#include "Project64-rsp-core/Recompiler/RspRecompilerCPU.h" #include "RspProfiling.h" #include "RspRecompilerCPU.h" #include "X86.h" #include #include #include #include #include #include #include #include #include #include #pragma warning(disable : 4152) // Non-standard extension, function/data pointer conversion in expression extern bool AudioHle, GraphicsHle; UWORD32 Recp, RecpResult, SQroot, SQrootResult; uint32_t ESP_RegSave = 0, EBP_RegSave = 0; uint32_t BranchCompare = 0; // Align option affects: SW, LH, SH // Align option affects: LRV, SSV, LSV #define Compile_Immediates // ADDI, ADDIU, ANDI, ORI, XORI, LUI #define Compile_GPRLoads // LB, LH, LW, LBU, LHU #define Compile_GPRStores // SB, SH, SW #define Compile_Special // SLL, SRL, SRA, SRLV \ // XOR, OR, AND, SUB, SUBU, ADDU, ADD, SLT #define Compile_Cop0 #define Compile_Cop2 #define RSP_VectorMuls #define RSP_VectorLoads #define RSP_VectorMisc #ifdef RSP_VectorMuls #define CompileVmulf // Verified 12/17/2000 - Jabo #define CompileVmacf // Rewritten and verified 12/15/2000 - Jabo #define CompileVmudm // Verified 12/17/2000 - Jabo #define CompileVmudh // Verified 12/17/2000 - Jabo #define CompileVmudn // Verified 12/17/2000 - Jabo #define CompileVmudl // Verified 12/17/2000 - Jabo #define CompileVmadl #define CompileVmadm // Verified 12/17/2000 - Jabo #define CompileVmadh // Verified 12/15/2000 - Jabo #define CompileVmadn // Verified 12/17/2000 - Jabo #endif #ifdef RSP_VectorMisc #define CompileVne #define CompileVeq #define CompileVge #define CompileVlt #define CompileVrcp #define CompileVrcpl #define CompileVrsqh #define CompileVrcph #define CompileVsaw // Verified 12/17/2000 - Jabo #define CompileVabs // Verified 12/15/2000 - Jabo #define CompileVmov // Verified 12/17/2000 - Jabo #define CompileVxor // Verified 12/17/2000 - Jabo #define CompileVor // Verified 12/17/2000 - Jabo #define CompileVand // Verified 12/17/2000 - Jabo #define CompileVsub // Verified 12/17/2000 - Jabo (watch flags) #define CompileVadd // Verified 12/17/2000 - Jabo (watch flags) #define CompileVaddc #define CompileVsubc #define CompileVmrg #define CompileVnxor #define CompileVnor #define CompileVnand #endif #ifdef RSP_VectorLoads #define CompileLbv #define CompileLpv #define CompileLuv #define CompileLhv #define CompileSqv // Verified 12/17/2000 - Jabo #define CompileSdv // Verified 12/17/2000 - Jabo #define CompileSsv // Verified 12/17/2000 - Jabo #define CompileLrv // Rewritten and verified 12/17/2000 - Jabo #define CompileLqv // Verified 12/17/2000 - Jabo #define CompileLdv // Verified 12/17/2000 - Jabo #define CompileLsv // Verified 12/17/2000 - Jabo #define CompileLlv // Verified 12/17/2000 - Jabo #define CompileSlv #endif void Branch_AddRef(uint32_t Target, uint32_t * X86Loc) { if (CurrentBlock.ResolveCount >= 150) { CompilerWarning("Out of branch reference space"); } else { uint8_t * KnownCode = (uint8_t *)(*(JumpTable + (Target >> 2))); if (KnownCode == NULL) { uint32_t i = CurrentBlock.ResolveCount; CurrentBlock.BranchesToResolve[i].TargetPC = Target; CurrentBlock.BranchesToResolve[i].X86JumpLoc = X86Loc; CurrentBlock.ResolveCount += 1; } else { CPU_Message(" (static jump to %X)", KnownCode); x86_SetBranch32b((uint32_t *)X86Loc, (uint32_t *)KnownCode); } } } void Cheat_r4300iOpcode(p_func FunctAddress, const char * FunctName) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveConstToVariable(RSPOpC.Value, &RSPOpC.Value, "RSPOpC.Value"); Call_Direct((void *)FunctAddress, FunctName); } void Cheat_r4300iOpcodeNoMessage(p_func FunctAddress, const char * FunctName) { MoveConstToVariable(RSPOpC.Value, &RSPOpC.Value, "RSPOpC.Value"); Call_Direct((void *)FunctAddress, FunctName); } void x86_SetBranch8b(void * JumpByte, void * Destination) { // Calculate 32-bit relative offset size_t n = (uint8_t *)Destination - ((uint8_t *)JumpByte + 1); intptr_t signed_n = (intptr_t)n; // Check limits, no pun intended if (signed_n > +128 || signed_n < -127) { CompilerWarning(stdstr_f("FATAL: Jump out of 8b range %i (PC = %04X)", n, CompilePC).c_str()); } else { *(uint8_t *)(JumpByte) = (uint8_t)(n & 0xFF); } } void x86_SetBranch32b(void * JumpByte, void * Destination) { *(uint32_t *)(JumpByte) = (uint32_t)((uint8_t *)Destination - (uint8_t *)((uint32_t *)JumpByte + 1)); } void BreakPoint() { CPU_Message(" int 3"); *(RecompPos++) = 0xCC; } void CompileBranchExit(uint32_t TargetPC, uint32_t ContinuePC) { uint32_t * X86Loc = NULL; NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchEqual", 0); X86Loc = (uint32_t *)(RecompPos - 4); MoveConstToVariable(ContinuePC, PrgCount, "RSP PC"); Ret(); CPU_Message("BranchEqual:"); x86_SetBranch32b(X86Loc, RecompPos); MoveConstToVariable(TargetPC, PrgCount, "RSP PC"); Ret(); } // Opcode functions void Compile_SPECIAL(void) { RSP_Special[RSPOpC.funct](); } void Compile_REGIMM(void) { RSP_RegImm[RSPOpC.rt](); } void Compile_J(void) { if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { JmpLabel32("BranchToJump", 0); Branch_AddRef((RSPOpC.target << 2) & 0xFFC, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { MoveConstToVariable((RSPOpC.target << 2) & 0xFFC, PrgCount, "RSP PC"); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; Ret(); } else { CompilerWarning(stdstr_f("J error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } void Compile_JAL(void) { if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveConstToVariable(CompilePC + 8, &RSP_GPR[31].UW, "RA.W"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { // Before we branch quickly update our stats if (Profiling && IndvidualBlock) { char Str[40]; sprintf(Str, "%03X", (RSPOpC.target << 2) & 0xFFC); Push(x86_EAX); PushImm32(Str, *PrgCount); Call_Direct((void *)StartTimer, "StartTimer"); AddConstToX86Reg(x86_ESP, 4); Pop(x86_EAX); } JmpLabel32("BranchToJump", 0); Branch_AddRef((RSPOpC.target << 2) & 0xFFC, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { MoveConstToVariable((RSPOpC.target << 2) & 0xFFC, PrgCount, "RSP PC"); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; Ret(); } else { CompilerWarning(stdstr_f("J error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } void Compile_BEQ(void) { static bool bDelayAffect; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rs == 0 && RSPOpC.rt == 0) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } bDelayAffect = DelaySlotAffectBranch(CompilePC); if (!bDelayAffect) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } if (RSPOpC.rt == 0) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); } else if (RSPOpC.rs == 0) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); CompX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); } SetzVariable(&BranchCompare, "BranchCompare"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; if (RSPOpC.rs == 0 && RSPOpC.rt == 0) { JmpLabel32("BranchToJump", 0); Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; return; } if (!bDelayAffect) { if (RSPOpC.rt == 0) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); } else if (RSPOpC.rs == 0) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); CompX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); } JeLabel32("BranchEqual", 0); } else { // Take a look at the branch compare variable CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchEqual", 0); } Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; CompileBranchExit(Target, CompilePC + 8); } else { CompilerWarning(stdstr_f("BEQ error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } void Compile_BNE(void) { static bool bDelayAffect; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rs == 0 && RSPOpC.rt == 0) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } bDelayAffect = DelaySlotAffectBranch(CompilePC); if (!bDelayAffect) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } if (RSPOpC.rt == 0) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); } else if (RSPOpC.rs == 0) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); CompX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); } SetnzVariable(&BranchCompare, "BranchCompare"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; if (RSPOpC.rs == 0 && RSPOpC.rt == 0) { NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; return; } if (!bDelayAffect) { if (RSPOpC.rt == 0) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); } else if (RSPOpC.rs == 0) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); CompX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); } JneLabel32("BranchNotEqual", 0); } else { // Take a look at the branch compare variable CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchNotEqual", 0); } Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; CompileBranchExit(Target, CompilePC + 8); } else { CompilerWarning(stdstr_f("BNE error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } void Compile_BLEZ(void) { static bool bDelayAffect; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } bDelayAffect = DelaySlotAffectBranch(CompilePC); if (!bDelayAffect) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); SetleVariable(&BranchCompare, "BranchCompare"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; if (RSPOpC.rs == 0) { JmpLabel32("BranchToJump", 0); Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; return; } if (!bDelayAffect) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); JleLabel32("BranchLessEqual", 0); } else { // Take a look at the branch compare variable CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchLessEqual", 0); } Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; CompileBranchExit(Target, CompilePC + 8); } else { CompilerWarning(stdstr_f("BLEZ error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } void Compile_BGTZ(void) { static bool bDelayAffect; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } bDelayAffect = DelaySlotAffectBranch(CompilePC); if (!bDelayAffect) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); SetgVariable(&BranchCompare, "BranchCompare"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; return; } if (!bDelayAffect) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); JgLabel32("BranchGreater", 0); } else { // Take a look at the branch compare variable CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchGreater", 0); } Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; CompileBranchExit(Target, CompilePC + 8); } else { CompilerWarning(stdstr_f("BGTZ error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } void Compile_ADDI(void) { int Immediate = (short)RSPOpC.immediate; #ifndef Compile_Immediates Cheat_r4300iOpcode(RSP_Opcode_ADDI, "RSP_Opcode_ADDI"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) return; if (RSPOpC.rt == RSPOpC.rs) { if (Immediate != 0) { AddConstToVariable(Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } } else if (RSPOpC.rs == 0) { MoveConstToVariable(Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else if ((IsRegConst(RSPOpC.rs) & 1) != 0) { MoveConstToVariable(MipsRegConst(RSPOpC.rs) + Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_EAX); if (Immediate != 0) { AddConstToX86Reg(x86_EAX, Immediate); } MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } } void Compile_ADDIU(void) { int Immediate = (short)RSPOpC.immediate; #ifndef Compile_Immediates Cheat_r4300iOpcode(RSP_Opcode_ADDIU, "RSP_Opcode_ADDIU"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) return; if (RSPOpC.rt == RSPOpC.rs) { if (Immediate != 0) { AddConstToVariable(Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } } else if (RSPOpC.rs == 0) { MoveConstToVariable(Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_EAX); if (Immediate != 0) { AddConstToX86Reg(x86_EAX, Immediate); } MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } } void Compile_SLTI(void) { #ifndef Compile_Immediates Cheat_r4300iOpcode(RSP_Opcode_SLTI, "RSP_Opcode_SLTI"); #endif int Immediate; CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) return; Immediate = (short)RSPOpC.immediate; if (Immediate == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_ECX); ShiftRightUnsignImmed(x86_ECX, 31); } else { XorX86RegToX86Reg(x86_ECX, x86_ECX); CompConstToVariable(Immediate, &RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs)); Setl(x86_ECX); } MoveX86regToVariable(x86_ECX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } void Compile_SLTIU(void) { #ifndef Compile_Immediates Cheat_r4300iOpcode(RSP_Opcode_SLTIU, "RSP_Opcode_SLTIU"); #endif int Immediate; CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) return; Immediate = (short)RSPOpC.immediate; XorX86RegToX86Reg(x86_ECX, x86_ECX); CompConstToVariable(Immediate, &RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs)); Setb(x86_ECX); MoveX86regToVariable(x86_ECX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } void Compile_ANDI(void) { int Immediate = (unsigned short)RSPOpC.immediate; #ifndef Compile_Immediates Cheat_r4300iOpcode(RSP_Opcode_ANDI, "RSP_Opcode_ANDI"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) return; if (RSPOpC.rt == RSPOpC.rs) { AndConstToVariable(Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else if (RSPOpC.rs == 0) { MoveConstToVariable(0, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else if (Immediate == 0xFFFF) { MoveZxVariableToX86regHalf(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_EAX); AndConstToX86Reg(x86_EAX, Immediate); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } } void Compile_ORI(void) { int Immediate = (unsigned short)RSPOpC.immediate; #ifndef Compile_Immediates Cheat_r4300iOpcode(RSP_Opcode_ORI, "RSP_Opcode_ORI"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) return; if (RSPOpC.rt == RSPOpC.rs) { OrConstToVariable(Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else if (RSPOpC.rs == 0) { MoveConstToVariable(Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_EAX); if (Immediate != 0) { OrConstToX86Reg(Immediate, x86_EAX); } MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } } void Compile_XORI(void) { int Immediate = (unsigned short)RSPOpC.immediate; #ifndef Compile_Immediates Cheat_r4300iOpcode(RSP_Opcode_XORI, "RSP_Opcode_XORI"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) return; if (RSPOpC.rt == RSPOpC.rs) { XorConstToVariable(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), Immediate); } else if (RSPOpC.rs == 0) { MoveConstToVariable(Immediate, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_EAX); if (Immediate != 0) { XorConstToX86Reg(x86_EAX, Immediate); } MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } } void Compile_LUI(void) { int constant = (short)RSPOpC.offset << 16; #ifndef Compile_Immediates Cheat_r4300iOpcode(RSP_Opcode_LUI, "RSP_Opcode_LUI"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) return; MoveConstToVariable(constant, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); } void Compile_COP0(void) { RSP_Cop0[RSPOpC.rs](); } void Compile_COP2(void) { RSP_Cop2[RSPOpC.rs](); } void Compile_LB(void) { int Offset = (short)RSPOpC.offset; if (RSPOpC.rt == 0) return; #ifndef Compile_GPRLoads Cheat_r4300iOpcode(RSP_Opcode_LB, "RSP_Opcode_LB"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { char Address[32]; uint32_t Addr = (MipsRegConst(RSPOpC.base) + Offset) ^ 3; Addr &= 0xfff; sprintf(Address, "Dmem + %Xh", Addr); MoveSxVariableToX86regByte(RSPInfo.DMEM + Addr, Address, x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset); XorConstToX86Reg(x86_EBX, 3); AndConstToX86Reg(x86_EBX, 0x0fff); MoveSxN64MemToX86regByte(x86_EAX, x86_EBX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } void Compile_LH(void) { int Offset = (short)RSPOpC.offset; uint8_t * Jump[2]; if (RSPOpC.rt == 0) return; #ifndef Compile_GPRLoads Cheat_r4300iOpcode(RSP_Opcode_LH, "RSP_Opcode_LH"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + Offset) ^ 2; Addr &= 0xfff; if ((Addr & 1) != 0) { if ((Addr & 2) == 0) { CompilerWarning(stdstr_f("Unaligned