->VI_INTR_REG, "VI_INTR_REG"); break; case 0x04400010: AndConstToVariable((uint32_t)~MI_INTR_VI, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04400014: MoveConstToVariable(Value, &g_Reg->VI_BURST_REG, "VI_BURST_REG"); break; case 0x04400018: MoveConstToVariable(Value, &g_Reg->VI_V_SYNC_REG, "VI_V_SYNC_REG"); break; case 0x0440001C: MoveConstToVariable(Value, &g_Reg->VI_H_SYNC_REG, "VI_H_SYNC_REG"); break; case 0x04400020: MoveConstToVariable(Value, &g_Reg->VI_LEAP_REG, "VI_LEAP_REG"); break; case 0x04400024: MoveConstToVariable(Value, &g_Reg->VI_H_START_REG, "VI_H_START_REG"); break; case 0x04400028: MoveConstToVariable(Value, &g_Reg->VI_V_START_REG, "VI_V_START_REG"); break; case 0x0440002C: MoveConstToVariable(Value, &g_Reg->VI_V_BURST_REG, "VI_V_BURST_REG"); break; case 0x04400030: MoveConstToVariable(Value, &g_Reg->VI_X_SCALE_REG, "VI_X_SCALE_REG"); break; case 0x04400034: MoveConstToVariable(Value, &g_Reg->VI_Y_SCALE_REG, "VI_Y_SCALE_REG"); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x04500000: /* AI registers */ switch (PAddr) { case 0x04500000: MoveConstToVariable(Value, &g_Reg->AI_DRAM_ADDR_REG, "AI_DRAM_ADDR_REG"); break; case 0x04500004: MoveConstToVariable(Value, &g_Reg->AI_LEN_REG, "AI_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); if (g_System->bFixedAudio()) { X86BreakPoint(__FILE__, __LINE__); MoveConstToX86reg((uint32_t)g_Audio, x86_ECX); Call_Direct(AddressOf(&CAudio::LenChanged), "LenChanged"); } else { Call_Direct((void *)g_Plugins->Audio()->AiLenChanged, "AiLenChanged"); } m_RegWorkingSet.AfterCallDirect(); break; case 0x04500008: MoveConstToVariable((Value & 1), &g_Reg->AI_CONTROL_REG, "AI_CONTROL_REG"); break; case 0x0450000C: /* Clear Interrupt */; AndConstToVariable((uint32_t)~MI_INTR_AI, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); AndConstToVariable((uint32_t)~MI_INTR_AI, &g_Reg->m_AudioIntrReg, "m_AudioIntrReg"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04500010: sprintf(VarName, "RDRAM + %X", PAddr); MoveConstToVariable(Value, PAddr + g_MMU->Rdram(), VarName); break; case 0x04500014: MoveConstToVariable(Value, &g_Reg->AI_BITRATE_REG, "AI_BITRATE_REG"); break; default: sprintf(VarName, "RDRAM + %X", PAddr); MoveConstToVariable(Value, PAddr + g_MMU->Rdram(), VarName); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x04600000: switch (PAddr) { case 0x04600000: MoveConstToVariable(Value, &g_Reg->PI_DRAM_ADDR_REG, "PI_DRAM_ADDR_REG"); break; case 0x04600004: MoveConstToVariable(Value, &g_Reg->PI_CART_ADDR_REG, "PI_CART_ADDR_REG"); break; case 0x04600008: MoveConstToVariable(Value, &g_Reg->PI_RD_LEN_REG, "PI_RD_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CDMA *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CDMA::PI_DMA_READ), "CDMA::PI_DMA_READ"); #else PushImm32((uint32_t)((CDMA *)g_MMU)); Call_Direct(AddressOf(&CDMA::PI_DMA_READ), "CDMA::PI_DMA_READ"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x0460000C: MoveConstToVariable(Value, &g_Reg->PI_WR_LEN_REG, "PI_WR_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CDMA *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CDMA::PI_DMA_WRITE), "CDMA::PI_DMA_WRITE"); #else PushImm32((uint32_t)((CDMA *)g_MMU)); Call_Direct(AddressOf(&CDMA::PI_DMA_WRITE), "CDMA::PI_DMA_WRITE"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04600010: