#include "stdafx.h" #include "PeripheralInterfaceHandler.h" #include #include #include #include #include #include #include #include #include PeripheralInterfaceReg::PeripheralInterfaceReg(uint32_t * PeripheralInterface) : PI_DRAM_ADDR_REG(PeripheralInterface[0]), PI_CART_ADDR_REG(PeripheralInterface[1]), PI_RD_LEN_REG(PeripheralInterface[2]), PI_WR_LEN_REG(PeripheralInterface[3]), PI_STATUS_REG(PeripheralInterface[4]), PI_BSD_DOM1_LAT_REG(PeripheralInterface[5]), PI_DOMAIN1_REG(PeripheralInterface[5]), PI_BSD_DOM1_PWD_REG(PeripheralInterface[6]), PI_BSD_DOM1_PGS_REG(PeripheralInterface[7]), PI_BSD_DOM1_RLS_REG(PeripheralInterface[8]), PI_BSD_DOM2_LAT_REG(PeripheralInterface[9]), PI_DOMAIN2_REG(PeripheralInterface[9]), PI_BSD_DOM2_PWD_REG(PeripheralInterface[10]), PI_BSD_DOM2_PGS_REG(PeripheralInterface[11]), PI_BSD_DOM2_RLS_REG(PeripheralInterface[12]) { } PeripheralInterfaceHandler::PeripheralInterfaceHandler(CN64System & System, CMipsMemoryVM & MMU, CRegisters & Reg, CartridgeDomain2Address2Handler & Domain2Address2Handler) : PeripheralInterfaceReg(Reg.m_Peripheral_Interface), MIPSInterfaceReg(Reg.m_Mips_Interface), m_Domain2Address2Handler(Domain2Address2Handler), m_MMU(MMU), m_Reg(Reg), m_PC(Reg.m_PROGRAM_COUNTER), m_DMAUsed(false) { System.RegisterCallBack(CN64SystemCB_Reset, this, (CN64System::CallBackFunction)stSystemReset); System.RegisterCallBack(CN64SystemCB_LoadedGameState, this, (CN64System::CallBackFunction)stLoadedGameState); } bool PeripheralInterfaceHandler::Read32(uint32_t Address, uint32_t & Value) { switch (Address & 0x1FFFFFFF) { case 0x04600000: Value = PI_DRAM_ADDR_REG; break; case 0x04600004: Value = PI_CART_ADDR_REG; break; case 0x04600008: Value = PI_RD_LEN_REG; break; case 0x0460000C: Value = PI_WR_LEN_REG; break; case 0x04600010: Value = PI_STATUS_REG; break; case 0x04600014: Value = PI_DOMAIN1_REG; break; case 0x04600018: Value = PI_BSD_DOM1_PWD_REG; break; case 0x0460001C: Value = PI_BSD_DOM1_PGS_REG; break; case 0x04600020: Value = PI_BSD_DOM1_RLS_REG; break; case 0x04600024: Value = PI_DOMAIN2_REG; break; case 0x04600028: Value = PI_BSD_DOM2_PWD_REG; break; case 0x0460002C: Value = PI_BSD_DOM2_PGS_REG; break; case 0x04600030: Value = PI_BSD_DOM2_RLS_REG; break; default: Value = 0; if (HaveDebugger()) { g_Notify->BreakPoint(__FILE__, __LINE__); } } if (GenerateLog() && LogPerInterface()) { switch (Address & 0x1FFFFFFF) { case 0x04600000: LogMessage("%016llX: read from PI_DRAM_ADDR_REG (%08X)", m_PC, Value); break; case 0x04600004: LogMessage("%016llX: read from PI_CART_ADDR_REG (%08X)", m_PC, Value); break; case 0x04600008: LogMessage("%016llX: read from PI_RD_LEN_REG (%08X)", m_PC, Value); break; case 0x0460000C: LogMessage("%016llX: read from PI_WR_LEN_REG (%08X)", m_PC, Value); break; case 0x04600010: LogMessage("%016llX: read from PI_STATUS_REG (%08X)", m_PC, Value); break; case 0x04600014: LogMessage("%016llX: read from PI_BSD_DOM1_LAT_REG/PI_DOMAIN1_REG (%08X)", m_PC, Value); break; case 0x04600018: LogMessage("%016llX: read from PI_BSD_DOM1_PWD_REG (%08X)", m_PC, Value); break; case 