LH at constant address PC = %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LH, "RSP_Opcode_LH"); } else { char Address[32]; sprintf(Address, "DMEM + %Xh", Addr); MoveSxVariableToX86regHalf(RSPInfo.DMEM + (Addr ^ 2), Address, x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } } else { char Address[32]; sprintf(Address, "DMEM + %Xh", Addr); MoveSxVariableToX86regHalf(RSPInfo.DMEM + Addr, Address, x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset); AndConstToX86Reg(x86_EBX, 0x0fff); TestConstToX86Reg(1, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b(Jump[0], RecompPos); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LH, "RSP_Opcode_LH"); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); XorConstToX86Reg(x86_EBX, 2); MoveSxN64MemToX86regHalf(x86_EAX, x86_EBX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); CPU_Message(" Done:"); x86_SetBranch32b(Jump[1], RecompPos); } void Compile_LW(void) { int Offset = (short)RSPOpC.offset; uint8_t * Jump[2]; if (RSPOpC.rt == 0) return; #ifndef Compile_GPRLoads Cheat_r4300iOpcode(RSP_Opcode_LW, "RSP_Opcode_LW"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + Offset) & 0xfff; if ((Addr & 1) != 0) { CompilerWarning(stdstr_f("Unaligned LW at constant address PC = %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LW, "RSP_Opcode_LW"); } else if ((Addr & 2) != 0) { char Address[32]; sprintf(Address, "DMEM + %Xh", Addr - 2); MoveVariableToX86regHalf(RSPInfo.DMEM + Addr - 2, Address, x86_EAX); sprintf(Address, "DMEM + %Xh", Addr); MoveVariableToX86regHalf(RSPInfo.DMEM + Addr + 4, Address, x86_ECX); MoveX86regHalfToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UHW[1], GPR_Name(RSPOpC.rt)); MoveX86regHalfToVariable(x86_ECX, &RSP_GPR[RSPOpC.rt].UHW[0], GPR_Name(RSPOpC.rt)); } else { char Address[32]; sprintf(Address, "DMEM + %Xh", Addr); MoveVariableToX86reg(RSPInfo.DMEM + Addr, Address, x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset); AndConstToX86Reg(x86_EBX, 0x0fff); TestConstToX86Reg(3, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); x86_SetBranch32b(Jump[0], RecompPos); CPU_Message(" Unaligned:"); LeaSourceAndOffset(x86_ECX, x86_EBX, 2); LeaSourceAndOffset(x86_EDX, x86_EBX, 3); MoveX86RegToX86Reg(x86_EBX, x86_EAX); AddConstToX86Reg(x86_EBX, 1); XorConstToX86Reg(x86_EAX, 3); XorConstToX86Reg(x86_EBX, 3); XorConstToX86Reg(x86_ECX, 3); XorConstToX86Reg(x86_EDX, 3); MoveN64MemToX86regByte(x86_EAX, x86_EAX); MoveN64MemToX86regByte(x86_EBX, x86_EBX); MoveN64MemToX86regByte(x86_ECX, x86_ECX); MoveN64MemToX86regByte(x86_EDX, x86_EDX); MoveX86regByteToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UB[3], GPR_Name(RSPOpC.rt)); MoveX86regByteToVariable(x86_EBX, &RSP_GPR[RSPOpC.rt].UB[2], GPR_Name(RSPOpC.rt)); MoveX86regByteToVariable(x86_ECX, &RSP_GPR[RSPOpC.rt].UB[1], GPR_Name(RSPOpC.rt)); MoveX86regByteToVariable(x86_EDX, &RSP_GPR[RSPOpC.rt].UB[0], GPR_Name(RSPOpC.rt)); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); MoveN64MemToX86reg(x86_EAX, x86_EBX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); CPU_Message(" Done:"); x86_SetBranch32b(Jump[1], RecompPos); } void Compile_LBU(void) { int Offset = (short)RSPOpC.offset; if (RSPOpC.rt == 0) return; #ifndef Compile_GPRLoads Cheat_r4300iOpcode(RSP_Opcode_LBU, "RSP_Opcode_LBU"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { char Address[32]; uint32_t Addr = (MipsRegConst(RSPOpC.base) + Offset) ^ 3; Addr &= 0xfff; sprintf(Address, "DMEM + %Xh", Addr); MoveZxVariableToX86regByte(RSPInfo.DMEM + Addr, Address, x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); XorX86RegToX86Reg(x86_EAX, x86_EAX); if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset); XorConstToX86Reg(x86_EBX, 3); AndConstToX86Reg(x86_EBX, 0x0fff); MoveN64MemToX86regByte(x86_EAX, x86_EBX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } void Compile_LHU(void) { int Offset = (short)RSPOpC.offset; uint8_t * Jump[2]; if (RSPOpC.rt == 0) return; #ifndef Compile_GPRLoads Cheat_r4300iOpcode(RSP_Opcode_LHU, "RSP_Opcode_LHU"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + Offset) ^ 2; Addr &= 0xfff; if ((Addr & 1) != 0) { if ((Addr & 2) == 0) { CompilerWarning(stdstr_f("Unaligned LHU at constant address PC = %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LHU, "RSP_Opcode_LHU"); } else { char Address[32]; sprintf(Address, "DMEM + %Xh", Addr); MoveZxVariableToX86regHalf(RSPInfo.DMEM + (Addr ^ 2), Address, x86_ECX); MoveX86regToVariable(x86_ECX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); } return; } else { char Address[32]; sprintf(Address, "DMEM + %Xh", Addr); MoveZxVariableToX86regHalf(RSPInfo.DMEM + Addr, Address, x86_ECX); MoveX86regToVariable(x86_ECX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); return; } } // TODO: Should really just do it by bytes but whatever for now MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (Offset != 0) { AddConstToX86Reg(x86_EBX, Offset); } TestConstToX86Reg(1, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b(Jump[0], RecompPos); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LHU, "RSP_Opcode_LHU"); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); XorConstToX86Reg(x86_EBX, 2); AndConstToX86Reg(x86_EBX, 0x0fff); MoveZxN64MemToX86regHalf(x86_EAX, x86_EBX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); CPU_Message(" Done:"); x86_SetBranch32b(Jump[1], RecompPos); } void Compile_SB(void) { int Offset = (short)RSPOpC.offset; #ifndef Compile_GPRStores Cheat_r4300iOpcode(RSP_Opcode_SB, "RSP_Opcode_SB"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { char Address[32]; uint32_t Addr = (MipsRegConst(RSPOpC.base) + Offset) ^ 3; Addr &= 0xfff; sprintf(Address, "DMEM + %Xh", Addr); if (IsRegConst(RSPOpC.rt)) { MoveConstByteToVariable((uint8_t)MipsRegConst(RSPOpC.rt), RSPInfo.DMEM + Addr, Address); return; } else { MoveVariableToX86regByte(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regByteToVariable(x86_EAX, RSPInfo.DMEM + Addr, Address); return; } } if (IsRegConst(RSPOpC.rt)) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset); XorConstToX86Reg(x86_EBX, 3); AndConstToX86Reg(x86_EBX, 0x0fff); MoveConstByteToN64Mem((uint8_t)MipsRegConst(RSPOpC.rt), x86_EBX); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); MoveVariableToX86regByte(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset); XorConstToX86Reg(x86_EBX, 3); AndConstToX86Reg(x86_EBX, 0x0fff); MoveX86regByteToN64Mem(x86_EAX, x86_EBX); } } void Compile_SH(void) { int Offset = (short)RSPOpC.offset; uint8_t * Jump[2]; #ifndef Compile_GPRStores Cheat_r4300iOpcode(RSP_Opcode_SH, "RSP_Opcode_SH"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + Offset) ^ 2; Addr &= 0xfff; if ((Offset & 1) != 0) { CompilerWarning(stdstr_f("Unaligned SH at constant address PC = %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_SH, "RSP_Opcode_SH"); return; } else { char Address[32]; sprintf(Address, "DMEM + %Xh", Addr); if (IsRegConst(RSPOpC.rt)) { MoveConstHalfToVariable((uint16_t)MipsRegConst(RSPOpC.rt), RSPInfo.DMEM + Addr, Address); } else { MoveVariableToX86regHalf(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regHalfToVariable(x86_EAX, RSPInfo.DMEM + Addr, Address); } return; } } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset); TestConstToX86Reg(1, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b(Jump[0], RecompPos); X86BreakPoint(__FILE__, __LINE__); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); XorConstToX86Reg(x86_EBX, 2); AndConstToX86Reg(x86_EBX, 0x0fff); if (IsRegConst(RSPOpC.rt)) { MoveConstHalfToN64Mem((uint16_t)MipsRegConst(RSPOpC.rt), x86_EBX); } else { MoveVariableToX86regHalf(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regHalfToN64Mem(x86_EAX, x86_EBX); } CPU_Message(" Done:"); x86_SetBranch32b(Jump[1], RecompPos); } void Compile_SW(void) { int Offset = (short)RSPOpC.offset; uint8_t * Jump[2]; #ifndef Compile_GPRStores Cheat_r4300iOpcode(RSP_Opcode_SW, "RSP_Opcode_SW"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { char Address[32]; uint32_t Addr = (MipsRegConst(RSPOpC.base) + Offset) & 0xfff; if ((Addr & 3) != 0) { if (Addr > 0xFFC) { g_Notify->DisplayError("There is a problem with:\nRSP_SW_DMEM"); return; } if (IsRegConst(RSPOpC.rt)) { uint32_t Value = MipsRegConst(RSPOpC.rt); sprintf(Address, "DMEM + %Xh", (Addr + 0) ^ 3); MoveConstByteToVariable((Value >> 24) & 0xFF, RSPInfo.DMEM + ((Addr + 0) ^ 3), Address); sprintf(Address, "DMEM + %Xh", (Addr + 1) ^ 3); MoveConstByteToVariable((Value >> 16) & 0xFF, RSPInfo.DMEM + ((Addr + 1) ^ 3), Address); sprintf(Address, "DMEM + %Xh", (Addr + 2) ^ 3); MoveConstByteToVariable((Value >> 8) & 0xFF, RSPInfo.DMEM + ((Addr + 2) ^ 3), Address); sprintf(Address, "DMEM + %Xh", (Addr + 3) ^ 3); MoveConstByteToVariable((Value >> 0) & 0xFF, RSPInfo.DMEM + ((Addr + 3) ^ 3), Address); } else { CompilerWarning(stdstr_f("Unaligned SW at constant address PC = %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_SW, "RSP_Opcode_SW"); } return; } else { sprintf(Address, "DMEM + %Xh", Addr); if (IsRegConst(RSPOpC.rt)) { MoveConstToVariable(MipsRegConst(RSPOpC.rt), RSPInfo.DMEM + Addr, Address); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, RSPInfo.DMEM + Addr, Address); } return; } } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset); AndConstToX86Reg(x86_EBX, 0x0fff); TestConstToX86Reg(3, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b(Jump[0], RecompPos); // X86BreakPoint(__FILE__,__LINE__); Push(x86_EBX); LeaSourceAndOffset(x86_ECX, x86_EBX, 2); LeaSourceAndOffset(x86_EDX, x86_EBX, 3); XorConstToX86Reg(x86_ECX, 3); XorConstToX86Reg(x86_EDX, 3); MoveVariableToX86regByte(&RSP_GPR[RSPOpC.rt].UB[1], GPR_Name(RSPOpC.rt), x86_EAX); // CX MoveVariableToX86regByte(&RSP_GPR[RSPOpC.rt].UB[0], GPR_Name(RSPOpC.rt), x86_EBX); // DX MoveX86regByteToN64Mem(x86_EAX, x86_ECX); MoveX86regByteToN64Mem(x86_EBX, x86_EDX); Pop(x86_EBX); MoveX86RegToX86Reg(x86_EBX, x86_EAX); AddConstToX86Reg(x86_EBX, 1); XorConstToX86Reg(x86_EAX, 3); XorConstToX86Reg(x86_EBX, 3); MoveVariableToX86regByte(&RSP_GPR[RSPOpC.rt].UB[3], GPR_Name(RSPOpC.rt), x86_ECX); // AX MoveVariableToX86regByte(&RSP_GPR[RSPOpC.rt].UB[2], GPR_Name(RSPOpC.rt), x86_EDX); // BX MoveX86regByteToN64Mem(x86_ECX, x86_EAX); MoveX86regByteToN64Mem(x86_EDX, x86_EBX); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); if (IsRegConst(RSPOpC.rt)) { MoveConstToN64Mem(MipsRegConst(RSPOpC.rt), x86_EBX); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToN64Mem(x86_EAX, x86_EBX); } CPU_Message(" Done:"); x86_SetBranch32b(Jump[1], RecompPos); } void Compile_LC2(void) { RSP_Lc2[RSPOpC.rd](); } void Compile_SC2(void) { RSP_Sc2[RSPOpC.rd](); } // R4300i Opcodes: Special void Compile_Special_SLL(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_SLL, "RSP_Special_SLL"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rt) { ShiftLeftSignVariableImmed(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), (uint8_t)RSPOpC.sa); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); ShiftLeftSignImmed(x86_EAX, (uint8_t)RSPOpC.sa); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_SRL(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_SRL, "RSP_Special_SRL"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rt) { ShiftRightUnsignVariableImmed(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), (uint8_t)RSPOpC.sa); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); ShiftRightUnsignImmed(x86_EAX, (uint8_t)RSPOpC.sa); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_SRA(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_SRA, "RSP_Special_SRA"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rt) { ShiftRightSignVariableImmed(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), (uint8_t)RSPOpC.sa); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); ShiftRightSignImmed(x86_EAX, (uint8_t)RSPOpC.sa); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_SLLV(void) { Cheat_r4300iOpcode(RSP_Special_SLLV, "RSP_Special_SLLV"); } void Compile_Special_SRLV(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_SRLV, "RSP_Special_SRLV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_ECX); AndConstToX86Reg(x86_ECX, 0x1F); ShiftRightUnsign(x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } void Compile_Special_SRAV(void) { Cheat_r4300iOpcode(RSP_Special_SRAV, "RSP_Special_SRAV"); } void UpdateAudioTimer() { /* char Label[100]; sprintf(Label,"COMMAND: %02X (PC = %08X)",RSP_GPR[1].UW >> 1, *PrgCount); StartTimer(Label);*/ } void Compile_Special_JR(void) { uint8_t * Jump; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); // Transfer destination to location pointed to by PrgCount MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AndConstToX86Reg(x86_EAX, 0xFFC); MoveX86regToVariable(x86_EAX, PrgCount, "RSP PC"); ChangedPC = true; NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { MoveVariableToX86reg(PrgCount, "RSP PC", x86_EAX); if (Profiling && IndvidualBlock) { Push(x86_EAX); Push(x86_EAX); Call_Direct((void *)StartTimer, "StartTimer"); AddConstToX86Reg(x86_ESP, 4); Pop(x86_EAX); } AddVariableToX86reg(x86_EAX, &JumpTable, "JumpTable"); MoveX86regPointerToX86reg(x86_EAX, x86_EAX); TestX86RegToX86Reg(x86_EAX, x86_EAX); JeLabel8("Null", 0); Jump = RecompPos - 1; // Before we branch quickly update our stats /*if (CompilePC == 0x080) { Pushad(); Call_Direct((void *)UpdateAudioTimer, "UpdateAudioTimer"); Popad(); }*/ JumpX86Reg(x86_EAX); x86_SetBranch8b(Jump, RecompPos); CPU_Message(" Null:"); Ret(); ChangedPC = false; NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; Ret(); } else { CompilerWarning(stdstr_f("WTF\n\nJR\nNextInstruction = %X", NextInstruction).c_str()); BreakPoint(); } } void Compile_Special_JALR(void) { uint8_t * Jump; uint32_t Const = (CompilePC + 8) & 0xFFC; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveConstToVariable(Const, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AndConstToX86Reg(x86_EAX, 0xFFC); MoveX86regToVariable(x86_EAX, PrgCount, "RSP PC"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { MoveVariableToX86reg(PrgCount, "RSP PC", x86_EAX); AddVariableToX86reg(x86_EAX, &JumpTable, "JumpTable"); MoveX86regPointerToX86reg(x86_EAX, x86_EAX); TestX86RegToX86Reg(x86_EAX, x86_EAX); JeLabel8("Null", 0); Jump = RecompPos - 1; JumpX86Reg(x86_EAX); x86_SetBranch8b(Jump, RecompPos); CPU_Message(" Null:"); Ret(); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; Ret(); } else { CompilerWarning(stdstr_f("WTF\n\nJALR\nNextInstruction = %X", NextInstruction).c_str()); BreakPoint(); } } void Compile_Special_BREAK(void) { Cheat_r4300iOpcode(RSP_Special_BREAK, "RSP_Special_BREAK"); if (NextInstruction == RSPPIPELINE_NORMAL) { MoveConstToVariable(CompilePC + 4, PrgCount, "RSP PC"); Ret(); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else { CompilerWarning(stdstr_f("WTF\n\nBREAK\nNextInstruction = %X", NextInstruction).c_str()); BreakPoint(); } } void Compile_Special_ADD(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_ADD, "RSP_Special_ADD"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rs) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); AddX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rd == RSPOpC.rt) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AddX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rs == RSPOpC.rt) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AddX86RegToX86Reg(x86_EAX, x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rs == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rt == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AddVariableToX86reg(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_ADDU(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_ADDU, "RSP_Special_ADDU"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rs) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); AddX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rd == RSPOpC.rt) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AddX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rs == RSPOpC.rt) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AddX86RegToX86Reg(x86_EAX, x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rs == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rt == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AddVariableToX86reg(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_SUB(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_SUB, "RSP_Special_SUB"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rs) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); SubX86regFromVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, "RSP_GPR[RSPOpC.rd].W"); } else if (RSPOpC.rs == RSPOpC.rt) { MoveConstToVariable(0, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); SubVariableFromX86reg(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_SUBU(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_SUBU, "RSP_Special_SUBU"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rs) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); SubX86regFromVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rs == RSPOpC.rt) { MoveConstToVariable(0, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); SubVariableFromX86reg(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_AND(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_AND, "RSP_Special_AND"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rs) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); AndX86RegToVariable(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), x86_EAX); } else if (RSPOpC.rd == RSPOpC.rt) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AndX86RegToVariable(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), x86_EAX); } else if (RSPOpC.rs == RSPOpC.rt) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); AndVariableToX86Reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_OR(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_OR, "RSP_Special_OR"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rs) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); OrX86RegToVariable(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), x86_EAX); } else if (RSPOpC.rd == RSPOpC.rt) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); OrX86RegToVariable(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), x86_EAX); } else if (RSPOpC.rs == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else if (RSPOpC.rt == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); OrVariableToX86Reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_XOR(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_XOR, "RSP_Special_XOR"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) return; if (RSPOpC.rd == RSPOpC.rs) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); XorX86RegToVariable(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), x86_EAX); } else if (RSPOpC.rd == RSPOpC.rt) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); XorX86RegToVariable(&RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd), x86_EAX); } else if (RSPOpC.rs == RSPOpC.rt) { MoveConstToVariable(0, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs), x86_EAX); XorVariableToX86reg(&RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rd].W, GPR_Name(RSPOpC.rd)); } } void Compile_Special_NOR(void) { Cheat_r4300iOpcode(RSP_Special_NOR, "RSP_Special_NOR"); } void Compile_Special_SLT(void) { #ifndef Compile_Special Cheat_r4300iOpcode(RSP_Special_SLT, "RSP_Special_SLT"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rd == 0) { return; } if (RSPOpC.rt == RSPOpC.rs) { MoveConstToVariable(0, &RSP_GPR[RSPOpC.rd].UW, GPR_Name(RSPOpC.rd)); } else { if (RSPOpC.rs == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); XorX86RegToX86Reg(x86_ECX, x86_ECX); CompConstToX86reg(x86_EAX, 0); Setg(x86_ECX); } else if (RSPOpC.rt == 0) { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_ECX); ShiftRightUnsignImmed(x86_ECX, 31); } else { MoveVariableToX86reg(&RSP_GPR[RSPOpC.rs].UW, GPR_Name(RSPOpC.rs), x86_EAX); XorX86RegToX86Reg(x86_ECX, x86_ECX); CompX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); Setl(x86_ECX); } MoveX86regToVariable(x86_ECX, &RSP_GPR[RSPOpC.rd].UW, GPR_Name(RSPOpC.rd)); } } void Compile_Special_SLTU(void) { Cheat_r4300iOpcode(RSP_Special_SLTU, "RSP_Special_SLTU"); } // R4300i Opcodes: RegImm void Compile_RegImm_BLTZ(void) { static bool bDelayAffect; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } bDelayAffect = DelaySlotAffectBranch(CompilePC); if (!bDelayAffect) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); SetlVariable(&BranchCompare, "BranchCompare"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; return; } if (!bDelayAffect) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); JlLabel32("BranchLess", 0); } else { // Take a look at the branch compare variable CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchLess", 0); } Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; CompileBranchExit(Target, CompilePC + 8); } else { CompilerWarning(stdstr_f("BLTZ error\nWeird Delay Slot.\n\nNextInstruction = %X\nPC = %X\nEmulation will now stop", NextInstruction, CompilePC).c_str()); BreakPoint(); } } void Compile_RegImm_BGEZ(void) { static bool bDelayAffect; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } bDelayAffect = DelaySlotAffectBranch(CompilePC); if (!bDelayAffect) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); SetgeVariable(&BranchCompare, "BranchCompare"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; if (RSPOpC.rs == 0) { JmpLabel32("BranchToJump", 0); Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; return; } if (!bDelayAffect) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); JgeLabel32("BranchGreaterEqual", 0); } else { // Take a look at the branch compare variable CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchGreaterEqual", 0); } Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; CompileBranchExit(Target, CompilePC + 8); } else { CompilerWarning(stdstr_f("BGEZ error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } void Compile_RegImm_BLTZAL(void) { if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveConstToVariable(CompilePC + 8, &RSP_GPR[31].UW, "RA.W"); if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); SetlVariable(&BranchCompare, "BranchCompare"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; return; } // Take a look at the branch compare variable CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchLessEqual", 0); Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; CompileBranchExit(Target, CompilePC + 8); } else { CompilerWarning(stdstr_f("BLTZAL error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } void Compile_RegImm_BGEZAL(void) { static bool bDelayAffect; if (NextInstruction == RSPPIPELINE_NORMAL) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveConstToVariable(CompilePC + 8, &RSP_GPR[31].UW, "RA.W"); if (RSPOpC.rs == 0) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } bDelayAffect = DelaySlotAffectBranch(CompilePC); if (!bDelayAffect) { NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; return; } CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); SetgeVariable(&BranchCompare, "BranchCompare"); NextInstruction = RSPPIPELINE_DO_DELAY_SLOT; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; if (RSPOpC.rs == 0) { JmpLabel32("BranchToJump", 0); Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; return; } if (!bDelayAffect) { CompConstToVariable(0, &RSP_GPR[RSPOpC.rs].W, GPR_Name(RSPOpC.rs)); JgeLabel32("BranchGreaterEqual", 0); } else { // Take a look at the branch compare variable CompConstToVariable(true, &BranchCompare, "BranchCompare"); JeLabel32("BranchGreaterEqual", 0); } Branch_AddRef(Target, (uint32_t *)(RecompPos - 4)); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE) { uint32_t Target = (CompilePC + ((short)RSPOpC.offset << 2) + 4) & 0xFFC; CompileBranchExit(Target, CompilePC + 8); } else { CompilerWarning(stdstr_f("BGEZAL error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } // COP0 functions void Compile_Cop0_MF(void) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (LogRDP) { char str[40]; sprintf(str, "%d", RSPOpC.rd); PushImm32(str, RSPOpC.rd); sprintf(str, "%X", CompilePC); PushImm32(str, CompilePC); Call_Direct((void *)RDP_LogMF0, "RDP_LogMF0"); AddConstToX86Reg(x86_ESP, 8); } #ifndef Compile_Cop0 Cheat_r4300iOpcode(RSP_Cop0_MF, "RSP_Cop0_MF"); if (NextInstruction == RSPPIPELINE_NORMAL) { MoveConstToVariable(CompilePC + 4, PrgCount, "RSP PC"); Ret(); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT) { NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT; } else { CompilerWarning(stdstr_f("MF error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } return; #elif defined(_M_IX86) && defined(_MSC_VER) switch (RSPOpC.rd) { case 0: MoveConstToX86reg((uint32_t)(g_RSPRegisterHandler.get()), x86_ECX); PushImm32("RSPRegister_MEM_ADDR", RSPRegister_MEM_ADDR); Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::ReadReg), "RSPRegisterHandlerPlugin::ReadReg"); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 1: MoveConstToX86reg((uint32_t)(g_RSPRegisterHandler.get()), x86_ECX); PushImm32("RSPRegister_DRAM_ADDR", RSPRegister_DRAM_ADDR); Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::ReadReg), "RSPRegisterHandlerPlugin::ReadReg"); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 5: MoveVariableToX86reg(RSPInfo.SP_DMA_FULL_REG, "SP_DMA_FULL_REG", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 6: MoveVariableToX86reg(RSPInfo.SP_DMA_BUSY_REG, "SP_DMA_BUSY_REG", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 4: MoveConstToX86reg((uint32_t)(g_RSPRegisterHandler.get()), x86_ECX); PushImm32("RSPRegister_STATUS", RSPRegister_STATUS); Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::ReadReg), "RSPRegisterHandlerPlugin::ReadReg"); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 7: if (AudioHle || GraphicsHle || SemaphoreExit == 0) { MoveConstToVariable(0, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); } else { MoveVariableToX86reg(RSPInfo.SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG", x86_EAX); MoveConstToVariable(0, &RSP_Running, "RSP_Running"); MoveConstToVariable(1, RSPInfo.SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG"); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); if (NextInstruction == RSPPIPELINE_NORMAL) { MoveConstToVariable(CompilePC + 4, PrgCount, "RSP PC"); Ret(); NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT) { NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT; } else { CompilerWarning(stdstr_f("MF error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } break; case 8: MoveVariableToX86reg(RSPInfo.DPC_START_REG, "DPC_START_REG", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 9: MoveVariableToX86reg(RSPInfo.DPC_END_REG, "DPC_END_REG", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 10: MoveVariableToX86reg(RSPInfo.DPC_CURRENT_REG, "DPC_CURRENT_REG", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 11: MoveVariableToX86reg(RSPInfo.DPC_STATUS_REG, "DPC_STATUS_REG", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; case 12: MoveVariableToX86reg(RSPInfo.DPC_CLOCK_REG, "DPC_CLOCK_REG", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt)); break; default: g_Notify->DisplayError(stdstr_f("We have not implemented RSP MF CP0 reg %s (%d)", COP0_Name(RSPOpC.rd), RSPOpC.rd).c_str()); } #else g_Notify->BreakPoint(__FILE__, __LINE__); #endif } void Compile_Cop0_MT(void) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (LogRDP) { char str[40]; MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); Push(x86_EAX); sprintf(str, "%d", RSPOpC.rd); PushImm32(str, RSPOpC.rd); sprintf(str, "%X", CompilePC); PushImm32(str, CompilePC); Call_Direct((void *)RDP_LogMT0, "RDP_LogMT0"); AddConstToX86Reg(x86_ESP, 12); } #ifndef Compile_Cop0 Cheat_r4300iOpcode(RSP_Cop0_MT, "RSP_Cop0_MT"); if (RSPOpC.rd == 4) { if (NextInstruction == RSPPIPELINE_NORMAL) { MoveConstToVariable(CompilePC + 4, PrgCount, "RSP PC"); Ret(); NextInstruction = RSPPIPELINE_FINISH_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT) { NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT; } else { CompilerWarning(stdstr_f("MF error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } } #elif defined(_M_IX86) && defined(_MSC_VER) switch (RSPOpC.rd) { case 0: MoveConstToX86reg((uint32_t)(g_RSPRegisterHandler.get()), x86_ECX); MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); Push(x86_EAX); PushImm32("RSPRegister_MEM_ADDR", RSPRegister_MEM_ADDR); Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg"); break; case 1: MoveConstToX86reg((uint32_t)(g_RSPRegisterHandler.get()), x86_ECX); MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); Push(x86_EAX); PushImm32("RSPRegister_DRAM_ADDR", RSPRegister_DRAM_ADDR); Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg"); break; case 2: MoveConstToX86reg((uint32_t)(g_RSPRegisterHandler.get()), x86_ECX); MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); Push(x86_EAX); PushImm32("RSPRegister_RD_LEN", RSPRegister_RD_LEN); Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg"); break; case 3: MoveConstToX86reg((uint32_t)(g_RSPRegisterHandler.get()), x86_ECX); MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); Push(x86_EAX); PushImm32("RSPRegister_WR_LEN", RSPRegister_WR_LEN); Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg"); break; case 4: MoveConstToX86reg((uint32_t)(g_RSPRegisterHandler.get()), x86_ECX); MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); Push(x86_EAX); PushImm32("RSPRegister_STATUS", RSPRegister_STATUS); Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg"); if (NextInstruction == RSPPIPELINE_NORMAL) { MoveConstToVariable(CompilePC + 4, PrgCount, "RSP PC"); Ret(); NextInstruction = RSPPIPELINE_FINISH_BLOCK; } else if (NextInstruction == RSPPIPELINE_DELAY_SLOT) { NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT; } else { CompilerWarning(stdstr_f("MF error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", NextInstruction).c_str()); BreakPoint(); } break; case 7: MoveConstToVariable(0, RSPInfo.SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG"); break; case 8: MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, RSPInfo.DPC_START_REG, "DPC_START_REG"); MoveX86regToVariable(x86_EAX, RSPInfo.DPC_CURRENT_REG, "DPC_CURRENT_REG"); break; case 9: MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, RSPInfo.DPC_END_REG, "DPC_END_REG"); if (LogRDP) { Call_Direct((void *)RDP_LogDlist, "RDP_LogDlist"); } if (RSPInfo.ProcessRdpList != NULL) { if (Profiling) { PushImm32("Timer_RDP_Running", (uint32_t)Timer_RDP_Running); Call_Direct((void *)StartTimer, "StartTimer"); AddConstToX86Reg(x86_ESP, 4); Push(x86_EAX); } Call_Direct((void *)RSPInfo.ProcessRdpList, "ProcessRdpList"); if (Profiling) { Call_Direct((void *)StartTimer, "StartTimer"); AddConstToX86Reg(x86_ESP, 4); } } break; case 10: MoveVariableToX86reg(&RSP_GPR[RSPOpC.rt].UW, GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regToVariable(x86_EAX, RSPInfo.DPC_CURRENT_REG, "DPC_CURRENT_REG"); break; default: Cheat_r4300iOpcode(RSP_Cop0_MT, "RSP_Cop0_MT"); break; } #else g_Notify->BreakPoint(__FILE__, __LINE__); #endif if (RSPOpC.rd == 2 && !ChangedPC) { uint8_t * Jump; TestConstToVariable(0x1000, RSPInfo.SP_MEM_ADDR_REG, "RSPInfo.SP_MEM_ADDR_REG"); JeLabel8("DontExit", 0); Jump = RecompPos - 1; MoveConstToVariable(CompilePC + 4, PrgCount, "RSP PC"); Ret(); CPU_Message("DontExit:"); x86_SetBranch8b(Jump, RecompPos); } } // COP2 functions void Compile_Cop2_MF(void) { char Reg[256]; uint8_t element = (uint8_t)(RSPOpC.sa >> 1); uint8_t element1 = 15 - element; uint8_t element2 = 