if ((Value & PI_CLR_INTR) != 0) { AndConstToVariable((uint32_t)~MI_INTR_PI, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); } break; case 0x04600014: MoveConstToVariable((Value & 0xFF), &g_Reg->PI_DOMAIN1_REG, "PI_DOMAIN1_REG"); break; case 0x04600018: MoveConstToVariable((Value & 0xFF), &g_Reg->PI_BSD_DOM1_PWD_REG, "PI_BSD_DOM1_PWD_REG"); break; case 0x0460001C: MoveConstToVariable((Value & 0xFF), &g_Reg->PI_BSD_DOM1_PGS_REG, "PI_BSD_DOM1_PGS_REG"); break; case 0x04600020: MoveConstToVariable((Value & 0xFF), &g_Reg->PI_BSD_DOM1_RLS_REG, "PI_BSD_DOM1_RLS_REG"); break; case 0x04600024: MoveConstToVariable((Value & 0xFF), &g_Reg->PI_DOMAIN2_REG, "PI_DOMAIN2_REG"); break; case 0x04600028: MoveConstToVariable((Value & 0xFF), &g_Reg->PI_BSD_DOM2_PWD_REG, "PI_BSD_DOM2_PWD_REG"); break; case 0x0460002C: MoveConstToVariable((Value & 0xFF), &g_Reg->PI_BSD_DOM2_PGS_REG, "PI_BSD_DOM2_PGS_REG"); break; case 0x04600030: MoveConstToVariable((Value & 0xFF), &g_Reg->PI_BSD_DOM2_RLS_REG, "PI_BSD_DOM2_RLS_REG"); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x04700000: switch (PAddr) { case 0x04700000: MoveConstToVariable(Value, &g_Reg->RI_MODE_REG, "RI_MODE_REG"); break; case 0x04700004: MoveConstToVariable(Value, &g_Reg->RI_CONFIG_REG, "RI_CONFIG_REG"); break; case 0x04700008: MoveConstToVariable(Value, &g_Reg->RI_CURRENT_LOAD_REG, "RI_CURRENT_LOAD_REG"); break; case 0x0470000C: MoveConstToVariable(Value, &g_Reg->RI_SELECT_REG, "RI_SELECT_REG"); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x04800000: switch (PAddr) { case 0x04800000: MoveConstToVariable(Value, &g_Reg->SI_DRAM_ADDR_REG, "SI_DRAM_ADDR_REG"); break; case 0x04800004: m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); MoveConstToVariable(Value, &g_Reg->SI_PIF_ADDR_RD64B_REG, "SI_PIF_ADDR_RD64B_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CPifRam *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CPifRam::SI_DMA_READ), "CPifRam::SI_DMA_READ"); #else PushImm32((uint32_t)((CPifRam *)g_MMU)); Call_Direct(AddressOf(&CPifRam::SI_DMA_READ), "CPifRam::SI_DMA_READ"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04800010: m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); MoveConstToVariable(Value, &g_Reg->SI_PIF_ADDR_WR64B_REG, "SI_PIF_ADDR_WR64B_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CPifRam *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CPifRam::SI_DMA_WRITE), "CPifRam::SI_DMA_WRITE"); #else PushImm32((uint32_t)((CPifRam *)g_MMU)); Call_Direct(AddressOf(&CPifRam::SI_DMA_WRITE), "CPifRam::SI_DMA_WRITE"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04800018: AndConstToVariable((uint32_t)~MI_INTR_SI, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); AndConstToVariable((uint32_t)~SI_STATUS_INTERRUPT, &g_Reg->SI_STATUS_REG, "SI_STATUS_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; case 0x05000000: //64DD Registers if (g_Settings->LoadBool(Setting_EnableDisk)) { switch (PAddr) { case 0x05000520: m_RegWorkingSet.BeforeCallDirect(); Call_Direct(AddressOf(&DiskReset), "DiskReset"); m_RegWorkingSet.AfterCallDirect(); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } } break; } case 0x1fc00000: { m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); PushImm32(Value); PushImm32(PAddr); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)(g_MMU), x86_ECX); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); #else PushImm32((uint32_t)g_MMU); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); } break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store %08X in %08X?", __FUNCTION__, Value, VAddr).c_str()); } m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); m_RegWorkingSet.BeforeCallDirect(); PushImm32(Value); PushImm32(PAddr); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)(g_MMU), x86_ECX); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); #else PushImm32((uint32_t)(g_MMU)); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); AddConstToX86Reg(x86_ESP, 12); #endif m_RegWorkingSet.AfterCallDirect(); } } void CX86RecompilerOps::SW_Register(x86Reg Reg, uint32_t VAddr) { if (VAddr < 0x80000000 || VAddr >= 0xC0000000) { m_RegWorkingSet.SetX86Protected(Reg, true); x86Reg TempReg1 = Map_TempReg(x86_Any, -1, false); x86Reg TempReg2 = Map_TempReg(x86_Any, -1, false); MoveConstToX86reg(VAddr, TempReg1); MoveX86RegToX86Reg(TempReg1, TempReg2); ShiftRightUnsignImmed(TempReg2, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_WriteMap, "MMU->TLB_WriteMap", TempReg2, TempReg2, 4); CompileWriteTLBMiss(TempReg1, TempReg2); MoveX86regToX86regPointer(Reg, TempReg1, TempReg2); return; } char VarName[100]; uint32_t PAddr; if (!g_TransVaddr->TranslateVaddr(VAddr, PAddr)) { CPU_Message("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\nFailed to translate address: %08X", __FUNCTION__, VAddr).c_str()); } return; } switch (PAddr & 0xFFF00000) { case 0x00000000: case 0x00100000: case 0x00200000: case 0x00300000: case 0x00400000: case 0x00500000: case 0x00600000: case 0x00700000: sprintf(VarName, "RDRAM + %X", PAddr); MoveX86regToVariable(Reg, PAddr + g_MMU->Rdram(), VarName); break; case 0x04000000: switch (PAddr) { case 0x04040000: MoveX86regToVariable(Reg, &g_Reg->SP_MEM_ADDR_REG, "SP_MEM_ADDR_REG"); break; case 0x04040004: MoveX86regToVariable(Reg, &g_Reg->SP_DRAM_ADDR_REG, "SP_DRAM_ADDR_REG"); break; case 0x04040008: MoveX86regToVariable(Reg, &g_Reg->SP_RD_LEN_REG, "SP_RD_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CDMA *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CDMA::SP_DMA_READ), "CDMA::SP_DMA_READ"); #else PushImm32((uint32_t)((CDMA *)g_MMU)); Call_Direct(AddressOf(&CDMA::SP_DMA_READ), "CDMA::SP_DMA_READ"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x0404000C: MoveX86regToVariable(Reg, &g_Reg->SP_WR_LEN_REG, "SP_WR_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CDMA *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CDMA::SP_DMA_WRITE), "CDMA::SP_DMA_WRITE"); #else PushImm32((uint32_t)((CDMA *)g_MMU)); Call_Direct(AddressOf(&CDMA::SP_DMA_WRITE), "CDMA::SP_DMA_WRITE"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04040010: m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); MoveX86regToVariable(Reg, &CMipsMemoryVM::RegModValue, "CMipsMemoryVM::RegModValue"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)CMipsMemoryVM::ChangeSpStatus, "CMipsMemoryVM::ChangeSpStatus"); m_RegWorkingSet.AfterCallDirect(); break; case 0x0404001C: MoveConstToVariable(0, &g_Reg->SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG"); break; case 0x04080000: MoveX86regToVariable(Reg, &g_Reg->SP_PC_REG, "SP_PC_REG"); AndConstToVariable(0xFFC, &g_Reg->SP_PC_REG, "SP_PC_REG"); break; default: if (PAddr < 0x04002000) { sprintf(VarName, "RDRAM + %X", PAddr); MoveX86regToVariable(Reg, PAddr + g_MMU->Rdram(), VarName); } else { CPU_Message(" Should be moving %s in to %08X ?!?", x86_Name(Reg), VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } } break; case 0x04100000: if (PAddr == 0x0410000C) { m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); } m_RegWorkingSet.BeforeCallDirect(); Push(Reg); PushImm32(PAddr); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)(g_MMU), x86_ECX); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); #else PushImm32((uint32_t)(g_MMU)); Call_Direct(AddressOf(&CMipsMemoryVM::SW_NonMemory), "CMipsMemoryVM::SW_NonMemory"); AddConstToX86Reg(x86_ESP, 12); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04300000: switch (PAddr) { case 0x04300000: MoveX86regToVariable(Reg, &CMipsMemoryVM::m_MemLookupValue.UW[0], "CMipsMemoryVM::m_MemLookupValue.UW[0]"); MoveConstToVariable(PAddr, &CMipsMemoryVM::m_MemLookupAddress, "m_MemLookupAddress"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)CMipsMemoryVM::Write32MIPSInterface, "CMipsMemoryVM::Write32MIPSInterface"); m_RegWorkingSet.AfterCallDirect(); break; case 0x0430000C: MoveX86regToVariable(Reg, &CMipsMemoryVM::RegModValue, "CMipsMemoryVM::RegModValue"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)CMipsMemoryVM::ChangeMiIntrMask, "CMipsMemoryVM::ChangeMiIntrMask"); m_RegWorkingSet.AfterCallDirect(); break; default: CPU_Message(" Should be moving %s in to %08X ?!?", x86_Name(Reg), VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } break; case 0x04400000: switch (PAddr) { case 0x04400000: if (g_Plugins->Gfx()->ViStatusChanged != NULL) { uint8_t * Jump; CompX86regToVariable(Reg, &g_Reg->VI_STATUS_REG, "VI_STATUS_REG"); JeLabel8("Continue", 0); Jump = *g_RecompPos - 1; MoveX86regToVariable(Reg, &g_Reg->VI_STATUS_REG, "VI_STATUS_REG"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)g_Plugins->Gfx()->ViStatusChanged, "ViStatusChanged"); m_RegWorkingSet.AfterCallDirect(); CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump, *g_RecompPos); } break; case 0x04400004: MoveX86regToVariable(Reg, &g_Reg->VI_ORIGIN_REG, "VI_ORIGIN_REG"); AndConstToVariable(0xFFFFFF, &g_Reg->VI_ORIGIN_REG, "VI_ORIGIN_REG"); break; case 0x04400008: if (g_Plugins->Gfx()->ViWidthChanged != NULL) { uint8_t * Jump; CompX86regToVariable(Reg, &g_Reg->VI_WIDTH_REG, "VI_WIDTH_REG"); JeLabel8("Continue", 0); Jump = *g_RecompPos - 1; MoveX86regToVariable(Reg, &g_Reg->VI_WIDTH_REG, "VI_WIDTH_REG"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct((void *)g_Plugins->Gfx()->ViWidthChanged, "ViWidthChanged"); m_RegWorkingSet.AfterCallDirect(); CPU_Message(""); CPU_Message(" Continue:"); SetJump8(Jump, *g_RecompPos); } break; case 0x0440000C: MoveX86regToVariable(Reg, &g_Reg->VI_INTR_REG, "VI_INTR_REG"); break; case 0x04400010: AndConstToVariable((uint32_t)~MI_INTR_VI, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04400014: MoveX86regToVariable(Reg, &g_Reg->VI_BURST_REG, "VI_BURST_REG"); break; case 0x04400018: MoveX86regToVariable(Reg, &g_Reg->VI_V_SYNC_REG, "VI_V_SYNC_REG"); break; case 0x0440001C: MoveX86regToVariable(Reg, &g_Reg->VI_H_SYNC_REG, "VI_H_SYNC_REG"); break; case 