/* MD5.CC - source code for the C++/object oriented translation and modification of MD5. Translation and modification (c) 1995 by Mordechai T. Abzug This translation/ modification is provided "as is," without express or implied warranty of any kind. The translator/ modifier does not claim (1) that MD5 will do what you think it does; (2) that this translation/ modification is accurate; or (3) that this software is "merchantable." (language for this disclaimer partially copied from the disclaimer below) based on: MD5.H - header file for MD5C.C MDDRIVER.C - test driver for MD2, MD4 and MD5 Copyright (C) 1991-1992, RSA Data Security, Inc. Created 1991. All rights reserved. License to copy and use this software is granted provided that it is identified as the "RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing this software or this function. License is also granted to make and use derivative works provided that such works are identified as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing the derived work. RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any particular purpose. It is provided "as is" without express or implied warranty of any kind. These notices must be retained in any copies of any part of this documentation and/or software. */ #include "md5.h" #include "Trace.h" #include "TraceModulesCommon.h" // MD5 simple initialization method MD5::MD5() { init(); } MD5::~MD5() { } // MD5 block update operation. Continues an MD5 message-digest // operation, processing another message block, and updating the // context. void MD5::update(const uint1 *input, uint4 input_length) { uint4 input_index, buffer_index; uint4 buffer_space; if (finalized) // So we can't update! { WriteTrace(TraceMD5, TraceError, "Can't update a finalized digest!"); return; } // Compute number of bytes mod 64 buffer_index = (unsigned int)((count[0] >> 3) & 0x3F); // Update number of bits if ((count[0] += ((uint4)input_length << 3)) < ((uint4)input_length << 3)) { count[1]++; } count[1] += ((uint4)input_length >> 29); buffer_space = 64 - buffer_index; // Transform as many times as possible if (input_length >= buffer_space) // i.e. we have enough to fill the buffer { // Fill the rest of the buffer and transform memcpy(buffer + buffer_index, (unsigned char *)input, buffer_space); transform(buffer); // Now, transform each 64-byte piece of the input, bypassing the buffer for (input_index = buffer_space; input_index + 63 < input_length; input_index += 64) { transform((unsigned char *)(input + input_index)); } buffer_index = 0; } else { input_index = 0; } // Here we do the buffering: memcpy(buffer + buffer_index, (unsigned char *)(input + input_index), input_length - input_index); } // MD5 update for files // Like above, except that it works on files (and uses above as a primitive) void MD5::update(FILE *file) { unsigned char update_buffer[1024]; int len; do { len = (int)fread(update_buffer, 1, 1024, file); if (len) { update(update_buffer, len); } } while (len); fclose(file); } // MD5 finalization. Ends an MD5 message-digest operation, writing the // the message digest and zeroing the context void MD5::finalize() { unsigned char bits[8]; unsigned int index, padLen; static uint1 PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; if (finalized) { WriteTrace(TraceMD5, TraceError, "Already finalized this digest!"); return; } // Save number of bits encode(bits, count, 8); // Pad out to 56 mod 64 index = (uint4)((count[0] >> 3) & 0x3f); padLen = (index < 56) ? (56 - index) : (120 - index); update(PADDING, padLen); // Append length (before padding) update(bits, 8); // Store state in digest encode(digest, state, 16); // Zeroize sensitive information memset(buffer, 0, sizeof(*buffer)); finalized = 1; } MD5::MD5(CPath File) { init(); // Must be called by all constructors if (File.Exists()) { FILE * fp = fopen((const char *)File, "rb"); if (fp) { update(fp); } } finalize(); } MD5::MD5(FILE *file) { init(); // Must be called by all constructors update(file); finalize(); } MD5::MD5(const unsigned char *input, unsigned int input_length) { init(); // Must be called by all constructors update(input, input_length); finalize(); } MD5::MD5(const stdstr & string) { init(); // Must be called by all constructors update((const unsigned char *)string.c_str(), (uint4)string.length()); finalize(); } const unsigned char *MD5::raw_digest() { if (!finalized) { WriteTrace(TraceMD5, TraceError, "Can't get digest if you haven't finalized the digest!"); return ((unsigned char*) ""); } return digest; } void MD5::get_digest(MD5Digest& extdigest) { if (!finalized) { WriteTrace(TraceMD5, TraceError, "Can't get digest if you haven't finalized the digest!"); memset(extdigest.digest, 0, sizeof(extdigest.digest)); return; } memcpy(extdigest.digest, digest, 16); } const char *MD5::hex_digest() { if (m_hex_digest.length()) { return m_hex_digest.c_str(); } if (!finalized) { WriteTrace(TraceMD5, TraceError, "Can't get digest if you haven't finalized the digest!"); return ""; } char c[33]; memset((unsigned char *)c, 0, 33); for (int i = 0; i < 16; i++) { sprintf(c + i * 2, "%02X", digest[i]); } c[32] = '\0'; m_hex_digest = c; return m_hex_digest.c_str(); } // Private methods: void MD5::init() { finalized = 0; // We just started! // Nothing counted, so count=0 count[0] = 0; count[1] = 0; // Load magic initialization constants state[0] = 0x67452301; state[1] = 0xefcdab89; state[2] = 0x98badcfe; state[3] = 0x10325476; ::memset(digest, 0, sizeof(digest)); ::memset(buffer, 0, sizeof(buffer)); m_hex_digest = nullptr; } // Constants for MD5Transform routine. // Although we could use C++ style constants, defines are actually better, // since they let us easily evade scope clashes. #define S11 7 #define S12 12 #define S13 17 #define S14 22 #define S21 5 #define S22 9 #define S23 14 #define S24 20 #define S31 4 #define S32 11 #define S33 16 #define S34 23 #define S41 6 #define S42 10 #define S43 15 #define S44 21 // MD5 basic transformation. Transforms state based on block. void MD5::transform(uint1 block[64]) { uint4 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; decode(x, block, 64); //ATLASSERT(!finalized); // Not just a user error, since the method is private // Round 1 FF(a, b, c, d, x[0], S11, 0xd76aa478); // 1 FF(d, a, b, c, x[1], S12, 0xe8c7b756); // 2 FF(c, d, a, b, x[2], S13, 0x242070db); // 3 FF(b, c, d, a, x[3], S14, 0xc1bdceee); // 4 FF(a, b, c, d, x[4], S11, 0xf57c0faf); // 5 FF(d, a, b, c, x[5], S12, 0x4787c62a); // 6 FF(c, d, a, b, x[6], S13, 0xa8304613); // 7 FF(b, c, d, a, x[7], S14, 0xfd469501); // 8 FF(a, b, c, d, x[8], S11, 0x698098d8); // 9 FF(d, a, b, c, x[9], S12, 0x8b44f7af); // 10 FF(c, d, a, b, x[10], S13, 0xffff5bb1); // 11 FF(b, c, d, a, x[11], S14, 0x895cd7be); // 12 FF(a, b, c, d, x[12], S11, 0x6b901122); // 13 FF(d, a, b, c, x[13], S12, 0xfd987193); // 14 FF(c, d, a, b, x[14], S13, 0xa679438e); // 15 FF(b, c, d, a, x[15], S14, 0x49b40821); // 16 // Round 2 GG(a, b, c, d, x[1], S21, 0xf61e2562); // 17 GG(d, a, b, c, x[6], S22, 0xc040b340); // 18 GG(c, d, a, b, x[11], S23, 0x265e5a51); // 19 GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); // 20 GG(a, b, c, d, x[5], S21, 0xd62f105d); // 21 GG(d, a, b, c, x[10], S22, 0x2441453); // 22 GG(c, d, a, b, x[15], S23, 0xd8a1e681); // 23 GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); // 24 GG(a, b, c, d, x[9], S21, 0x21e1cde6); // 25 GG(d, a, b, c, x[14], S22, 0xc33707d6); // 26 GG(c, d, a, b, x[3], S23, 0xf4d50d87); // 27 GG(b, c, d, a, x[8], S24, 0x455a14ed); // 28 GG(a, b, c, d, x[13], S21, 0xa9e3e905); // 29 GG(d, a, b, c, x[2], S22, 0xfcefa3f8); // 30 GG(c, d, a, b, x[7], S23, 0x676f02d9); // 31 GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32 // Round 3 HH(a, b, c, d, x[5], S31, 0xfffa3942); // 33 HH(d, a, b, c, x[8], S32, 0x8771f681); // 34 HH(c, d, a, b, x[11], S33, 0x6d9d6122); // 35 HH(b, c, d, a, x[14], S34, 0xfde5380c); // 36 HH(a, b, c, d, x[1], S31, 0xa4beea44); // 37 HH(d, a, b, c, x[4], S32, 0x4bdecfa9); // 38 HH(c, d, a, b, x[7], S33, 0xf6bb4b60); // 39 HH(b, c, d, a, x[10], S34, 0xbebfbc70); // 40 HH(a, b, c, d, x[13], S31, 0x289b7ec6); // 41 HH(d, a, b, c, x[0], S32, 0xeaa127fa); // 42 HH(c, d, a, b, x[3], S33, 0xd4ef3085); // 43 HH(b, c, d, a, x[6], S34, 0x4881d05); // 44 HH(a, b, c, d, x[9], S31, 0xd9d4d039); // 45 HH(d, a, b, c, x[12], S32, 0xe6db99e5); // 46 HH(c, d, a, b, x[15], S33, 0x1fa27cf8); // 47 HH(b, c, d, a, x[2], S34, 0xc4ac5665); // 48 // Round 4 II(a, b, c, d, x[0], S41, 0xf4292244); // 49 II(d, a, b, c, x[7], S42, 0x432aff97); // 50 II(c, d, a, b, x[14], S43, 0xab9423a7); // 51 II(b, c, d, a, x[5], S44, 0xfc93a039); // 52 II(a, b, c, d, x[12], S41, 0x655b59c3); // 53 II(d, a, b, c, x[3], S42, 0x8f0ccc92); // 54 II(c, d, a, b, x[10], S43, 0xffeff47d); // 55 II(b, c, d, a, x[1], S44, 0x85845dd1); // 56 II(a, b, c, d, x[8], S41, 0x6fa87e4f); // 57 II(d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58 II(c, d, a, b, x[6], S43, 0xa3014314); // 59 II(b, c, d, a, x[13], S44, 0x4e0811a1); // 60 II(a, b, c, d, x[4], S41, 0xf7537e82); // 61 II(d, a, b, c, x[11], S42, 0xbd3af235); // 62 II(c, d, a, b, x[2], S43, 0x2ad7d2bb); // 63 II(b, c, d, a, x[9], S44, 0xeb86d391); // 64 state[0] += a; state[1] += b; state[2] += c; state[3] += d; // Zeroize sensitive information memset((uint1 *)x, 0, sizeof(x)); } // Encodes input (UINT4) into output (unsigned char). Assumes len is // a multiple of 4. void MD5::encode(uint1 *output, uint4 *input, uint4 len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (uint1)(input[i] & 0xff); output[j + 1] = (uint1)((input[i] >> 8) & 0xff); output[j + 2] = (uint1)((input[i] >> 16) & 0xff); output[j + 3] = (uint1)((input[i] >> 24) & 0xff); } } // Decodes input (unsigned char) into output (UINT4). Assumes len is // a multiple of 4. void MD5::decode(uint4 *output, uint1 *input, uint4 len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[i] = ((uint4)input[j]) | (((uint4)input[j + 1]) << 8) | (((uint4)input[j + 2]) << 16) | (((uint4)input[j + 3]) << 24); } } // Note: Replace "for loop" with standard memcpy if possible void MD5::memcpy(uint1 *output, uint1 *input, uint4 len) { unsigned int i; for (i = 0; i < len; i++) { output[i] = input[i]; } } // Note: Replace "for loop" with standard memset if possible void MD5::memset(uint1 *output, uint1 value, uint4 len) { unsigned int i; for (i = 0; i < len; i++) { output[i] = value; } } // ROTATE_LEFT rotates x left n bits inline unsigned int MD5::rotate_left(uint4 x, uint4 n) { return (x << n) | (x >> (32 - n)); } // F, G, H and I are basic MD5 functions inline unsigned int MD5::F(uint4 x, uint4 y, uint4 z) { return (x & y) | (~x & z); } inline unsigned int MD5::G(uint4 x, uint4 y, uint4 z) { return (x & z) | (y & ~z); } inline unsigned int MD5::H(uint4 x, uint4 y, uint4 z) { return x ^ y ^ z; } inline unsigned int MD5::I(uint4 x, uint4 y, uint4 z) { return y ^ (x | ~z); } // FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. // Rotation is separate from addition to prevent recomputation. inline void MD5::FF(uint4& a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) { a += F(b, c, d) + x + ac; a = rotate_left(a, s) + b; } inline void MD5::GG(uint4& a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) { a += G(b, c, d) + x + ac; a = rotate_left(a, s) + b; } inline void MD5::HH(uint4& a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) { a += H(b, c, d) + x + ac; a = rotate_left(a, s) + b; } inline void MD5::II(uint4& a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) { a += I(b, c, d) + x + ac; a = rotate_left(a, s) + b; }