15 - ((element + 1) % 16); #ifndef Compile_Cop2 Cheat_r4300iOpcode(RSP_Cop2_MF, "RSP_Cop2_MF"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (element2 != (element1 - 1)) { XorX86RegToX86Reg(x86_EAX, x86_EAX); XorX86RegToX86Reg(x86_EBX, x86_EBX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rd, element1); MoveVariableToX86regByte(&RSP_Vect[RSPOpC.vs].s8(element1), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rd, element2); MoveVariableToX86regByte(&RSP_Vect[RSPOpC.vs].s8(element2), Reg, x86_EBX); ShiftLeftSignImmed(x86_EAX, 8); OrX86RegToX86Reg(x86_EAX, x86_EBX); Cwde(); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); } else { sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rd, element2); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s8(element2), Reg, x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); } } void Compile_Cop2_CF(void) { #ifndef Compile_Cop2 Cheat_r4300iOpcode(RSP_Cop2_CF, "RSP_Cop2_CF"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); switch ((RSPOpC.rd & 0x03)) { case 0: MoveSxVariableToX86regHalf(&RSP_Flags[0].HW[0], "RSP_Flags[0].HW[0]", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); break; case 1: MoveSxVariableToX86regHalf(&RSP_Flags[1].HW[0], "RSP_Flags[1].HW[0]", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); break; case 2: case 3: MoveSxVariableToX86regHalf(&RSP_Flags[2].HW[0], "RSP_Flags[2].HW[0]", x86_EAX); MoveX86regToVariable(x86_EAX, &RSP_GPR[RSPOpC.rt].W, GPR_Name(RSPOpC.rt)); break; } } void Compile_Cop2_MT(void) { char Reg[256]; uint8_t element = (uint8_t)(15 - (RSPOpC.sa >> 1)); #ifndef Compile_Cop2 Cheat_r4300iOpcode(RSP_Cop2_MT, "RSP_Cop2_MT"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (element == 0) { sprintf(Reg, "RSP_GPR[%i].B[1]", RSPOpC.rt); MoveVariableToX86regByte(&RSP_GPR[RSPOpC.rt].B[1], Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rd, element); MoveX86regByteToVariable(x86_EAX, &RSP_Vect[RSPOpC.vs].s8(element), Reg); } else { sprintf(Reg, "RSP_GPR[%i].B[0]", RSPOpC.rt); MoveVariableToX86regHalf(&RSP_GPR[RSPOpC.rt].B[0], Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rd, element - 1); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vs].s8(element - 1), Reg); } } void Compile_Cop2_CT(void) { #ifndef Compile_Cop2 Cheat_r4300iOpcode(RSP_Cop2_CT, "RSP_Cop2_CT"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.rt == 0) { switch ((RSPOpC.rd & 0x03)) { case 0: MoveConstHalfToVariable(0, &RSP_Flags[0].HW[0], "RSP_Flags[0].HW[0]"); break; case 1: MoveConstHalfToVariable(0, &RSP_Flags[1].HW[0], "RSP_Flags[1].HW[0]"); break; case 2: case 3: MoveConstByteToVariable(0, &RSP_Flags[2].B[0], "RSP_Flags[2].B[0]"); break; } } else { switch ((RSPOpC.rd & 0x03)) { case 0: MoveVariableToX86regHalf(&RSP_GPR[RSPOpC.rt].HW[0], GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regHalfToVariable(x86_EAX, &RSP_Flags[0].HW[0], "RSP_Flags[0].HW[0]"); break; case 1: MoveVariableToX86regHalf(&RSP_GPR[RSPOpC.rt].HW[0], GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regHalfToVariable(x86_EAX, &RSP_Flags[1].HW[0], "RSP_Flags[1].HW[0]"); break; case 2: case 3: MoveVariableToX86regByte(&RSP_GPR[RSPOpC.rt].B[0], GPR_Name(RSPOpC.rt), x86_EAX); MoveX86regByteToVariable(x86_EAX, &RSP_Flags[2].B[0], "RSP_Flags[2].B[0]"); break; } } } void Compile_COP2_VECTOR(void) { RSP_Vector[RSPOpC.funct](); } // Vector functions UDWORD MMX_Scratch; void RSP_Element2Mmx(int MmxReg) { char Reg[256]; uint32_t Rs = RSPOpC.rs & 0x0f; uint8_t el; switch (Rs) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: CompilerWarning("Unimplemented RSP_Element2Mmx"); break; default: /* * Noticed the exclusive-or of seven to take into account * the pseudo-swapping we have in the vector registers */ el = (RSPOpC.rs & 0x07) ^ 7; if (!IsMmx2Enabled) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(el), Reg, x86_ECX); MoveX86regHalfToVariable(x86_ECX, &MMX_Scratch.HW[0], "MMX_Scratch.HW[0]"); MoveX86regHalfToVariable(x86_ECX, &MMX_Scratch.HW[1], "MMX_Scratch.HW[1]"); MoveX86regHalfToVariable(x86_ECX, &MMX_Scratch.HW[2], "MMX_Scratch.HW[2]"); MoveX86regHalfToVariable(x86_ECX, &MMX_Scratch.HW[3], "MMX_Scratch.HW[3]"); MmxMoveQwordVariableToReg(MmxReg, &MMX_Scratch.HW[0], "MMX_Scratch.HW[0]"); } else { uint8_t Qword = (el >> 2) & 0x1; el &= 0x3; sprintf(Reg, "RSP_Vect[%i].DW[%i]", RSPOpC.rt, Qword); MmxShuffleMemoryToReg(MmxReg, &RSP_Vect[RSPOpC.vt].u64(Qword), Reg, _MMX_SHUFFLE(el, el, el, el)); } break; } } void RSP_MultiElement2Mmx(int MmxReg1, int MmxReg2) { char Reg[256]; uint32_t Rs = RSPOpC.rs & 0x0f; /* * OK, this is tricky, hopefully this clears it up: * * $vd[0] = $vd[0] + $vt[2] * because of swapped registers becomes: * $vd[7] = $vd[7] + $vt[5] * * We must perform this swap correctly, this involves the 3-bit * exclusive or, 2-bits of which are done within a uint32_t boundary, * the last bit, is ignored because we are loading the source linearly, * so the exclusive or has transparently happened on that side. */ switch (Rs) { case 0: case 1: sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(MmxReg1, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(MmxReg2, &RSP_Vect[RSPOpC.vt].u16(4), Reg); break; case 2: /* [0q] | 0 | 0 | 2 | 2 | 4 | 4 | 6 | 6 | */ sprintf(Reg, "RSP_Vect[%i].DW[0]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg1, &RSP_Vect[RSPOpC.vt].u64(0), Reg, 0xF5); sprintf(Reg, "RSP_Vect[%i].DW[1]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg2, &RSP_Vect[RSPOpC.vt].u64(1), Reg, 0xF5); break; case 3: /* [1q] | 1 | 1 | 3 | 3 | 5 | 5 | 7 | 7 | */ sprintf(Reg, "RSP_Vect[%i].DW[0]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg1, &RSP_Vect[RSPOpC.vt].u64(0), Reg, 0xA0); //MmxShuffleMemoryToReg(MmxReg1, &RSP_Vect[RSPOpC.vt].s64(0), Reg, 0x0A); sprintf(Reg, "RSP_Vect[%i].DW[1]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg2, &RSP_Vect[RSPOpC.vt].u64(1), Reg, 0xA0); //MmxShuffleMemoryToReg(MmxReg2, &RSP_Vect[RSPOpC.vt].s64(1), Reg, 0x0A); break; case 4: /* [0h] | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | */ sprintf(Reg, "RSP_Vect[%i].DW[0]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg1, &RSP_Vect[RSPOpC.vt].u64(0), Reg, 0xFF); sprintf(Reg, "RSP_Vect[%i].DW[1]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg2, &RSP_Vect[RSPOpC.vt].u64(1), Reg, 0xFF); break; case 5: /* [1h] | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | */ sprintf(Reg, "RSP_Vect[%i].DW[0]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg1, &RSP_Vect[RSPOpC.vt].u64(0), Reg, 0xAA); sprintf(Reg, "RSP_Vect[%i].DW[1]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg2, &RSP_Vect[RSPOpC.vt].u64(1), Reg, 0xAA); break; case 6: /* [2h] | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | */ sprintf(Reg, "RSP_Vect[%i].DW[0]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg1, &RSP_Vect[RSPOpC.vt].u64(0), Reg, 0x55); sprintf(Reg, "RSP_Vect[%i].DW[1]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg2, &RSP_Vect[RSPOpC.vt].u64(1), Reg, 0x55); break; case 7: /* [3h] | 3 | 3 | 3 | 3 | 7 | 7 | 7 | 7 | */ sprintf(Reg, "RSP_Vect[%i].DW[0]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg1, &RSP_Vect[RSPOpC.vt].u64(0), Reg, 0x00); sprintf(Reg, "RSP_Vect[%i].DW[1]", RSPOpC.rt); MmxShuffleMemoryToReg(MmxReg2, &RSP_Vect[RSPOpC.vt].u64(1), Reg, 0x00); break; default: CompilerWarning("Unimplemented RSP_MultiElement2Mmx [?]"); break; } } bool Compile_Vector_VMULF_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; // NOTE: Problem here is the lack of +/- 0x8000 rounding sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if ((RSPOpC.rs & 0xF) < 2) { if (RSPOpC.rd == RSPOpC.rt) { MmxPmulhwRegToReg(x86_MM0, x86_MM0); MmxPmulhwRegToReg(x86_MM1, x86_MM1); } else { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxPmulhwRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxPmulhwRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vt].u16(4), Reg); } } else if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPmulhwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM1, x86_MM2); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPmulhwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM1, x86_MM3); } MmxPsllwImmed(x86_MM0, 1); MmxPsllwImmed(x86_MM1, 1); sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VMULF(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToAccum = WriteToAccum(EntireAccum, CompilePC); bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); #ifndef CompileVmulf Cheat_r4300iOpcode(RSP_Vector_VMULF, "RSP_Vector_VMULF"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VMULF_MMX()) return; } if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToDest) { MoveConstToX86reg(0x7fff0000, x86_ESI); } if (bWriteToAccum) { XorX86RegToX86Reg(x86_EDI, x86_EDI); } for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (RSPOpC.rt == RSPOpC.rd && !bOptimize) { imulX86reg(x86_EAX); } else { if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } imulX86reg(x86_EBX); } ShiftLeftSignImmed(x86_EAX, 1); AddConstToX86Reg(x86_EAX, 0x8000); if (bWriteToAccum) { MoveX86regToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], "RSP_ACCUM[el].HW[1]"); // Calculate sign extension into EDX MoveX86RegToX86Reg(x86_EAX, x86_EDX); ShiftRightSignImmed(x86_EDX, 31); } CompConstToX86reg(x86_EAX, 0x80008000); if (bWriteToAccum) { CondMoveEqual(x86_EDX, x86_EDI); MoveX86regHalfToVariable(x86_EDX, &RSP_ACCUM[el].HW[3], "RSP_ACCUM[el].HW[3]"); } if (bWriteToDest) { CondMoveEqual(x86_EAX, x86_ESI); ShiftRightUnsignImmed(x86_EAX, 16); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), "RSP_Vect[RSPOpC.vd].s16(el)"); } } } void Compile_Vector_VMULU(void) { Cheat_r4300iOpcode(RSP_Vector_VMULU, "RSP_Vector_VMULU"); } bool Compile_Vector_VMUDL_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if (!IsMmx2Enabled) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if ((RSPOpC.rs & 0xF) < 2) { if (RSPOpC.rd == RSPOpC.rt) { MmxPmulhuwRegToReg(x86_MM0, x86_MM0); MmxPmulhuwRegToReg(x86_MM1, x86_MM1); } else { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RSPOpC.vt].u16(4), Reg); MmxPmulhuwRegToReg(x86_MM0, x86_MM2); MmxPmulhuwRegToReg(x86_MM1, x86_MM3); } } else if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPmulhuwRegToReg(x86_MM0, x86_MM2); MmxPmulhuwRegToReg(x86_MM1, x86_MM2); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPmulhuwRegToReg(x86_MM0, x86_MM2); MmxPmulhuwRegToReg(x86_MM1, x86_MM3); } sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VMUDL(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(EntireAccum, CompilePC); #ifndef CompileVmudl Cheat_r4300iOpcode(RSP_Vector_VMUDL, "RSP_Vector_VMUDL"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VMUDL_MMX()) return; } if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToAccum) XorX86RegToX86Reg(x86_EDI, x86_EDI); for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].u16(el), Reg, x86_EAX); if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } imulX86reg(x86_EBX); if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].UW[0]", el); MoveX86regToVariable(x86_EAX, &RSP_ACCUM[el].UW[0], Reg); sprintf(Reg, "RSP_ACCUM[%i].UW[1]", el); MoveX86regToVariable(x86_EDI, &RSP_ACCUM[el].UW[1], Reg); } if (bWriteToDest) { ShiftRightUnsignImmed(x86_EAX, 16); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } } bool Compile_Vector_VMUDM_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if (!IsMmx2Enabled) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM4, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM5, &RSP_Vect[RSPOpC.vt].u16(4), Reg); // Copy the signed portion MmxMoveRegToReg(x86_MM2, x86_MM0); MmxMoveRegToReg(x86_MM3, x86_MM1); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0, x86_MM4); MmxPmulhuwRegToReg(x86_MM1, x86_MM5); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2, 15); MmxPsrawImmed(x86_MM3, 15); MmxPmullwRegToReg(x86_MM2, x86_MM4); MmxPmullwRegToReg(x86_MM3, x86_MM5); } else if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM4); // Copy the signed portion MmxMoveRegToReg(x86_MM2, x86_MM0); MmxMoveRegToReg(x86_MM3, x86_MM1); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0, x86_MM4); MmxPmulhuwRegToReg(x86_MM1, x86_MM4); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2, 15); MmxPsrawImmed(x86_MM3, 15); MmxPmullwRegToReg(x86_MM2, x86_MM4); MmxPmullwRegToReg(x86_MM3, x86_MM4); } else { RSP_MultiElement2Mmx(x86_MM4, x86_MM5); // Copy the signed portion MmxMoveRegToReg(x86_MM2, x86_MM0); MmxMoveRegToReg(x86_MM3, x86_MM1); // high((u16)a * b) MmxPmulhuwRegToReg(x86_MM0, x86_MM4); MmxPmulhuwRegToReg(x86_MM1, x86_MM5); // low((a >> 15) * b) MmxPsrawImmed(x86_MM2, 15); MmxPsrawImmed(x86_MM3, 15); MmxPmullwRegToReg(x86_MM2, x86_MM4); MmxPmullwRegToReg(x86_MM3, x86_MM5); } // Add them up MmxPaddwRegToReg(x86_MM0, x86_MM2); MmxPaddwRegToReg(x86_MM1, x86_MM3); sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VMUDM(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(EntireAccum, CompilePC); #ifndef CompileVmudm Cheat_r4300iOpcode(RSP_Vector_VMUDM, "RSP_Vector_VMUDM"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VMUDM_MMX()) return; } if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } Push(x86_EBP); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.sa); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vd].s16(0), Reg, x86_ECX); } else if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vt].s16(0), Reg, x86_ECX); } for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; /*sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX);*/ MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX); if (!bOptimize) { if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } else { MoveZxX86RegPtrDispToX86RegHalf(x86_ECX, (uint8_t)(del * 2), x86_EBX); } } imulX86reg(x86_EBX); if (bWriteToAccum == false && bWriteToDest == true) { ShiftRightUnsignImmed(x86_EAX, 16); /*sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg);*/ MoveX86regHalfToX86regPointerDisp(x86_EAX, x86_ECX, (uint8_t)(el * 2)); } else { MoveX86RegToX86Reg(x86_EAX, x86_EDX); ShiftRightSignImmed(x86_EDX, 16); ShiftLeftSignImmed(x86_EAX, 16); if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].UW[0]", el); MoveX86regToVariable(x86_EAX, &RSP_ACCUM[el].UW[0], Reg); sprintf(Reg, "RSP_ACCUM[%i].UW[1]", el); MoveX86regToVariable(x86_EDX, &RSP_ACCUM[el].UW[1], Reg); } if (bWriteToDest) { /*sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vd].s16(el), Reg);*/ MoveX86regHalfToX86regPointerDisp(x86_EDX, x86_ECX, (uint8_t)(el * 2)); } } } Pop(x86_EBP); } bool Compile_Vector_VMUDN_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rt); MmxPmullwVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vt].