0x0460001C: LogMessage("%016llX: read from PI_BSD_DOM1_PGS_REG (%08X)", m_PC, Value); break; case 0x04600020: LogMessage("%016llX: read from PI_BSD_DOM1_RLS_REG (%08X)", m_PC, Value); break; case 0x04600024: LogMessage("%016llX: read from PI_BSD_DOM2_LAT_REG/PI_DOMAIN2_REG (%08X)", m_PC, Value); break; case 0x04600028: LogMessage("%016llX: read from PI_BSD_DOM2_PWD_REG (%08X)", m_PC, Value); break; case 0x0460002C: LogMessage("%016llX: read from PI_BSD_DOM2_PGS_REG (%08X)", m_PC, Value); break; case 0x04600030: LogMessage("%016llX: read from PI_BSD_DOM2_RLS_REG (%08X)", m_PC, Value); break; default: if (HaveDebugger()) { g_Notify->BreakPoint(__FILE__, __LINE__); } } } return true; } bool PeripheralInterfaceHandler::Write32(uint32_t Address, uint32_t Value, uint32_t Mask) { if (GenerateLog() && LogPerInterface()) { switch (Address & 0x1FFFFFFF) { case 0x04600000: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_DRAM_ADDR_REG", m_PC, Value, Mask); break; case 0x04600004: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_CART_ADDR_REG", m_PC, Value, Mask); break; case 0x04600008: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_RD_LEN_REG", m_PC, Value, Mask); break; case 0x0460000C: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_WR_LEN_REG", m_PC, Value, Mask); break; case 0x04600010: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_STATUS_REG", m_PC, Value, Mask); break; case 0x04600014: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_BSD_DOM1_LAT_REG/PI_DOMAIN1_REG", m_PC, Value, Mask); break; case 0x04600018: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_BSD_DOM1_PWD_REG", m_PC, Value, Mask); break; case 0x0460001C: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_BSD_DOM1_PGS_REG", m_PC, Value, Mask); break; case 0x04600020: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_BSD_DOM1_RLS_REG", m_PC, Value, Mask); break; case 0x04600024: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_BSD_DOM2_LAT_REG/PI_DOMAIN2_REG", m_PC, Value, Mask); break; case 0x04600028: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_BSD_DOM2_PWD_REG", m_PC, Value, Mask); break; case 0x0460002C: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_BSD_DOM2_PGS_REG", m_PC, Value, Mask); break; case 0x04600030: LogMessage("%016llX: Writing 0x%08X (Mask: 0x%08X) to PI_BSD_DOM2_RLS_REG", m_PC, Value, Mask); break; default: if (HaveDebugger()) { g_Notify->BreakPoint(__FILE__, __LINE__); } } } switch (Address & 0x1FFFFFFF) { case 0x04600000: PI_DRAM_ADDR_REG = ((PI_DRAM_ADDR_REG & ~Mask) | (Value & Mask)) & 0x00FFFFFE; break; case 0x04600004: PI_CART_ADDR_REG = ((PI_CART_ADDR_REG & ~Mask) | (Value & Mask)) & (UnalignedDMA() ? 