0x04400020: MoveX86regToVariable(Reg, &g_Reg->VI_LEAP_REG, "VI_LEAP_REG"); break; case 0x04400024: MoveX86regToVariable(Reg, &g_Reg->VI_H_START_REG, "VI_H_START_REG"); break; case 0x04400028: MoveX86regToVariable(Reg, &g_Reg->VI_V_START_REG, "VI_V_START_REG"); break; case 0x0440002C: MoveX86regToVariable(Reg, &g_Reg->VI_V_BURST_REG, "VI_V_BURST_REG"); break; case 0x04400030: MoveX86regToVariable(Reg, &g_Reg->VI_X_SCALE_REG, "VI_X_SCALE_REG"); break; case 0x04400034: MoveX86regToVariable(Reg, &g_Reg->VI_Y_SCALE_REG, "VI_Y_SCALE_REG"); break; default: CPU_Message(" Should be moving %s in to %08X ?!?", x86_Name(Reg), VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } break; case 0x04500000: /* AI registers */ switch (PAddr) { case 0x04500000: MoveX86regToVariable(Reg, &g_Reg->AI_DRAM_ADDR_REG, "AI_DRAM_ADDR_REG"); break; case 0x04500004: m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp()); UpdateCounters(m_RegWorkingSet, false, true); m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp()); MoveX86regToVariable(Reg, &g_Reg->AI_LEN_REG, "AI_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); if (g_System->bFixedAudio()) { #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Audio, x86_ECX); Call_Direct(AddressOf(&CAudio::LenChanged), "LenChanged"); #else PushImm32((uint32_t)g_Audio); Call_Direct(AddressOf(&CAudio::LenChanged), "LenChanged"); AddConstToX86Reg(x86_ESP, 4); #endif } else { Call_Direct((void *)g_Plugins->Audio()->AiLenChanged, "g_Plugins->Audio()->LenChanged"); } m_RegWorkingSet.AfterCallDirect(); break; case 0x04500008: MoveX86regToVariable(Reg, &g_Reg->AI_CONTROL_REG, "AI_CONTROL_REG"); AndConstToVariable(1, &g_Reg->AI_CONTROL_REG, "AI_CONTROL_REG"); case 0x0450000C: /* Clear Interrupt */; AndConstToVariable((uint32_t)~MI_INTR_AI, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); AndConstToVariable((uint32_t)~MI_INTR_AI, &g_Reg->m_AudioIntrReg, "m_AudioIntrReg"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04500010: sprintf(VarName, "RDRAM + %X", PAddr); MoveX86regToVariable(Reg, PAddr + g_MMU->Rdram(), VarName); break; case 0x04500014: MoveX86regToVariable(Reg, &g_Reg->AI_BITRATE_REG, "AI_BITRATE_REG"); break; default: sprintf(VarName, "RDRAM + %X", PAddr); MoveX86regToVariable(Reg, PAddr + g_MMU->Rdram(), VarName); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } break; case 0x04600000: switch (PAddr) { case 0x04600000: MoveX86regToVariable(Reg, &g_Reg->PI_DRAM_ADDR_REG, "PI_DRAM_ADDR_REG"); break; case 0x04600004: MoveX86regToVariable(Reg, &g_Reg->PI_CART_ADDR_REG, "PI_CART_ADDR_REG"); if (g_Settings->LoadBool(Setting_EnableDisk)) { m_RegWorkingSet.BeforeCallDirect(); Call_Direct(AddressOf(&DiskDMACheck), "DiskDMACheck"); m_RegWorkingSet.AfterCallDirect(); } break; case 0x04600008: MoveX86regToVariable(Reg, &g_Reg->PI_RD_LEN_REG, "PI_RD_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CDMA *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CDMA::PI_DMA_READ), "CDMA::PI_DMA_READ"); #else PushImm32((uint32_t)((CDMA *)g_MMU)); Call_Direct(AddressOf(&CDMA::PI_DMA_READ), "CDMA::PI_DMA_READ"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x0460000C: MoveX86regToVariable(Reg, &g_Reg->PI_WR_LEN_REG, "PI_WR_LEN_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CDMA *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CDMA::PI_DMA_WRITE), "CDMA::PI_DMA_WRITE"); #else PushImm32((uint32_t)((CDMA *)g_MMU)); Call_Direct(AddressOf(&CDMA::PI_DMA_WRITE), "CDMA::PI_DMA_WRITE"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04600010: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } AndConstToVariable((uint32_t)~MI_INTR_PI, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04600014: MoveX86regToVariable(Reg, &g_Reg->PI_DOMAIN1_REG, "PI_DOMAIN1_REG"); AndConstToVariable(0xFF, &g_Reg->PI_DOMAIN1_REG, "PI_DOMAIN1_REG"); break; case 0x04600018: MoveX86regToVariable(Reg, &g_Reg->PI_BSD_DOM1_PWD_REG, "PI_BSD_DOM1_PWD_REG"); AndConstToVariable(0xFF, &g_Reg->PI_BSD_DOM1_PWD_REG, "PI_BSD_DOM1_PWD_REG"); break; case 0x0460001C: MoveX86regToVariable(Reg, &g_Reg->PI_BSD_DOM1_PGS_REG, "PI_BSD_DOM1_PGS_REG"); AndConstToVariable(0xFF, &g_Reg->PI_BSD_DOM1_PGS_REG, "PI_BSD_DOM1_PGS_REG"); break; case 0x04600020: MoveX86regToVariable(Reg, &g_Reg->PI_BSD_DOM1_RLS_REG, "PI_BSD_DOM1_RLS_REG"); AndConstToVariable(0xFF, &g_Reg->PI_BSD_DOM1_RLS_REG, "PI_BSD_DOM1_RLS_REG"); break; case 0x04600024: MoveX86regToVariable(Reg, &g_Reg->PI_DOMAIN2_REG, "PI_DOMAIN2_REG"); AndConstToVariable(0xFF, &g_Reg->PI_DOMAIN2_REG, "PI_DOMAIN2_REG"); break; case 0x04600028: MoveX86regToVariable(Reg, &g_Reg->PI_BSD_DOM2_PWD_REG, "PI_BSD_DOM2_PWD_REG"); AndConstToVariable(0xFF, &g_Reg->PI_BSD_DOM2_PWD_REG, "PI_BSD_DOM2_PWD_REG"); break; case 0x0460002C: MoveX86regToVariable(Reg, &g_Reg->PI_BSD_DOM2_PGS_REG, "PI_BSD_DOM2_PGS_REG"); AndConstToVariable(0xFF, &g_Reg->PI_BSD_DOM2_PGS_REG, "PI_BSD_DOM2_PGS_REG"); break; case 0x04600030: MoveX86regToVariable(Reg, &g_Reg->PI_BSD_DOM2_RLS_REG, "PI_BSD_DOM2_RLS_REG"); AndConstToVariable(0xFF, &g_Reg->PI_BSD_DOM2_RLS_REG, "PI_BSD_DOM2_RLS_REG"); break; default: CPU_Message(" Should be moving %s in to %08X ?!?", x86_Name(Reg), VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } break; case 0x04700000: switch (PAddr) { case 0x04700000: MoveX86regToVariable(Reg, &g_Reg->RI_MODE_REG, "RI_MODE_REG"); break; case 0x04700004: MoveX86regToVariable(Reg, &g_Reg->RI_CONFIG_REG, "RI_CONFIG_REG"); break; case 0x0470000C: MoveX86regToVariable(Reg, &g_Reg->RI_SELECT_REG, "RI_SELECT_REG"); break; case 0x04700010: MoveX86regToVariable(Reg, &g_Reg->RI_REFRESH_REG, "RI_REFRESH_REG"); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } break; case 0x04800000: switch (PAddr) { case 0x04800000: MoveX86regToVariable(Reg, &g_Reg->SI_DRAM_ADDR_REG, "SI_DRAM_ADDR_REG"); break; case 0x04800004: MoveX86regToVariable(Reg, &g_Reg->SI_PIF_ADDR_RD64B_REG, "SI_PIF_ADDR_RD64B_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CPifRam *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CPifRam::SI_DMA_READ), "CPifRam::SI_DMA_READ"); #else PushImm32((uint32_t)((CPifRam *)g_MMU)); Call_Direct(AddressOf(&CPifRam::SI_DMA_READ), "CPifRam::SI_DMA_READ"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04800010: MoveX86regToVariable(Reg, &g_Reg->SI_PIF_ADDR_WR64B_REG, "SI_PIF_ADDR_WR64B_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)((CPifRam *)g_MMU), x86_ECX); Call_Direct(AddressOf(&CPifRam::SI_DMA_WRITE), "CPifRam::SI_DMA_WRITE"); #else PushImm32((uint32_t)((CPifRam *)g_MMU)); Call_Direct(AddressOf(&CPifRam::SI_DMA_WRITE), "CPifRam::SI_DMA_WRITE"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; case 0x04800018: AndConstToVariable((uint32_t)~MI_INTR_SI, &g_Reg->MI_INTR_REG, "MI_INTR_REG"); AndConstToVariable((uint32_t)~SI_STATUS_INTERRUPT, &g_Reg->SI_STATUS_REG, "SI_STATUS_REG"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; default: if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } break; case 0x05000000: //64DD Registers if (g_Settings->LoadBool(Setting_EnableDisk)) { switch (PAddr) { case 0x05000500: MoveX86regToVariable(Reg, &g_Reg->ASIC_DATA, "ASIC_DATA"); break; case 0x05000508: { //ASIC_CMD MoveX86regToVariable(Reg, &g_Reg->ASIC_CMD, "ASIC_CMD"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct(AddressOf(&DiskCommand), "DiskCommand"); m_RegWorkingSet.AfterCallDirect(); OrConstToVariable((uint32_t)DD_STATUS_MECHA_INT, &g_Reg->ASIC_STATUS, "ASIC_STATUS"); OrConstToVariable((uint32_t)CAUSE_IP3, &g_Reg->FAKE_CAUSE_REGISTER, "FAKE_CAUSE_REGISTER"); m_RegWorkingSet.BeforeCallDirect(); #ifdef _MSC_VER MoveConstToX86reg((uint32_t)g_Reg, x86_ECX); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); #else PushImm32((uint32_t)g_Reg); Call_Direct(AddressOf(&CRegisters::CheckInterrupts), "CRegisters::CheckInterrupts"); AddConstToX86Reg(x86_ESP, 4); #endif m_RegWorkingSet.AfterCallDirect(); break; } case 0x05000510: { //ASIC_BM_CTL MoveX86regToVariable(Reg, &g_Reg->ASIC_BM_CTL, "ASIC_BM_CTL"); m_RegWorkingSet.BeforeCallDirect(); Call_Direct(AddressOf(&DiskBMControl), "DiskBMControl"); m_RegWorkingSet.AfterCallDirect(); break; } case 0x05000518: break; case 0x05000520: m_RegWorkingSet.BeforeCallDirect(); Call_Direct(AddressOf(&DiskReset), "DiskReset"); m_RegWorkingSet.AfterCallDirect(); break; case 0x05000528: MoveX86regToVariable(Reg, &g_Reg->ASIC_HOST_SECBYTE, "ASIC_HOST_SECBYTE"); break; case 0x05000530: MoveX86regToVariable(Reg, &g_Reg->ASIC_SEC_BYTE, "ASIC_SEC_BYTE"); break; case 0x05000548: MoveX86regToVariable(Reg, &g_Reg->ASIC_TEST_PIN_SEL, "ASIC_TEST_PIN_SEL"); break; } break; } case 0x1FC00000: sprintf(VarName, "RDRAM + %X", PAddr); MoveX86regToVariable(Reg, PAddr + g_MMU->Rdram(), VarName); break; default: CPU_Message(" Should be moving %s in to %08X ?!?", x86_Name(Reg), VAddr); if (g_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { g_Notify->DisplayError(stdstr_f("%s\ntrying to store in %08X?", __FUNCTION__, VAddr).c_str()); } } } void CX86RecompilerOps::ResetMemoryStack() { x86Reg Reg, TempReg; int32_t MipsReg = 29; CPU_Message(" ResetMemoryStack"); Reg = Get_MemoryStack(); if (Reg == x86_Unknown) { Reg = Map_TempReg(x86_Any, MipsReg, false); } else { if (IsUnknown(MipsReg)) { MoveVariableToX86reg(&_GPR[MipsReg].UW[0], CRegName::GPR_Lo[MipsReg], Reg); } else if (IsMapped(MipsReg)) { MoveX86RegToX86Reg(GetMipsRegMapLo(MipsReg), Reg); } else { MoveConstToX86reg(GetMipsRegLo(MipsReg), Reg); } } if (g_System->bUseTlb()) { TempReg = Map_TempReg(x86_Any, -1, false); MoveX86RegToX86Reg(Reg, TempReg); ShiftRightUnsignImmed(TempReg, 12); MoveVariableDispToX86Reg(g_MMU->m_TLB_ReadMap, "MMU->TLB_ReadMap", TempReg, TempReg, 4); AddX86RegToX86Reg(Reg, TempReg); } else { AndConstToX86Reg(Reg, 0x1FFFFFFF); AddConstToX86Reg(Reg, (uint32_t)g_MMU->Rdram()); } MoveX86regToVariable(Reg, &(g_Recompiler->MemoryStackPos()), "MemoryStack"); } #endif