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rt); MmxPmullwVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vt].u16(4), Reg); } else if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM2); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); } sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VMUDN(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(EntireAccum, CompilePC); #ifndef CompileVmudn Cheat_r4300iOpcode(RSP_Vector_VMUDN, "RSP_Vector_VMUDN"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VMUDN_MMX()) return; } if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } Push(x86_EBP); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; /*sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].u16(el), Reg, x86_EAX);*/ MoveZxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX); if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } imulX86reg(x86_EBX); if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } if (bWriteToAccum) { MoveX86RegToX86Reg(x86_EAX, x86_EDX); ShiftRightSignImmed(x86_EDX, 16); ShiftLeftSignImmed(x86_EAX, 16); sprintf(Reg, "RSP_ACCUM[%i].UW[0]", el); MoveX86regToVariable(x86_EAX, &RSP_ACCUM[el].UW[0], Reg); sprintf(Reg, "RSP_ACCUM[%i].UW[1]", el); MoveX86regToVariable(x86_EDX, &RSP_ACCUM[el].UW[1], Reg); } } Pop(x86_EBP); } bool Compile_Vector_VMUDH_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].s16(4), Reg); // Registers 4 and 5 are high MmxMoveRegToReg(x86_MM4, x86_MM0); MmxMoveRegToReg(x86_MM5, x86_MM1); if ((RSPOpC.rs & 0x0f) < 2) { if (RSPOpC.rd == RSPOpC.rt) { MmxPmullwRegToReg(x86_MM0, x86_MM0); MmxPmulhwRegToReg(x86_MM4, x86_MM4); MmxPmullwRegToReg(x86_MM1, x86_MM1); MmxPmulhwRegToReg(x86_MM5, x86_MM5); } else { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RSPOpC.vt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RSPOpC.vt].s16(4), Reg); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM4, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); MmxPmulhwRegToReg(x86_MM5, x86_MM3); } } else if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM4, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM2); MmxPmulhwRegToReg(x86_MM5, x86_MM2); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPmullwRegToReg(x86_MM0, x86_MM2); MmxPmulhwRegToReg(x86_MM4, x86_MM2); MmxPmullwRegToReg(x86_MM1, x86_MM3); MmxPmulhwRegToReg(x86_MM5, x86_MM3); } // 0 and 1 are low, 4 and 5 are high MmxMoveRegToReg(x86_MM6, x86_MM0); MmxMoveRegToReg(x86_MM7, x86_MM1); MmxUnpackLowWord(x86_MM0, x86_MM4); MmxUnpackHighWord(x86_MM6, x86_MM4); MmxUnpackLowWord(x86_MM1, x86_MM5); MmxUnpackHighWord(x86_MM7, x86_MM5); // Integrate copies MmxPackSignedDwords(x86_MM0, x86_MM6); MmxPackSignedDwords(x86_MM1, x86_MM7); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].s16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VMUDH(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(EntireAccum, CompilePC); #ifndef CompileVmudh Cheat_r4300iOpcode(RSP_Vector_VMUDH, "RSP_Vector_VMUDH"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VMUDH_MMX()) return; } if (bWriteToDest == false && bOptimize == true) { Push(x86_EBP); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); // Load source del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); // Pipe lined segment 0 sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 0, x86_EAX); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 2, x86_ECX); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 4, x86_EDI); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 6, x86_ESI); ImulX86RegToX86Reg(x86_EAX, x86_EBX); ImulX86RegToX86Reg(x86_ECX, x86_EBX); ImulX86RegToX86Reg(x86_EDI, x86_EBX); ImulX86RegToX86Reg(x86_ESI, x86_EBX); XorX86RegToX86Reg(x86_EDX, x86_EDX); MoveOffsetToX86reg((size_t)&RSP_ACCUM[0].W[0], "RSP_ACCUM[0].W[0]", x86_EBP); MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 0); MoveX86RegToX86regPointerDisp(x86_EAX, x86_EBP, 4); MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 8); MoveX86RegToX86regPointerDisp(x86_ECX, x86_EBP, 12); MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 16); MoveX86RegToX86regPointerDisp(x86_EDI, x86_EBP, 20); MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 24); MoveX86RegToX86regPointerDisp(x86_ESI, x86_EBP, 28); // Pipe lined segment 1 sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 8, x86_EAX); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 10, x86_ECX); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 12, x86_EDI); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 14, x86_ESI); ImulX86RegToX86Reg(x86_EAX, x86_EBX); ImulX86RegToX86Reg(x86_ECX, x86_EBX); ImulX86RegToX86Reg(x86_EDI, x86_EBX); ImulX86RegToX86Reg(x86_ESI, x86_EBX); XorX86RegToX86Reg(x86_EDX, x86_EDX); MoveOffsetToX86reg((size_t)&RSP_ACCUM[0].W[0], "RSP_ACCUM[0].W[0]", x86_EBP); MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 32); MoveX86RegToX86regPointerDisp(x86_EAX, x86_EBP, 36); MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 40); MoveX86RegToX86regPointerDisp(x86_ECX, x86_EBP, 44); MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 48); MoveX86RegToX86regPointerDisp(x86_EDI, x86_EBP, 52); MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 56); MoveX86RegToX86regPointerDisp(x86_ESI, x86_EBP, 60); Pop(x86_EBP); } else { if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToDest) { // Prepare for conditional moves MoveConstToX86reg(0x00007fff, x86_ESI); MoveConstToX86reg(0xFFFF8000, x86_EDI); } for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } imulX86reg(x86_EBX); if (bWriteToAccum) { MoveX86regToVariable(x86_EAX, &RSP_ACCUM[el].W[1], "RSP_ACCUM[el].W[1]"); MoveConstToVariable(0, &RSP_ACCUM[el].W[0], "RSP_ACCUM[el].W[0]"); } if (bWriteToDest) { CompX86RegToX86Reg(x86_EAX, x86_ESI); CondMoveGreater(x86_EAX, x86_ESI); CompX86RegToX86Reg(x86_EAX, x86_EDI); CondMoveLess(x86_EAX, x86_EDI); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } } } void Compile_Vector_VMACF(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); #ifndef CompileVmacf Cheat_r4300iOpcode(RSP_Vector_VMACF, "RSP_Vector_VMACF"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bWriteToDest) { // Prepare for conditional moves MoveConstToX86reg(0x00007fff, x86_ESI); MoveConstToX86reg(0xFFFF8000, x86_EDI); } if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } for (count = 0; count < 8; count++) { el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; CPU_Message(" Iteration: %i", count); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } imulX86reg(x86_EBX); MoveX86RegToX86Reg(x86_EAX, x86_EDX); ShiftRightSignImmed(x86_EDX, 15); ShiftLeftSignImmed(x86_EAX, 17); AddX86regToVariable(x86_EAX, &RSP_ACCUM[el].W[0], "RSP_ACCUM[el].W[0]"); AdcX86regToVariable(x86_EDX, &RSP_ACCUM[el].W[1], "RSP_ACCUM[el].W[1]"); if (bWriteToDest) { MoveVariableToX86reg(&RSP_ACCUM[el].W[1], "RSP_ACCUM[el].W[1]", x86_EAX); CompX86RegToX86Reg(x86_EAX, x86_ESI); CondMoveGreater(x86_EAX, x86_ESI); CompX86RegToX86Reg(x86_EAX, x86_EDI); CondMoveLess(x86_EAX, x86_EDI); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } } void Compile_Vector_VMACU(void) { Cheat_r4300iOpcode(RSP_Vector_VMACU, "RSP_Vector_VMACU"); } void Compile_Vector_VMACQ(void) { Cheat_r4300iOpcode(RSP_Vector_VMACQ, "RSP_Vector_VMACQ"); } void Compile_Vector_VMADL(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); #ifndef CompileVmadl Cheat_r4300iOpcode(RSP_Vector_VMADL, "RSP_Vector_VMADL"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToDest) { // Prepare for conditional moves MoveConstToX86reg(0x00007FFF, x86_ESI); MoveConstToX86reg(0xFFFF8000, x86_EDI); Push(x86_EBP); MoveConstToX86reg(0x0000FFFF, x86_EBP); } for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } imulX86reg(x86_EBX); sprintf(Reg, "RSP_ACCUM[%i].W[0]", el); AddX86regToVariable(x86_EAX, &RSP_ACCUM[el].W[0], Reg); sprintf(Reg, "RSP_ACCUM[%i].W[1]", el); AdcConstToVariable(&RSP_ACCUM[el].W[1], Reg, 0); if (bWriteToDest != false) { XorX86RegToX86Reg(x86_EDX, x86_EDX); MoveVariableToX86reg(&RSP_ACCUM[el].W[1], "RSP_ACCUM[el].W[1]", x86_EAX); MoveZxVariableToX86regHalf(&RSP_ACCUM[el].HW[1], "RSP_ACCUM[el].hW[1]", x86_ECX); CompX86RegToX86Reg(x86_EAX, x86_ESI); CondMoveGreater(x86_ECX, x86_EBP); CompX86RegToX86Reg(x86_EAX, x86_EDI); CondMoveLess(x86_ECX, x86_EDX); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } if (bWriteToDest) { Pop(x86_EBP); } } void Compile_Vector_VMADM(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); #ifndef CompileVmadm Cheat_r4300iOpcode(RSP_Vector_VMADM, "RSP_Vector_VMADM"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToDest) { // Prepare for conditional moves MoveConstToX86reg(0x00007fff, x86_ESI); MoveConstToX86reg(0xFFFF8000, x86_EDI); } Push(x86_EBP); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.sa); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vd].s16(0), Reg, x86_ECX); } else if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vt].s16(0), Reg, x86_ECX); } for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; /*sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX);*/ MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX); if (!bOptimize) { if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), "RSP_Vect[RSPOpC.vt].s16(del)", x86_EBX); } else { MoveZxX86RegPtrDispToX86RegHalf(x86_ECX, (uint8_t)(del * 2), x86_EBX); } } imulX86reg(x86_EBX); MoveX86RegToX86Reg(x86_EAX, x86_EDX); ShiftRightSignImmed(x86_EDX, 16); ShiftLeftSignImmed(x86_EAX, 16); AddX86regToVariable(x86_EAX, &RSP_ACCUM[el].W[0], "RSP_ACCUM[el].W[0]"); AdcX86regToVariable(x86_EDX, &RSP_ACCUM[el].W[1], "RSP_ACCUM[el].W[1]"); if (bWriteToDest) { // For compare sprintf(Reg, "RSP_ACCUM[%i].W[1]", el); MoveVariableToX86reg(&RSP_ACCUM[el].W[1], "RSP_ACCUM[el].W[1]", x86_EAX); CompX86RegToX86Reg(x86_EAX, x86_ESI); CondMoveGreater(x86_EAX, x86_ESI); CompX86RegToX86Reg(x86_EAX, x86_EDI); CondMoveLess(x86_EAX, x86_EDI); /*sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg);*/ MoveX86regHalfToX86regPointerDisp(x86_EAX, x86_ECX, (uint8_t)(el * 2)); } } Pop(x86_EBP); } void Compile_Vector_VMADN(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); #ifndef CompileVmadn Cheat_r4300iOpcode(RSP_Vector_VMADN, "RSP_Vector_VMADN"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToDest) { // Prepare for conditional moves MoveConstToX86reg(0x0000ffff, x86_ESI); MoveConstToX86reg(0x00000000, x86_EDI); } Push(x86_EBP); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; /*sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].u16(el), Reg, x86_EAX);*/ MoveZxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX); if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } imulX86reg(x86_EBX); MoveX86RegToX86Reg(x86_EAX, x86_EDX); ShiftRightSignImmed(x86_EDX, 16); ShiftLeftSignImmed(x86_EAX, 16); AddX86regToVariable(x86_EAX, &RSP_ACCUM[el].W[0], "RSP_ACCUM[el].W[0]"); AdcX86regToVariable(x86_EDX, &RSP_ACCUM[el].W[1], "RSP_ACCUM[el].W[1]"); if (bWriteToDest) { // For compare sprintf(Reg, "RSP_ACCUM[%i].W[1]", el); MoveVariableToX86reg(&RSP_ACCUM[el].W[1], Reg, x86_EAX); // For vector sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveVariableToX86regHalf(&RSP_ACCUM[el].HW[1], Reg, x86_ECX); // TODO: Weird eh? CompConstToX86reg(x86_EAX, 0x7fff); CondMoveGreater(x86_ECX, x86_ESI); CompConstToX86reg(x86_EAX, (uint32_t)(-0x8000)); CondMoveLess(x86_ECX, x86_EDI); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } Pop(x86_EBP); } void Compile_Vector_VMADH(void) { char Reg[256]; uint8_t count, el, del; bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); #ifndef CompileVmadh Cheat_r4300iOpcode(RSP_Vector_VMADH, "RSP_Vector_VMADH"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToDest) { // Prepare for conditional moves MoveConstToX86reg(0x00007fff, x86_ESI); MoveConstToX86reg(0xFFFF8000, x86_EDI); } if (bWriteToDest == false && bOptimize == true) { Push(x86_EBP); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); // Pipe lined segment 0 MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 0, x86_EAX); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 2, x86_ECX); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 4, x86_EDI); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 6, x86_ESI); ImulX86RegToX86Reg(x86_EAX, x86_EBX); ImulX86RegToX86Reg(x86_ECX, x86_EBX); ImulX86RegToX86Reg(x86_EDI, x86_EBX); ImulX86RegToX86Reg(x86_ESI, x86_EBX); sprintf(Reg, "RSP_ACCUM[%i].W[1]", 0); AddX86regToVariable(x86_EAX, &RSP_ACCUM[0].W[1], Reg); sprintf(Reg, "RSP_ACCUM[%i].W[1]", 1); AddX86regToVariable(x86_ECX, &RSP_ACCUM[1].W[1], Reg); sprintf(Reg, "RSP_ACCUM[%i].W[1]", 2); AddX86regToVariable(x86_EDI, &RSP_ACCUM[2].W[1], Reg); sprintf(Reg, "RSP_ACCUM[%i].W[1]", 3); AddX86regToVariable(x86_ESI, &RSP_ACCUM[3].W[1], Reg); // Pipe lined segment 1 MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 8, x86_EAX); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 10, x86_ECX); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 12, x86_EDI); MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 14, x86_ESI); ImulX86RegToX86Reg(x86_EAX, x86_EBX); ImulX86RegToX86Reg(x86_ECX, x86_EBX); ImulX86RegToX86Reg(x86_EDI, x86_EBX); ImulX86RegToX86Reg(x86_ESI, x86_EBX); sprintf(Reg, "RSP_ACCUM[%i].W[1]", 4); AddX86regToVariable(x86_EAX, &RSP_ACCUM[4].W[1], Reg); sprintf(Reg, "RSP_ACCUM[%i].W[1]", 5); AddX86regToVariable(x86_ECX, &RSP_ACCUM[5].W[1], Reg); sprintf(Reg, "RSP_ACCUM[%i].W[1]", 6); AddX86regToVariable(x86_EDI, &RSP_ACCUM[6].W[1], Reg); sprintf(Reg, "RSP_ACCUM[%i].W[1]", 7); AddX86regToVariable(x86_ESI, &RSP_ACCUM[7].W[1], Reg); Pop(x86_EBP); } else { Push(x86_EBP); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.sa); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vd].s16(0), Reg, x86_ECX); } else if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vt].s16(0), Reg, x86_ECX); } for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; /*sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX);*/ MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX); if (!bOptimize) { if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } else { MoveSxX86RegPtrDispToX86RegHalf(x86_ECX, (uint8_t)(del * 2), x86_EBX); } } imulX86reg(x86_EBX); sprintf(Reg, "RSP_ACCUM[%i].W[1]", el); AddX86regToVariable(x86_EAX, &RSP_ACCUM[el].W[1], Reg); if (bWriteToDest) { MoveVariableToX86reg(&RSP_ACCUM[el].W[1], "RSP_ACCUM[el].W[1]", x86_EAX); CompX86RegToX86Reg(x86_EAX, x86_ESI); CondMoveGreater(x86_EAX, x86_ESI); CompX86RegToX86Reg(x86_EAX, x86_EDI); CondMoveLess(x86_EAX, x86_EDI); /*sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg);*/ MoveX86regHalfToX86regPointerDisp(x86_EAX, x86_ECX, (uint8_t)(el * 2)); } } Pop(x86_EBP); } } bool Compile_Vector_VADD_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPaddswRegToReg(x86_MM0, x86_MM2); MmxPaddswRegToReg(x86_MM1, x86_MM2); } else if ((RSPOpC.rs & 15) < 2) { if (RSPOpC.rd == RSPOpC.rt) { MmxPaddswRegToReg(x86_MM0, x86_MM0); MmxPaddswRegToReg(x86_MM1, x86_MM1); } else { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxPaddswVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxPaddswVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vt].s16(4), Reg); } } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPaddswRegToReg(x86_MM0, x86_MM2); MmxPaddswRegToReg(x86_MM1, x86_MM3); } sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (IsNextInstructionMmx(CompilePC) != true) { MmxEmptyMultimediaState(); } return true; } void Compile_Vector_VADD(void) { char Reg[256]; uint8_t count, el, del; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bElement = (RSPOpC.rs & 8) ? true : false; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); bool bFlagUseage = UseRspFlags(CompilePC); #ifndef CompileVadd Cheat_r4300iOpcode(RSP_Vector_VADD, "RSP_Vector_VADD"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bWriteToAccum == false && bFlagUseage == false) { if (true == Compile_Vector_VADD_MMX()) return; } if (bElement == true) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToDest) { // Prepare for conditional moves MoveConstToX86reg(0x00007fff, x86_ESI); MoveConstToX86reg(0xffff8000, x86_EDI); } // Used for invoking x86 carry flag XorX86RegToX86Reg(x86_ECX, x86_ECX); Push(x86_EBP); MoveVariableToX86reg(&RSP_Flags[0].UW, "RSP_Flags[0].UW", x86_EBP); for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (bElement == false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } MoveX86RegToX86Reg(x86_EBP, x86_EDX); AndConstToX86Reg(x86_EDX, 1 << (7 - el)); CompX86RegToX86Reg(x86_ECX, x86_EDX); AdcX86RegToX86Reg(x86_EAX, x86_EBX); if (bWriteToAccum != false) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } if (bWriteToDest != false) { CompX86RegToX86Reg(x86_EAX, x86_ESI); CondMoveGreater(x86_EAX, x86_ESI); CompX86RegToX86Reg(x86_EAX, x86_EDI); CondMoveLess(x86_EAX, x86_EDI); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } MoveConstToVariable(0, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); Pop(x86_EBP); } bool Compile_Vector_VSUB_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if ((RSPOpC.rs & 15) >= 8) { RSP_Element2Mmx(x86_MM2); MmxPsubswRegToReg(x86_MM0, x86_MM2); MmxPsubswRegToReg(x86_MM1, x86_MM2); } else if ((RSPOpC.rs & 15) < 2) { if (RSPOpC.rd == RSPOpC.rt) { MmxPsubswRegToReg(x86_MM0, x86_MM0); MmxPsubswRegToReg(x86_MM1, x86_MM1); } else { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxPsubswVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxPsubswVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vt].s16(4), Reg); } } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPsubswRegToReg(x86_MM0, x86_MM2); MmxPsubswRegToReg(x86_MM1, x86_MM3); } sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (IsNextInstructionMmx(CompilePC) != true) { MmxEmptyMultimediaState(); } return true; } void Compile_Vector_VSUB(void) { char Reg[256]; uint8_t count, el, del; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bOptimize = (RSPOpC.rs & 8) ? true : false; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); bool bFlagUseage = UseRspFlags(CompilePC); #ifndef CompileVsub Cheat_r4300iOpcode(RSP_Vector_VSUB, "RSP_Vector_VSUB"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bWriteToAccum == false && bFlagUseage == false) { if (true == Compile_Vector_VSUB_MMX()) return; } Push(x86_EBP); // Used for invoking the x86 carry flag XorX86RegToX86Reg(x86_ECX, x86_ECX); MoveVariableToX86reg(&RSP_Flags[0].UW, "RSP_Flags[0].UW", x86_EBP); if (bOptimize) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } if (bWriteToDest) { // Prepare for conditional moves MoveConstToX86reg(0x00007fff, x86_ESI); MoveConstToX86reg(0xffff8000, x86_EDI); } for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), "RSP_Vect[RSPOpC.vs].s16(el)", x86_EAX); if (!bOptimize) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } MoveX86RegToX86Reg(x86_EBP, x86_EDX); AndConstToX86Reg(x86_EDX, 1 << (7 - el)); CompX86RegToX86Reg(x86_ECX, x86_EDX); SbbX86RegToX86Reg(x86_EAX, x86_EBX); if (bWriteToAccum != false) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } if (bWriteToDest != false) { CompX86RegToX86Reg(x86_EAX, x86_ESI); CondMoveGreater(x86_EAX, x86_ESI); CompX86RegToX86Reg(x86_EAX, x86_EDI); CondMoveLess(x86_EAX, x86_EDI); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } MoveConstToVariable(0, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); Pop(x86_EBP); } bool Compile_Vector_VABS_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if ((RSPOpC.rs & 15) >= 8) { RSP_Element2Mmx(x86_MM2); MmxMoveRegToReg(x86_MM3, x86_MM2); } else if ((RSPOpC.rs & 15) < 2) { if (RSPOpC.rd != RSPOpC.rt) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RSPOpC.vt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RSPOpC.vt].s16(4), Reg); } else { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxMoveRegToReg(x86_MM2, x86_MM0); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxMoveRegToReg(x86_MM3, x86_MM1); } } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); } if (RSPOpC.rd == RSPOpC.rt) { MmxPsrawImmed(x86_MM2, 15); MmxPsrawImmed(x86_MM3, 15); MmxXorRegToReg(x86_MM0, x86_MM2); MmxXorRegToReg(x86_MM1, x86_MM3); MmxPsubswRegToReg(x86_MM0, x86_MM2); MmxPsubswRegToReg(x86_MM1, x86_MM3); } else { MmxXorRegToReg(x86_MM7, x86_MM7); MmxMoveRegToReg(x86_MM4, x86_MM0); MmxMoveRegToReg(x86_MM5, x86_MM1); MmxPsrawImmed(x86_MM4, 15); MmxPsrawImmed(x86_MM5, 15); MmxPcmpeqwRegToReg(x86_MM0, x86_MM7); MmxPcmpeqwRegToReg(x86_MM1, x86_MM7); MmxXorRegToReg(x86_MM2, x86_MM4); MmxXorRegToReg(x86_MM3, x86_MM5); MmxPsubswRegToReg(x86_MM2, x86_MM4); MmxPsubswRegToReg(x86_MM3, x86_MM5); MmxPandnRegToReg(x86_MM0, x86_MM2); MmxPandnRegToReg(x86_MM1, x86_MM3); } sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (IsNextInstructionMmx(CompilePC) != true) { MmxEmptyMultimediaState(); } return true; } void Compile_Vector_VABS(void) { uint8_t count, el, del; char Reg[256]; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVabs Cheat_r4300iOpcode(RSP_Vector_VABS, "RSP_Vector_VABS"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VABS_MMX()) return; } for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; if (RSPOpC.rd == RSPOpC.rt && (RSPOpC.rs & 0xF) < 2) { // Optimize: EDI/ESI unused, and ECX is CONST etc. sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); // Obtain the negative of the source MoveX86RegToX86Reg(x86_EAX, x86_EBX); NegateX86reg(x86_EBX); // Determine negative value, // Note: negate(FFFF8000h) == 00008000h MoveConstToX86reg(0x7fff, x86_ECX); CompConstToX86reg(x86_EBX, 0x00008000); CondMoveEqual(x86_EBX, x86_ECX); // sign clamp, dest = (eax >= 0) ? eax : ebx CompConstToX86reg(x86_EAX, 0); CondMoveLess(x86_EAX, x86_EBX); if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } } else { // Optimize: ESI unused, and EDX is CONST etc. sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); // Obtain the negative of the source MoveX86RegToX86Reg(x86_EBX, x86_ECX); NegateX86reg(x86_EBX); // Determine negative value, // Note: negate(FFFF8000h) == 00008000h MoveConstToX86reg(0x7fff, x86_EDX); CompConstToX86reg(x86_EBX, 0x00008000); CondMoveEqual(x86_EBX, x86_EDX); // sign clamp, dest = (eax >= 0) ? ecx : ebx CompConstToX86reg(x86_EAX, 0); CondMoveGreaterEqual(x86_EDI, x86_ECX); CondMoveLess(x86_EDI, x86_EBX); if (bWriteToDest) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EDI, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EDI, &RSP_ACCUM[el].HW[1], Reg); } } } } void Compile_Vector_VADDC(void) { char Reg[256]; uint8_t count, el, del; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); bool bElement = (RSPOpC.rs & 8) ? true : false; #ifndef CompileVaddc Cheat_r4300iOpcode(RSP_Vector_VADDC, "RSP_Vector_VADDC"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bElement == true) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } // Initialize flag register XorX86RegToX86Reg(x86_ECX, x86_ECX); Push(x86_EBP); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vs].s16(0), Reg, x86_EBP); for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; /*sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX);*/ MoveZxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX); if (bElement == false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } AddX86RegToX86Reg(x86_EAX, x86_EBX); XorX86RegToX86Reg(x86_EDX, x86_EDX); TestConstToX86Reg(0xFFFF0000, x86_EAX); Setnz(x86_EDX); if ((7 - el) != 0) { ShiftLeftSignImmed(x86_EDX, (uint8_t)(7 - el)); } OrX86RegToX86Reg(x86_ECX, x86_EDX); if (bWriteToAccum != false) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } if (bWriteToDest != false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } MoveX86regToVariable(x86_ECX, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); Pop(x86_EBP); } void Compile_Vector_VSUBC(void) { char Reg[256]; uint8_t count, el, del; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); bool bElement = (RSPOpC.rs & 8) ? true : false; #ifndef CompileVsubc Cheat_r4300iOpcode(RSP_Vector_VSUBC, "RSP_Vector_VSUBC"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bElement == true) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } // Initialize flag register XorX86RegToX86Reg(x86_ECX, x86_ECX); for (count = 0; count < 8; count++) { CPU_Message(" Iteration: %i", count); el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (bElement == false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } SubX86RegToX86Reg(x86_EAX, x86_EBX); XorX86RegToX86Reg(x86_EDX, x86_EDX); TestConstToX86Reg(0x0000FFFF, x86_EAX); Setnz(x86_EDX); ShiftLeftSignImmed(x86_EDX, (uint8_t)(15 - el)); OrX86RegToX86Reg(x86_ECX, x86_EDX); XorX86RegToX86Reg(x86_EDX, x86_EDX); TestConstToX86Reg(0xFFFF0000, x86_EAX); Setnz(x86_EDX); ShiftLeftSignImmed(x86_EDX, (uint8_t)(7 - el)); OrX86RegToX86Reg(x86_ECX, x86_EDX); if (bWriteToAccum != false) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } if (bWriteToDest != false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } MoveX86regToVariable(x86_ECX, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); } void Compile_Vector_VSAW(void) { char Reg[256]; uint32_t Word; #ifndef CompileVsaw Cheat_r4300iOpcode(RSP_Vector_VSAW, "RSP_Vector_VSAW"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); switch ((RSPOpC.rs & 0xF)) { case 8: Word = 3; break; case 9: Word = 2; break; case 10: Word = 1; break; default: MoveConstToVariable(0, &RSP_Vect[RSPOpC.vd].u64(1), "RSP_Vect[RSPOpC.vd].s64(1)"); MoveConstToVariable(0, &RSP_Vect[RSPOpC.vd].u64(0), "RSP_Vect[RSPOpC.vd].s64(0)"); return; } sprintf(Reg, "RSP_ACCUM[1].HW[%i]", Word); MoveVariableToX86regHalf(&RSP_ACCUM[1].HW[Word], Reg, x86_EAX); sprintf(Reg, "RSP_ACCUM[3].HW[%i]", Word); MoveVariableToX86regHalf(&RSP_ACCUM[3].HW[Word], Reg, x86_EBX); sprintf(Reg, "RSP_ACCUM[5].HW[%i]", Word); MoveVariableToX86regHalf(&RSP_ACCUM[5].HW[Word], Reg, x86_ECX); sprintf(Reg, "RSP_ACCUM[7].HW[%i]", Word); MoveVariableToX86regHalf(&RSP_ACCUM[7].HW[Word], Reg, x86_EDX); ShiftLeftSignImmed(x86_EAX, 16); ShiftLeftSignImmed(x86_EBX, 16); ShiftLeftSignImmed(x86_ECX, 16); ShiftLeftSignImmed(x86_EDX, 16); sprintf(Reg, "RSP_ACCUM[0].HW[%i]", Word); MoveVariableToX86regHalf(&RSP_ACCUM[0].HW[Word], Reg, x86_EAX); sprintf(Reg, "RSP_ACCUM[2].HW[%i]", Word); MoveVariableToX86regHalf(&RSP_ACCUM[2].HW[Word], Reg, x86_EBX); sprintf(Reg, "RSP_ACCUM[4].HW[%i]", Word); MoveVariableToX86regHalf(&RSP_ACCUM[4].HW[Word], Reg, x86_ECX); sprintf(Reg, "RSP_ACCUM[6].HW[%i]", Word); MoveVariableToX86regHalf(&RSP_ACCUM[6].HW[Word], Reg, x86_EDX); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.sa); MoveX86regToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[2]", RSPOpC.sa); MoveX86regToVariable(x86_EBX, &RSP_Vect[RSPOpC.vd].s16(2), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.sa); MoveX86regToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].s16(4), Reg); sprintf(Reg, "RSP_Vect[%i].HW[6]", RSPOpC.sa); MoveX86regToVariable(x86_EDX, &RSP_Vect[RSPOpC.vd].s16(6), Reg); } void Compile_Vector_VLT(void) { bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); uint8_t * jump[3]; uint32_t flag; char Reg[256]; uint8_t el, del, last; #ifndef CompileVlt Cheat_r4300iOpcode(RSP_Vector_VLT, "RSP_Vector_VLT"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); last = (uint8_t)-1; XorX86RegToX86Reg(x86_EBX, x86_EBX); MoveVariableToX86reg(&RSP_Flags[0].UW, "&RSP_Flags[0].UW", x86_ESI); for (el = 0; el < 8; el++) { del = EleSpec[RSPOpC.e].B[el]; flag = 0x101 << (7 - el); if (del != el || RSPOpC.rt != RSPOpC.rd) { if (del != last) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_ECX); last = del; } sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EDX); CompX86RegToX86Reg(x86_EDX, x86_ECX); JgeLabel8("jge", 0); jump[0] = (uint8_t *)(RecompPos - 1); if (bWriteToAccum || bWriteToDest) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EDX, &RSP_ACCUM[el].HW[1], Reg); } OrConstToX86Reg((flag & 0xFF), x86_EBX); JmpLabel8("jmp", 0); jump[1] = (uint8_t *)(RecompPos - 1); x86_SetBranch8b(jump[0], RecompPos); if (bWriteToAccum || bWriteToDest) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[el].HW[1], Reg); } JneLabel8("jne", 0); jump[2] = (uint8_t *)(RecompPos - 1); MoveX86RegToX86Reg(x86_ESI, x86_EDI); AndConstToX86Reg(x86_EDI, flag); ShiftRightUnsignImmed(x86_EDI, 8); AndX86RegToX86Reg(x86_EDI, x86_ESI); OrX86RegToX86Reg(x86_EBX, x86_EDI); x86_SetBranch8b(jump[2], RecompPos); x86_SetBranch8b(jump[1], RecompPos); } else { MoveX86RegToX86Reg(x86_ESI, x86_EDI); if (bWriteToAccum || bWriteToDest) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[el].HW[1], Reg); } AndConstToX86Reg(x86_EDI, flag); ShiftRightUnsignImmed(x86_EDI, 8); AndX86RegToX86Reg(x86_EDI, x86_ESI); OrX86RegToX86Reg(x86_EBX, x86_EDI); } } MoveConstToVariable(0, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); MoveX86regToVariable(x86_EBX, &RSP_Flags[1].UW, "RSP_Flags[1].UW"); if (bWriteToDest != false) { for (el = 0; el < 8; el += 2) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveVariableToX86regHalf(&RSP_ACCUM[el].HW[1], Reg, x86_EAX); sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el + 1); MoveVariableToX86regHalf(&RSP_ACCUM[el + 1].HW[1], Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el + 1); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].s16(el + 1), Reg); } } } void Compile_Vector_VEQ(void) { bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); uint32_t flag; char Reg[256]; uint8_t count, el, del, last = (uint8_t)-1; #ifndef CompileVeq Cheat_r4300iOpcode(RSP_Vector_VEQ, "RSP_Vector_VEQ"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveZxVariableToX86regHalf(&RSP_Flags[0].UHW[1], "&RSP_Flags[0].UHW[1]", x86_EBX); XorConstToX86Reg(x86_EBX, 0xFFFF); for (el = 0; el < 8; el++) { del = EleSpec[RSPOpC.e].B[el]; flag = (0x101 << (7 - el)) ^ 0xFFFF; if (del != el || RSPOpC.rt != RSPOpC.rd) { if (del != last) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_ECX); last = del; } sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EDX); if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[el].HW[1], Reg); } SubX86RegToX86Reg(x86_EDX, x86_ECX); CompConstToX86reg(x86_EDX, 1); SbbX86RegToX86Reg(x86_EDX, x86_EDX); OrConstToX86Reg(flag, x86_EDX); AndX86RegToX86Reg(x86_EBX, x86_EDX); } else { if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[el].HW[1], Reg); } } } MoveConstToVariable(0, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); MoveX86regToVariable(x86_EBX, &RSP_Flags[1].UW, "RSP_Flags[1].UW"); if (bWriteToDest != false) { for (count = 0; count < 8; count++) { el = EleSpec[RSPOpC.e].B[count]; if (el != last) { sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(el), Reg, x86_EDX); last = el; } sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, count); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vd].s16(count), Reg); } } } void Compile_Vector_VNE(void) { bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); uint32_t flag; char Reg[256]; uint8_t el, del, last = (uint8_t)-1; #ifndef CompileVne Cheat_r4300iOpcode(RSP_Vector_VNE, "RSP_Vector_VNE"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveZxVariableToX86regHalf(&RSP_Flags[0].UHW[1], "&RSP_Flags[0].UHW[1]", x86_EBX); for (el = 0; el < 8; el++) { del = EleSpec[RSPOpC.e].B[el]; flag = 0x101 << (7 - el); if (del != el || RSPOpC.rt != RSPOpC.rd) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EDX); if (del != last) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_ECX); last = del; } if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EDX, &RSP_ACCUM[el].HW[1], Reg); } SubX86RegToX86Reg(x86_EDX, x86_ECX); NegateX86reg(x86_EDX); SbbX86RegToX86Reg(x86_EDX, x86_EDX); AndConstToX86Reg(x86_EDX, flag); OrX86RegToX86Reg(x86_EBX, x86_EDX); } else { if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EDX, &RSP_ACCUM[el].HW[1], Reg); } } } MoveConstToVariable(0, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); MoveX86regToVariable(x86_EBX, &RSP_Flags[1].UW, "RSP_Flags[1].UW"); if (bWriteToDest != false) { for (el = 0; el < 4; el++) { sprintf(Reg, "RSP_Vect[%i].W[%i]", RSPOpC.rd, el); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vs].s32(el), Reg, x86_EDX); sprintf(Reg, "RSP_Vect[%i].W[%i]", RSPOpC.sa, el); MoveX86regToVariable(x86_EDX, &RSP_Vect[RSPOpC.vd].s32(el), Reg); } } } bool Compile_Vector_VGE_MMX(void) { char Reg[256]; if ((RSPOpC.rs & 0xF) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveConstToVariable(0, &RSP_Flags[1].UW, "RSP_Flags[1].UW"); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].s16(4), Reg); MmxMoveRegToReg(x86_MM2, x86_MM0); MmxMoveRegToReg(x86_MM3, x86_MM1); if ((RSPOpC.rs & 0x0f) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM4, &RSP_Vect[RSPOpC.vt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM5, &RSP_Vect[RSPOpC.vt].s16(4), Reg); } else if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM4); } else { RSP_MultiElement2Mmx(x86_MM4, x86_MM5); } MmxCompareGreaterWordRegToReg(x86_MM2, x86_MM4); MmxCompareGreaterWordRegToReg(x86_MM3, (RSPOpC.rs & 8) ? x86_MM4 : x86_MM5); MmxPandRegToReg(x86_MM0, x86_MM2); MmxPandRegToReg(x86_MM1, x86_MM3); MmxPandnRegToReg(x86_MM2, x86_MM4); MmxPandnRegToReg(x86_MM3, (RSPOpC.rs & 8) ? x86_MM4 : x86_MM5); MmxPorRegToReg(x86_MM0, x86_MM2); MmxPorRegToReg(x86_MM1, x86_MM3); MoveConstToVariable(0, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); return true; } void Compile_Vector_VGE(void) { /* bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); TODO: works ok, but needs careful flag analysis */ /* #if defined (DLIST) if (bWriteToAccum == false && true == Compile_Vector_VGE_MMX()) { return; } #endif */ bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); uint8_t * jump[3]; uint32_t flag; char Reg[256]; uint8_t el, del, last = (uint8_t)-1; #ifndef CompileVge Cheat_r4300iOpcode(RSP_Vector_VGE, "RSP_Vector_VGE"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); XorX86RegToX86Reg(x86_EBX, x86_EBX); MoveVariableToX86reg(&RSP_Flags[0].UW, "&RSP_Flags[0].UW", x86_ESI); for (el = 0; el < 8; el++) { del = EleSpec[RSPOpC.e].B[el]; flag = 0x101 << (7 - el); if (del != el || RSPOpC.rt != RSPOpC.rd) { if (del != last) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_ECX); last = del; } sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EDX); CompX86RegToX86Reg(x86_EDX, x86_ECX); JleLabel8("jle", 0); jump[0] = (uint8_t *)(RecompPos - 1); if (bWriteToAccum || bWriteToDest) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EDX, &RSP_ACCUM[el].HW[1], Reg); } OrConstToX86Reg((flag & 0xFF), x86_EBX); JmpLabel8("jmp", 0); jump[1] = (uint8_t *)(RecompPos - 1); x86_SetBranch8b(jump[0], RecompPos); if (bWriteToAccum || bWriteToDest) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[el].HW[1], Reg); } JneLabel8("jne", 0); jump[2] = (uint8_t *)(RecompPos - 1); MoveX86RegToX86Reg(x86_ESI, x86_EDI); AndConstToX86Reg(x86_EDI, flag); SubConstFromX86Reg(x86_EDI, flag); ShiftRightSignImmed(x86_EDI, 31); AndConstToX86Reg(x86_EDI, (flag & 0xFF)); OrX86RegToX86Reg(x86_EBX, x86_EDI); x86_SetBranch8b(jump[1], RecompPos); x86_SetBranch8b(jump[2], RecompPos); } else { MoveX86RegToX86Reg(x86_ESI, x86_EDI); if (bWriteToAccum || bWriteToDest) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[el].HW[1], Reg); } AndConstToX86Reg(x86_EDI, flag); SubConstFromX86Reg(x86_EDI, flag); ShiftRightSignImmed(x86_EDI, 31); AndConstToX86Reg(x86_EDI, (flag & 0xFF)); OrX86RegToX86Reg(x86_EBX, x86_EDI); } } MoveConstToVariable(0, &RSP_Flags[0].UW, "RSP_Flags[0].UW"); MoveX86regToVariable(x86_EBX, &RSP_Flags[1].UW, "RSP_Flags[1].UW"); if (bWriteToDest != false) { for (el = 0; el < 8; el += 2) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el + 0); MoveVariableToX86regHalf(&RSP_ACCUM[el].HW[1], Reg, x86_EAX); sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el + 1); MoveVariableToX86regHalf(&RSP_ACCUM[el + 1].HW[1], Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el + 0); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el + 0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el + 1); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].s16(el + 1), Reg); } } } void Compile_Vector_VCL(void) { Cheat_r4300iOpcode(RSP_Vector_VCL, "RSP_Vector_VCL"); } void Compile_Vector_VCH(void) { Cheat_r4300iOpcode(RSP_Vector_VCH, "RSP_Vector_VCH"); } void Compile_Vector_VCR(void) { Cheat_r4300iOpcode(RSP_Vector_VCR, "RSP_Vector_VCR"); } void Compile_Vector_VMRG(void) { char Reg[256]; uint8_t count, el, del; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVmrg Cheat_r4300iOpcode(RSP_Vector_VMRG, "RSP_Vector_VMRG"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveVariableToX86reg(&RSP_Flags[1].UW, "RSP_Flags[1].UW", x86_EDX); for (count = 0; count < 8; count++) { el = Indx[RSPOpC.e].UB[count]; del = EleSpec[RSPOpC.e].UB[el]; CPU_Message(" Iteration: %i", count); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveZxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); TestConstToX86Reg(1 << (7 - el), x86_EDX); CondMoveNotEqual(x86_ECX, x86_EAX); CondMoveEqual(x86_ECX, x86_EBX); if (bWriteToAccum) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[el].HW[1], Reg); } sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } bool Compile_Vector_VAND_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPandRegToReg(x86_MM0, x86_MM2); MmxPandRegToReg(x86_MM1, x86_MM2); } else if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxPandVariableToReg(&RSP_Vect[RSPOpC.vt].s16(0), Reg, x86_MM0); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxPandVariableToReg(&RSP_Vect[RSPOpC.vt].s16(4), Reg, x86_MM1); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPandRegToReg(x86_MM0, x86_MM2); MmxPandRegToReg(x86_MM1, x86_MM3); } sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VAND(void) { char Reg[256]; uint8_t el, del, count; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bElement = (RSPOpC.rs & 8) ? true : false; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVand Cheat_r4300iOpcode(RSP_Vector_VAND, "RSP_Vector_VAND"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VAND_MMX()) return; } if (bElement == true) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } for (count = 0; count < 8; count++) { el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; CPU_Message(" Iteration: %i", count); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (bElement == false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); AndVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EAX); } else { AndX86RegHalfToX86RegHalf(x86_EAX, x86_EBX); } if (bWriteToDest != false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } if (bWriteToAccum != false) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } } } bool Compile_Vector_VNAND_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); MmxPcmpeqwRegToReg(x86_MM7, x86_MM7); if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPandRegToReg(x86_MM0, x86_MM2); MmxPandRegToReg(x86_MM1, x86_MM2); } else if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxPandVariableToReg(&RSP_Vect[RSPOpC.vt].s16(0), Reg, x86_MM0); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxPandVariableToReg(&RSP_Vect[RSPOpC.vt].s16(4), Reg, x86_MM1); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPandRegToReg(x86_MM0, x86_MM2); MmxPandRegToReg(x86_MM1, x86_MM3); } MmxXorRegToReg(x86_MM0, x86_MM7); MmxXorRegToReg(x86_MM1, x86_MM7); sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VNAND(void) { char Reg[256]; uint8_t el, del, count; bool bWriteToDest = WriteToVectorDest(RSPOpC.sa, CompilePC); bool bElement = (RSPOpC.rs & 8) ? true : false; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVnand Cheat_r4300iOpcode(RSP_Vector_VNAND, "RSP_Vector_VNAND"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VNAND_MMX()) return; } if (bElement == true) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } for (count = 0; count < 8; count++) { el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; CPU_Message(" Iteration: %i", count); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (bElement == false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); AndVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EAX); } else { AndX86RegHalfToX86RegHalf(x86_EAX, x86_EBX); } NotX86reg(x86_EAX); if (bWriteToDest != false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } if (bWriteToAccum != false) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } } } bool Compile_Vector_VOR_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if ((RSPOpC.rs & 0xF) < 2 && (RSPOpC.rd == RSPOpC.rt)) { } else if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPorRegToReg(x86_MM0, x86_MM2); MmxPorRegToReg(x86_MM1, x86_MM2); } else if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxPorVariableToReg(&RSP_Vect[RSPOpC.vt].s16(0), Reg, x86_MM0); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxPorVariableToReg(&RSP_Vect[RSPOpC.vt].s16(4), Reg, x86_MM1); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPorRegToReg(x86_MM0, x86_MM2); MmxPorRegToReg(x86_MM1, x86_MM3); } sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VOR(void) { char Reg[256]; uint8_t el, del, count; bool bElement = (RSPOpC.rs & 8) ? true : false; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVor Cheat_r4300iOpcode(RSP_Vector_VOR, "RSP_Vector_VOR"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VOR_MMX()) return; } if (bElement == true) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } for (count = 0; count < 8; count++) { el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; CPU_Message(" Iteration: %i", count); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (bElement == false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); OrVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EAX); } else { OrX86RegToX86Reg(x86_EAX, x86_EBX); } if (bWriteToAccum != false) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } bool Compile_Vector_VNOR_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); MmxPcmpeqwRegToReg(x86_MM7, x86_MM7); if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxPorRegToReg(x86_MM0, x86_MM2); MmxPorRegToReg(x86_MM1, x86_MM2); } else if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxPorVariableToReg(&RSP_Vect[RSPOpC.vt].s16(0), Reg, x86_MM0); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxPorVariableToReg(&RSP_Vect[RSPOpC.vt].s16(4), Reg, x86_MM1); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxPorRegToReg(x86_MM0, x86_MM2); MmxPorRegToReg(x86_MM1, x86_MM3); } MmxXorRegToReg(x86_MM0, x86_MM7); MmxXorRegToReg(x86_MM1, x86_MM7); sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VNOR(void) { char Reg[256]; uint8_t el, del, count; bool bElement = (RSPOpC.rs & 8) ? true : false; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVnor Cheat_r4300iOpcode(RSP_Vector_VNOR, "RSP_Vector_VNOR"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum) { if (true == Compile_Vector_VNOR_MMX()) return; } if (bElement == true) { del = (RSPOpC.rs & 0x07) ^ 7; sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EBX); } for (count = 0; count < 8; count++) { el = Indx[RSPOpC.e].B[count]; del = EleSpec[RSPOpC.e].B[el]; CPU_Message(" Iteration: %i", count); sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rd, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vs].s16(el), Reg, x86_EAX); if (bElement == false) { sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.rt, del); OrVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(del), Reg, x86_EAX); } else { OrX86RegToX86Reg(x86_EAX, x86_EBX); } NotX86reg(x86_EAX); if (bWriteToAccum != false) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", el); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[el].HW[1], Reg); } sprintf(Reg, "RSP_Vect[%i].HW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); } } bool Compile_Vector_VXOR_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; if ((RSPOpC.rs & 0xF) < 2 && (RSPOpC.rd == RSPOpC.rt)) { static uint32_t VXOR_DynaRegCount = 0; MmxXorRegToReg(VXOR_DynaRegCount, VXOR_DynaRegCount); sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(VXOR_DynaRegCount, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(VXOR_DynaRegCount, &RSP_Vect[RSPOpC.vd].u16(4), Reg); VXOR_DynaRegCount = (VXOR_DynaRegCount + 1) & 7; } else { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxXorRegToReg(x86_MM0, x86_MM2); MmxXorRegToReg(x86_MM1, x86_MM2); } else if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RSPOpC.vt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RSPOpC.vt].s16(4), Reg); MmxXorRegToReg(x86_MM0, x86_MM2); MmxXorRegToReg(x86_MM1, x86_MM3); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxXorRegToReg(x86_MM0, x86_MM2); MmxXorRegToReg(x86_MM1, x86_MM3); } sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); } if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VXOR(void) { #ifdef CompileVxor char Reg[256]; uint32_t count; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum || ((RSPOpC.rs & 0xF) < 2 && RSPOpC.rd == RSPOpC.rt)) { if (true == Compile_Vector_VXOR_MMX()) { if (bWriteToAccum) { XorX86RegToX86Reg(x86_EAX, x86_EAX); for (count = 0; count < 8; count++) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", count); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[count].HW[1], Reg); } } return; } } #endif Cheat_r4300iOpcodeNoMessage(RSP_Vector_VXOR, "RSP_Vector_VXOR"); } bool Compile_Vector_VNXOR_MMX(void) { char Reg[256]; // Do our MMX checks here if (!IsMmxEnabled) return false; if ((RSPOpC.rs & 0x0f) >= 2 && !(RSPOpC.rs & 8) && IsMmx2Enabled == false) return false; if ((RSPOpC.rs & 0xF) < 2 && (RSPOpC.rd == RSPOpC.rt)) { static uint32_t VNXOR_DynaRegCount = 0; MmxPcmpeqwRegToReg(VNXOR_DynaRegCount, VNXOR_DynaRegCount); sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(VNXOR_DynaRegCount, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(VNXOR_DynaRegCount, &RSP_Vect[RSPOpC.vd].u16(4), Reg); VNXOR_DynaRegCount = (VNXOR_DynaRegCount + 1) & 7; } else { sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM0, &RSP_Vect[RSPOpC.vs].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.rd); MmxMoveQwordVariableToReg(x86_MM1, &RSP_Vect[RSPOpC.vs].u16(4), Reg); MmxPcmpeqwRegToReg(x86_MM7, x86_MM7); if (RSPOpC.rs & 8) { RSP_Element2Mmx(x86_MM2); MmxXorRegToReg(x86_MM0, x86_MM2); MmxXorRegToReg(x86_MM1, x86_MM2); } else if ((RSPOpC.rs & 0xF) < 2) { sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM2, &RSP_Vect[RSPOpC.vt].s16(0), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MmxMoveQwordVariableToReg(x86_MM3, &RSP_Vect[RSPOpC.vt].s16(4), Reg); MmxXorRegToReg(x86_MM0, x86_MM2); MmxXorRegToReg(x86_MM1, x86_MM3); } else { RSP_MultiElement2Mmx(x86_MM2, x86_MM3); MmxXorRegToReg(x86_MM0, x86_MM2); MmxXorRegToReg(x86_MM1, x86_MM3); } MmxXorRegToReg(x86_MM0, x86_MM7); MmxXorRegToReg(x86_MM1, x86_MM7); sprintf(Reg, "RSP_Vect[%i].UHW[0]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM0, &RSP_Vect[RSPOpC.vd].u16(0), Reg); sprintf(Reg, "RSP_Vect[%i].UHW[4]", RSPOpC.sa); MmxMoveQwordRegToVariable(x86_MM1, &RSP_Vect[RSPOpC.vd].u16(4), Reg); } if (!IsNextInstructionMmx(CompilePC)) MmxEmptyMultimediaState(); return true; } void Compile_Vector_VNXOR(void) { #ifdef CompileVnxor char Reg[256]; uint32_t count; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (!bWriteToAccum || ((RSPOpC.rs & 0xF) < 2 && RSPOpC.rd == RSPOpC.rt)) { if (true == Compile_Vector_VNXOR_MMX()) { if (bWriteToAccum) { OrConstToX86Reg(0xFFFFFFFF, x86_EAX); for (count = 0; count < 8; count++) { sprintf(Reg, "RSP_ACCUM[%i].HW[1]", count); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[count].HW[1], Reg); } } return; } } #endif Cheat_r4300iOpcode(RSP_Vector_VNXOR, "RSP_Vector_VNXOR"); } void Compile_Vector_VRCP(void) { char Reg[256]; uint8_t count, el, last; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); uint32_t * end = NULL; #ifndef CompileVrcp Cheat_r4300iOpcode(RSP_Vector_VRCP, "RSP_Vector_VRCP"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); el = EleSpec[RSPOpC.e].B[(RSPOpC.rd & 0x7)]; sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveSxVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(el), Reg, x86_ESI); MoveConstToX86reg(0x7FFFFFFF, x86_EAX); TestX86RegToX86Reg(x86_ESI, x86_ESI); MoveX86RegToX86Reg(x86_ESI, x86_EDI); JeLabel32("Done", 0); end = (uint32_t *)(RecompPos - 4); MoveConstToX86reg(0xFFC0, x86_EBX); ShiftRightSignImmed(x86_ESI, 31); XorX86RegToX86Reg(x86_EDX, x86_EDX); XorX86RegToX86Reg(x86_EDI, x86_ESI); SubX86RegToX86Reg(x86_EDI, x86_ESI); BsrX86RegToX86Reg(x86_ECX, x86_EDI); XorConstToX86Reg(x86_ECX, 15); ShiftRightUnsign(x86_EBX); AndX86RegToX86Reg(x86_EDI, x86_EBX); idivX86reg(x86_EDI); MoveConstToX86reg(0xFFFF8000, x86_EBX); BsrX86RegToX86Reg(x86_ECX, x86_EAX); XorConstToX86Reg(x86_ECX, 