0xFFFFFFFF : 0xFFFFFFFE); if (EnableDisk()) { DiskDMACheck(); } break; case 0x04600008: PI_RD_LEN_REG = ((PI_RD_LEN_REG & ~Mask) | (Value & Mask)) & 0x00FFFFFF; PI_DMA_READ(); break; case 0x0460000C: PI_WR_LEN_REG = ((PI_WR_LEN_REG & ~Mask) | (Value & Mask)) & 0x00FFFFFF; PI_DMA_WRITE(); break; case 0x04600010: //if ((Value & PI_SET_RESET) != 0 ) //{ // g_Notify->DisplayError("reset Controller"); //} if ((Value & PI_CLR_INTR) != 0) { MI_INTR_REG &= ~MI_INTR_PI; PI_STATUS_REG &= ~PI_STATUS_INTERRUPT; m_Reg.CheckInterrupts(); } break; case 0x04600014: PI_DOMAIN1_REG = ((PI_DOMAIN1_REG & ~Mask) | (Value & Mask)) & 0xFF; break; case 0x04600018: PI_BSD_DOM1_PWD_REG = ((PI_BSD_DOM1_PWD_REG & ~Mask) | (Value & Mask)) & 0xFF; break; case 0x0460001C: PI_BSD_DOM1_PGS_REG = ((PI_BSD_DOM1_PGS_REG & ~Mask) | (Value & Mask)) & 0xFF; break; case 0x04600020: PI_BSD_DOM1_RLS_REG = ((PI_BSD_DOM1_RLS_REG & ~Mask) | (Value & Mask)) & 0xFF; break; case 0x04600024: PI_DOMAIN2_REG = ((PI_DOMAIN2_REG & ~Mask) | (Value & Mask)) & 0xFF; break; case 0x04600028: PI_BSD_DOM2_PWD_REG = ((PI_BSD_DOM2_PWD_REG & ~Mask) | (Value & Mask)) & 0xFF; break; case 0x0460002C: PI_BSD_DOM2_PGS_REG = ((PI_BSD_DOM2_PGS_REG & ~Mask) | (Value & Mask)) & 0xFF; break; case 0x04600030: PI_BSD_DOM2_RLS_REG = ((PI_BSD_DOM2_RLS_REG & ~Mask) | (Value & Mask)) & 0xFF; break; default: if (HaveDebugger()) { g_Notify->BreakPoint(__FILE__, __LINE__); } } return true; } void PeripheralInterfaceHandler::LoadedGameState(void) { m_DMAUsed = true; } void PeripheralInterfaceHandler::SystemReset(void) { PI_RD_LEN_REG = 0x0000007F; PI_WR_LEN_REG = 0x0000007F; m_DMAUsed = false; } void PeripheralInterfaceHandler::OnFirstDMA() { int16_t offset; switch (g_Rom->CicChipID()) { case CIC_NUS_6101: case CIC_NUS_5167: case CIC_NUS_8303: case CIC_NUS_DDUS: case CIC_NUS_8401: case CIC_UNKNOWN: case CIC_NUS_6102: case CIC_NUS_6103: case CIC_NUS_6106: case CIC_NUS_5101: case CIC_MINI_IPL3: offset = 0x0318; break; case CIC_NUS_6105: offset = 0x03F0; break; default: g_Notify->DisplayError(stdstr_f("Unhandled CicChip(%d) in first DMA", g_Rom->CicChipID()).c_str()); return; } m_MMU.SW_Memory(0xFFFFFFFF80000000 + offset, m_MMU.RdramSize()); } void PeripheralInterfaceHandler::PI_DMA_READ() { if (g_Debugger != NULL && HaveDebugger()) { g_Debugger->PIDMAReadStarted(); } // PI_STATUS_REG |= PI_STATUS_DMA_BUSY; uint32_t PI_RD_LEN = ((PI_RD_LEN_REG)&0x00FFFFFFul) + 1; if ((PI_RD_LEN & 1) != 0) { PI_RD_LEN += 1; } if (PI_DRAM_ADDR_REG + PI_RD_LEN > m_MMU.RdramSize()) { PI_STATUS_REG &= ~PI_STATUS_DMA_BUSY; PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); return; } // 64DD buffers write if (PI_CART_ADDR_REG >= 0x05000000 && PI_CART_ADDR_REG <= 0x050003FF) { // 64DD C2 sectors (don't care) g_SystemTimer->SetTimer(g_SystemTimer->DDPiTimer, (PI_RD_LEN * 63) / 25, false); return; } if (PI_CART_ADDR_REG >= 0x05000400 && PI_CART_ADDR_REG <= 0x050004FF) { // 64DD user sector uint32_t i; uint8_t * RDRAM = m_MMU.Rdram(); uint8_t * DISK = g_Disk->GetDiskAddressBuffer(); for (i = 0; i < PI_RD_LEN_REG; i++) { *(DISK + (i ^ 3)) = *(RDRAM + ((PI_DRAM_ADDR_REG + i) ^ 3)); } g_SystemTimer->SetTimer(g_SystemTimer->DDPiTimer, (PI_RD_LEN_REG * 63) / 25, false); return; } if (PI_CART_ADDR_REG >= 0x05000580 && PI_CART_ADDR_REG <= 0x050005BF) { // 64DD MSEQ (don't care) PI_STATUS_REG &= ~PI_STATUS_DMA_BUSY; PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); return; } if (PI_CART_ADDR_REG >= 0x1F800000 && PI_CART_ADDR_REG < 0x1F810000) { //EverDrive - 64 X7 Serial Registers (don't care) PI_STATUS_REG &= ~PI_STATUS_DMA_BUSY; PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); return; } // Write ROM area (for 64DD conversion) if (PI_CART_ADDR_REG >= 0x10000000 && PI_CART_ADDR_REG <= 0x1FBFFFFF && g_Settings->LoadBool(Game_AllowROMWrites)) { uint32_t i; uint8_t * ROM = g_Rom->GetRomAddress(); uint8_t * RDRAM = m_MMU.Rdram(); ProtectMemory(ROM, g_Rom->GetRomSize(), MEM_READWRITE); PI_CART_ADDR_REG -= 0x10000000; if (PI_CART_ADDR_REG + PI_RD_LEN_REG < g_Rom->GetRomSize()) { for (i = 0; i < PI_RD_LEN_REG; i++) { *(ROM + ((PI_CART_ADDR_REG + i) ^ 3)) = *(RDRAM + ((PI_DRAM_ADDR_REG + i) ^ 3)); } } else { uint32_t Len; Len = g_Rom->GetRomSize() - PI_CART_ADDR_REG; for (i = 0; i < Len; i++) { *(ROM + ((PI_CART_ADDR_REG + i) ^ 3)) = *(RDRAM + ((PI_DRAM_ADDR_REG + i) ^ 3)); } } PI_CART_ADDR_REG += 0x10000000; if (!m_DMAUsed) { m_DMAUsed = true; OnFirstDMA(); } if (g_Recompiler && g_System->bSMM_PIDMA()) { g_Recompiler->ClearRecompCode_Phys(PI_DRAM_ADDR_REG, PI_WR_LEN_REG, CRecompiler::Remove_DMA); } ProtectMemory(ROM, g_Rom->GetRomSize(), MEM_READONLY); PI_STATUS_REG &= ~PI_STATUS_DMA_BUSY; PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); return; } if (PI_CART_ADDR_REG >= 0x08000000 && PI_CART_ADDR_REG < 0x08088000) { if (m_Domain2Address2Handler.DMARead()) { return; } } if (g_System->m_SaveUsing == SaveChip_FlashRam) { g_Notify->DisplayError(stdstr_f("**** FlashRAM DMA read address %08X ****", PI_CART_ADDR_REG).c_str()); PI_STATUS_REG &= ~PI_STATUS_DMA_BUSY; PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); return; } if (HaveDebugger()) { g_Notify->DisplayError(stdstr_f("PI_DMA_READ where are you DMAing to? : %08X", PI_CART_ADDR_REG).c_str()); } PI_STATUS_REG &= ~PI_STATUS_DMA_BUSY; PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); return; } void PeripheralInterfaceHandler::PI_DMA_WRITE() { if (g_Debugger != nullptr && HaveDebugger()) { g_Debugger->PIDMAWriteStarted(); } if (!m_DMAUsed) { m_DMAUsed = true; OnFirstDMA(); } uint32_t WritePos = PI_DRAM_ADDR_REG & 0x7FFFFE; uint32_t ReadPos = PI_CART_ADDR_REG; if (ReadPos >= 0x05000580 && ReadPos <= 0x050005BF) { // 64DD MSEQ (don't care) PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); } else if (ReadPos >= 0x08000000 && ReadPos <= 0x08088000) { m_Domain2Address2Handler.DMAWrite(); } else { int32_t Length = PI_WR_LEN_REG + 1; if (g_Recompiler && bSMM_PIDMA()) { g_Recompiler->ClearRecompCode_Phys(WritePos & ~0xFFF, Length, CRecompiler::Remove_DMA); } PI_WR_LEN_REG = Length <= 8 ? 0x7F - (PI_DRAM_ADDR_REG & 7) : 0x7F; uint8_t Block[128]; bool FirstBlock = true; uint8_t * Rdram = m_MMU.Rdram(); uint32_t RdramSize = m_MMU.RdramSize(); uint32_t TransferLen = 0; int32_t MaxBlockSize = 128; while (Length > 0) { int32_t BlockAlign = PI_DRAM_ADDR_REG & 7; int32_t BlockSize = MaxBlockSize - BlockAlign; int32_t BlockLen = BlockSize; if (Length < BlockLen) { BlockLen = Length; } int32_t EndOfRow = 0x800 - (PI_DRAM_ADDR_REG & 0x7ff); if (EndOfRow < BlockLen) { BlockLen = EndOfRow; } Length -= BlockLen; if (Length < 0) { Length = 0; } int32_t ReadLen = (BlockLen + 1) & ~1; ReadBlock(PI_CART_ADDR_REG, Block, ReadLen); PI_CART_ADDR_REG += ReadLen; if (FirstBlock) { if (BlockLen == BlockSize - 1) { BlockLen += 1; } BlockLen = BlockLen - BlockAlign; if (BlockLen < 0) { BlockLen = 0; } } else { BlockLen = ReadLen; } if ((PI_DRAM_ADDR_REG + BlockLen) >= RdramSize) { BlockLen = RdramSize - PI_DRAM_ADDR_REG; if (BlockLen < 0) { BlockLen = 0; } } for (int32_t i = 0; i < BlockLen; i++) { Rdram[(PI_DRAM_ADDR_REG + i) ^ 3] = Block[i]; } PI_DRAM_ADDR_REG = (PI_DRAM_ADDR_REG + BlockLen + 7) & ~7; TransferLen += (BlockLen + 7) & ~7; MaxBlockSize = EndOfRow < 8 ? 128 - BlockAlign : 128; FirstBlock = false; } if (ReadPos >= 0x05000000 && ReadPos <= 0x050004FF) { // 64DD buffers read and 64DD user sector PI_STATUS_REG |= PI_STATUS_DMA_BUSY; g_SystemTimer->SetTimer(g_SystemTimer->DDPiTimer, (TransferLen * 63) / 25, false); } else if (ReadPos >= 0x06000000 && ReadPos <= 0x063FFFFF) { // 64DD IPL ROM PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); } else if (ReadPos >= 0x08000000 && ReadPos <= 0x08088000) { m_Domain2Address2Handler.DMAWrite(); } else if (ReadPos >= 0x10000000 && ReadPos <= 0x1FFFFFFF) { if (g_System->bRandomizeSIPIInterrupts()) { //ChangeTimer(PiTimer,(int32_t)(Length * 8.9) + 50); //ChangeTimer(PiTimer,(int32_t)(Length * 8.9)); PI_STATUS_REG |= PI_STATUS_DMA_BUSY; g_SystemTimer->SetTimer(g_SystemTimer->PiTimer, TransferLen / 8 + (g_Random->next() % 0x40), false); } else { PI_STATUS_REG &= ~PI_STATUS_DMA_BUSY; PI_STATUS_REG |= PI_STATUS_INTERRUPT; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); } } else { PI_STATUS_REG &= ~PI_STATUS_DMA_BUSY; MI_INTR_REG |= MI_INTR_PI; m_Reg.CheckInterrupts(); } } } void PeripheralInterfaceHandler::ReadBlock(uint32_t Address, uint8_t * Block, uint32_t BlockLen) { if (Address >= 0x05000000 && Address <= 0x050003FF) { // 64DD buffers read - C2 sectors (just read 0) for (uint32_t i = 0, n = (BlockLen + 1) & ~1; i < n; i++) { Block[i] = 0; } } else if (Address >= 0x05000400 && Address <= 0x050004FF) { // 64DD user sector uint32_t ReadPos = Address - 0x05000400; uint8_t * DISK = g_Disk->GetDiskAddressBuffer(); for (uint32_t i = 0, n = (BlockLen + 1) & ~1; i < n; i++) { Block[i] = DISK[((ReadPos + i) ^ 3)]; } } else if (Address >= 0x06000000 && Address <= 0x063FFFFF) { uint32_t ReadPos = Address - 0x06000000; uint8_t * ROM = g_DDRom->GetRomAddress(); uint32_t RomSize = g_DDRom->GetRomSize(); for (uint32_t i = 0, n = (BlockLen + 1) & ~1; i < n; i++) { uint32_t Pos = ((ReadPos + i) ^ 3); Block[i] = Pos < RomSize ? ROM[Pos] : 0; } } else if (Address >= 0x10000000 && Address + BlockLen <= 0x1FFFFFFF) { uint32_t ReadPos = Address - 0x10000000; uint8_t * ROM = g_Rom->GetRomAddress(); uint32_t RomSize = g_Rom->GetRomSize(); for (uint32_t i = 0, n = (BlockLen + 1) & ~1; i < n; i++) { uint32_t Pos = ((ReadPos + i) ^ 3); Block[i] = Pos < RomSize ? ROM[Pos] : 0; } } else { g_Notify->BreakPoint(__FILE__, __LINE__); } }