31); ShiftRightUnsign(x86_EBX); AndX86RegToX86Reg(x86_EAX, x86_EBX); XorX86RegToX86Reg(x86_EAX, x86_ESI); x86_SetBranch32b(end, RecompPos); if (bWriteToAccum != false) { last = (uint8_t)-1; for (count = 0; count < 8; count++) { el = EleSpec[RSPOpC.e].B[count]; if (el != last) { sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(el), Reg, x86_ECX); last = el; } sprintf(Reg, "RSP_ACCUM[%i].HW[1]", count); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[count].HW[1], Reg); } } el = 7 - (RSPOpC.rd & 0x7); sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); MoveX86regToVariable(x86_EAX, &RecpResult.W, "RecpResult.W"); } void Compile_Vector_VRCPL(void) { char Reg[256]; uint8_t count, el, last; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); uint32_t * end = NULL; #ifndef CompileVrcpl Cheat_r4300iOpcode(RSP_Vector_VRCPL, "RSP_Vector_VRCPL"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); el = EleSpec[RSPOpC.e].B[(RSPOpC.rd & 0x7)]; sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86reg(&Recp.W, "Recp.W", x86_ESI); OrVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s16(el), Reg, x86_ESI); MoveConstToX86reg(0x7FFFFFFF, x86_EAX); TestX86RegToX86Reg(x86_ESI, x86_ESI); MoveX86RegToX86Reg(x86_ESI, x86_EDI); JeLabel32("Done", 0); end = (uint32_t *)(RecompPos - 4); MoveConstToX86reg(0xFFC00000, x86_EBX); ShiftRightSignImmed(x86_ESI, 31); MoveX86RegToX86Reg(x86_EDI, x86_ECX); MoveZxX86RegHalfToX86Reg(x86_EDI, x86_EDX); OrConstToX86Reg(0xFFFF, x86_ECX); ShiftRightUnsignImmed(x86_EDX, 15); XorX86RegToX86Reg(x86_EDI, x86_ESI); AddX86RegToX86Reg(x86_ECX, x86_EDX); AdcConstToX86reg(0, x86_EDI); XorX86RegToX86Reg(x86_EDX, x86_EDX); BsrX86RegToX86Reg(x86_ECX, x86_EDI); XorConstToX86Reg(x86_ECX, 31); ShiftRightUnsign(x86_EBX); AndX86RegToX86Reg(x86_EDI, x86_EBX); idivX86reg(x86_EDI); MoveConstToX86reg(0xFFFF8000, x86_EBX); BsrX86RegToX86Reg(x86_ECX, x86_EAX); XorConstToX86Reg(x86_ECX, 31); ShiftRightUnsign(x86_EBX); AndX86RegToX86Reg(x86_EAX, x86_EBX); XorX86RegToX86Reg(x86_EAX, x86_ESI); x86_SetBranch32b(end, RecompPos); if (bWriteToAccum != false) { last = (uint8_t)-1; for (count = 0; count < 8; count++) { el = EleSpec[RSPOpC.e].B[count]; if (el != last) { sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(el), Reg, x86_ECX); last = el; } sprintf(Reg, "RSP_ACCUM[%i].HW[1]", count); MoveX86regHalfToVariable(x86_ECX, &RSP_ACCUM[count].HW[1], Reg); } } el = 7 - (RSPOpC.rd & 0x7); sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_EAX, &RSP_Vect[RSPOpC.vd].s16(el), Reg); MoveX86regToVariable(x86_EAX, &RecpResult.W, "RecpResult.W"); } void Compile_Vector_VRCPH(void) { char Reg[256]; uint8_t count, el, last; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVrcph Cheat_r4300iOpcode(RSP_Vector_VRCPH, "RSP_Vector_VRCPH"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); el = EleSpec[RSPOpC.e].B[(RSPOpC.rd & 0x7)]; sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(el), Reg, x86_EDX); MoveX86regHalfToVariable(x86_EDX, &Recp.UHW[1], "Recp.UHW[1]"); MoveVariableToX86regHalf(&RecpResult.UHW[1], "RecpResult.UHW[1]", x86_ECX); if (bWriteToAccum != false) { last = (uint8_t)-1; for (count = 0; count < 8; count++) { el = EleSpec[RSPOpC.e].B[count]; if (el != last) { sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(el), Reg, x86_EAX); last = el; } sprintf(Reg, "RSP_ACCUM[%i].HW[1]", count); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[count].HW[1], Reg); } } el = 7 - (RSPOpC.rd & 0x7); sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].u16(el), Reg); } void Compile_Vector_VMOV(void) { char Reg[256]; uint8_t el, count; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVmov Cheat_r4300iOpcode(RSP_Vector_VMOV, "RSP_Vector_VMOV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (bWriteToAccum) { for (count = 0; count < 8; count++) { sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, EleSpec[RSPOpC.e].B[count]); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(EleSpec[RSPOpC.e].B[count]), Reg, x86_EAX); sprintf(Reg, "RSP_ACCUM[%i].HW[1]", count); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[count].HW[1], Reg); } } el = EleSpec[RSPOpC.e].B[(RSPOpC.rd & 0x7)]; sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(el), Reg, x86_ECX); el = 7 - (RSPOpC.rd & 0x7); sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].u16(el), Reg); } void Compile_Vector_VRSQ(void) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Vector_VRSQ, "RSP_Vector_VRSQ"); } void Compile_Vector_VRSQL(void) { CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Vector_VRSQL, "RSP_Vector_VRSQL"); } void Compile_Vector_VRSQH(void) { char Reg[256]; uint8_t count, el, last; bool bWriteToAccum = WriteToAccum(Low16BitAccum, CompilePC); #ifndef CompileVrsqh Cheat_r4300iOpcode(RSP_Vector_VRSQH, "RSP_Vector_VRSQH"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); el = EleSpec[RSPOpC.e].B[(RSPOpC.rd & 0x7)]; sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(el), Reg, x86_EDX); MoveX86regHalfToVariable(x86_EDX, &SQroot.UHW[1], "SQroot.UHW[1]"); MoveVariableToX86regHalf(&SQrootResult.UHW[1], "SQrootResult.UHW[1]", x86_ECX); if (bWriteToAccum != false) { last = (uint8_t)-1; for (count = 0; count < 8; count++) { el = EleSpec[RSPOpC.e].B[count]; if (el != last) { sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.rt, el); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].u16(el), Reg, x86_EAX); last = el; } sprintf(Reg, "RSP_ACCUM[%i].HW[1]", count); MoveX86regHalfToVariable(x86_EAX, &RSP_ACCUM[count].HW[1], Reg); } } el = 7 - (RSPOpC.rd & 0x7); sprintf(Reg, "RSP_Vect[%i].UHW[%i]", RSPOpC.sa, el); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vd].u16(el), Reg); } void Compile_Vector_VNOOP(void) { } // LC2 functions void Compile_Opcode_LBV(void) { char Reg[256]; int offset = RSPOpC.voffset << 0; #ifndef CompileLbv Cheat_r4300iOpcode(RSP_Opcode_LBV, "RSP_Opcode_LBV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) AddConstToX86Reg(x86_EBX, offset); AndConstToX86Reg(x86_EBX, 0x0FFF); XorConstToX86Reg(x86_EBX, 3); MoveN64MemToX86regByte(x86_ECX, x86_EBX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - RSPOpC.del); MoveX86regByteToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - RSPOpC.del)), Reg); } void Compile_Opcode_LSV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 1); if (RSPOpC.del > 14) { rsp_UnknownOpcode(); return; } #ifndef CompileLsv Cheat_r4300iOpcode(RSP_Opcode_LSV, "RSP_Opcode_LSV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + offset) & 0xfff; if ((Addr & 1) != 0) { sprintf(Reg, "DMEM + %Xh", (Addr + 0) ^ 3); MoveVariableToX86regByte(RSPInfo.DMEM + ((Addr + 0) ^ 3), Reg, x86_ECX); sprintf(Reg, "DMEM + %Xh", (Addr + 1) ^ 3); MoveVariableToX86regByte(RSPInfo.DMEM + ((Addr + 1) ^ 3), Reg, x86_EDX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 0)); MoveX86regByteToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 0))), Reg); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 1)); MoveX86regByteToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 1))), Reg); } else { sprintf(Reg, "DMEM + %Xh", Addr ^ 2); MoveVariableToX86regHalf(RSPInfo.DMEM + (Addr ^ 2), Reg, x86_EDX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 1)); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 1))), Reg); } return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) AddConstToX86Reg(x86_EBX, offset); AndConstToX86Reg(x86_EBX, 0x0FFF); if (Compiler.bAlignVector == true) { XorConstToX86Reg(x86_EBX, 2); MoveN64MemToX86regHalf(x86_ECX, x86_EBX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 1)); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 1))), Reg); } else { LeaSourceAndOffset(x86_EAX, x86_EBX, 1); XorConstToX86Reg(x86_EBX, 3); XorConstToX86Reg(x86_EAX, 3); MoveN64MemToX86regByte(x86_ECX, x86_EBX); MoveN64MemToX86regByte(x86_EDX, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 0)); MoveX86regByteToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 0))), Reg); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 1)); MoveX86regByteToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 1))), Reg); } } void Compile_Opcode_LLV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 2); uint8_t * Jump[2]; #ifndef CompileLlv Cheat_r4300iOpcode(RSP_Opcode_LLV, "RSP_Opcode_LLV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if ((RSPOpC.del & 0x3) != 0) { Cheat_r4300iOpcode(RSP_Opcode_LLV, "RSP_Opcode_LLV"); return; return; } if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + offset) & 0xfff; if ((Addr & 3) != 0) { CompilerWarning("Unaligned LLV at constant address"); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LLV, "RSP_Opcode_LLV"); return; } sprintf(Reg, "DMEM + %Xh", Addr); MoveVariableToX86reg(RSPInfo.DMEM + Addr, Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 16 - RSPOpC.del - 4); MoveX86regToVariable(x86_EAX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(16 - RSPOpC.del - 4)), Reg); return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) AddConstToX86Reg(x86_EBX, offset); TestConstToX86Reg(3, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; // Unaligned CompilerToggleBuffer(); CPU_Message(" Unaligned:"); *((uint32_t *)(Jump[0])) = (uint32_t)(RecompPos - Jump[0] - 4); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LLV, "RSP_Opcode_LLV"); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); // Aligned AndConstToX86Reg(x86_EBX, 0x0fff); MoveN64MemToX86reg(x86_EAX, x86_EBX); // Because of byte swapping this swizzle works nicely sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 16 - RSPOpC.del - 4); MoveX86regToVariable(x86_EAX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(16 - RSPOpC.del - 4)), Reg); CPU_Message(" Done:"); *((uint32_t *)(Jump[1])) = (uint32_t)(RecompPos - Jump[1] - 4); } void Compile_Opcode_LDV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 3), length; uint8_t *Jump[2], *LoopEntry; #ifndef CompileLdv Cheat_r4300iOpcode(RSP_Opcode_LDV, "RSP_Opcode_LDV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); //if ((RSPOpC.del & 0x7) != 0) { // rsp_UnknownOpcode(); // return; //} if ((RSPOpC.del & 0x3) != 0) { CompilerWarning(stdstr_f("LDV's element = %X, PC = %04X", RSPOpC.del, CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LDV, "RSP_Opcode_LDV"); return; } if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + offset) & 0xfff; if ((Addr & 3) != 0) { CompilerWarning(stdstr_f("Unaligned LDV at constant address PC = %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LDV, "RSP_Opcode_LDV"); return; } sprintf(Reg, "DMEM + %Xh", Addr); MoveVariableToX86reg(RSPInfo.DMEM + Addr + 0, Reg, x86_EAX); sprintf(Reg, "DMEM + %Xh", Addr + 4); MoveVariableToX86reg(RSPInfo.DMEM + Addr + 4, Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 16 - RSPOpC.del - 4); MoveX86regToVariable(x86_EAX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(16 - RSPOpC.del - 4)), Reg); if (RSPOpC.del != 12) { sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 16 - RSPOpC.del - 8); MoveX86regToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(16 - RSPOpC.del - 8)), Reg); } return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) { AddConstToX86Reg(x86_EBX, offset); } AndConstToX86Reg(x86_EBX, 0x0fff); TestConstToX86Reg(3, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b(Jump[0], RecompPos); sprintf(Reg, "RSP_Vect[%i].UB[%i]", RSPOpC.rt, 15 - RSPOpC.del); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vt].u8((uint8_t)(15 - RSPOpC.del)), Reg, x86_EDI); length = 8; if (RSPOpC.del == 12) { length = 4; } MoveConstToX86reg(length, x86_ECX); /* mov eax, ebx dec edi xor eax, 3h inc ebx mov dl, byte ptr [eax+Dmem] dec ecx mov byte ptr [edi+1], dl jne $Loop */ LoopEntry = RecompPos; CPU_Message(" Loop:"); MoveX86RegToX86Reg(x86_EBX, x86_EAX); XorConstToX86Reg(x86_EAX, 3); MoveN64MemToX86regByte(x86_EDX, x86_EAX); MoveX86regByteToX86regPointer(x86_EDX, x86_EDI); IncX86reg(x86_EBX); // Address constant DecX86reg(x86_EDI); // Vector pointer DecX86reg(x86_ECX); // Counter JneLabel8("Loop", 0); x86_SetBranch8b(RecompPos - 1, LoopEntry); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); MoveN64MemToX86reg(x86_EAX, x86_EBX); MoveN64MemDispToX86reg(x86_ECX, x86_EBX, 4); // Because of byte swapping this swizzle works nicely sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 16 - RSPOpC.del - 4); MoveX86regToVariable(x86_EAX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(16 - RSPOpC.del - 4)), Reg); if (RSPOpC.del != 12) { sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 16 - RSPOpC.del - 8); MoveX86regToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s8((uint8_t)(16 - RSPOpC.del - 8)), Reg); } CPU_Message(" Done:"); x86_SetBranch32b(Jump[1], RecompPos); } void Compile_Opcode_LQV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 4); uint8_t * Jump[2]; #ifndef CompileLqv Cheat_r4300iOpcode(RSP_Opcode_LQV, "RSP_Opcode_LQV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.del != 0) { Cheat_r4300iOpcode(RSP_Opcode_LQV, "RSP_Opcode_LQV"); return; return; } if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + offset) & 0xfff; if (Addr & 15) { CompilerWarning(stdstr_f("Unaligned LQV at constant address PC = %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LQV, "RSP_Opcode_LQV"); return; } // Aligned store if (IsSseEnabled == false) { sprintf(Reg, "DMEM+%Xh+0", Addr); MoveVariableToX86reg(RSPInfo.DMEM + Addr + 0, Reg, x86_EAX); sprintf(Reg, "DMEM+%Xh+4", Addr); MoveVariableToX86reg(RSPInfo.DMEM + Addr + 4, Reg, x86_EBX); sprintf(Reg, "DMEM+%Xh+8", Addr); MoveVariableToX86reg(RSPInfo.DMEM + Addr + 8, Reg, x86_ECX); sprintf(Reg, "DMEM+%Xh+C", Addr); MoveVariableToX86reg(RSPInfo.DMEM + Addr + 12, Reg, x86_EDX); sprintf(Reg, "RSP_Vect[%i].B[12]", RSPOpC.rt); MoveX86regToVariable(x86_EAX, &RSP_Vect[RSPOpC.vt].s8(12), Reg); sprintf(Reg, "RSP_Vect[%i].B[8]", RSPOpC.rt); MoveX86regToVariable(x86_EBX, &RSP_Vect[RSPOpC.vt].s8(8), Reg); sprintf(Reg, "RSP_Vect[%i].B[4]", RSPOpC.rt); MoveX86regToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s8(4), Reg); sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); MoveX86regToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s8(0), Reg); } else { sprintf(Reg, "DMEM+%Xh", Addr); SseMoveUnalignedVariableToReg(RSPInfo.DMEM + Addr, Reg, x86_XMM0); SseShuffleReg(x86_XMM0, x86_MM0, 0x1b); sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); SseMoveAlignedRegToVariable(x86_XMM0, &RSP_Vect[RSPOpC.vt].s8(0), Reg); } return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) { AddConstToX86Reg(x86_EBX, offset); } TestConstToX86Reg(15, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b(Jump[0], RecompPos); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LQV, "RSP_Opcode_LQV"); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); AndConstToX86Reg(x86_EBX, 0x0fff); if (IsSseEnabled == false) { MoveN64MemDispToX86reg(x86_EAX, x86_EBX, 0); MoveN64MemDispToX86reg(x86_ECX, x86_EBX, 4); MoveN64MemDispToX86reg(x86_EDX, x86_EBX, 8); MoveN64MemDispToX86reg(x86_EDI, x86_EBX, 12); sprintf(Reg, "RSP_Vect[%i].B[12]", RSPOpC.rt); MoveX86regToVariable(x86_EAX, &RSP_Vect[RSPOpC.vt].s8(12), Reg); sprintf(Reg, "RSP_Vect[%i].B[8]", RSPOpC.rt); MoveX86regToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s8(8), Reg); sprintf(Reg, "RSP_Vect[%i].B[4]", RSPOpC.rt); MoveX86regToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s8(4), Reg); sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); MoveX86regToVariable(x86_EDI, &RSP_Vect[RSPOpC.vt].s8(0), Reg); } else { SseMoveUnalignedN64MemToReg(x86_XMM0, x86_EBX); SseShuffleReg(x86_XMM0, x86_MM0, 0x1b); sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); SseMoveAlignedRegToVariable(x86_XMM0, &RSP_Vect[RSPOpC.vt].s8(0), Reg); } CPU_Message(" Done:"); x86_SetBranch32b((uint32_t *)Jump[1], (uint32_t *)RecompPos); } void Compile_Opcode_LRV(void) { int offset = (RSPOpC.voffset << 4); uint8_t *Loop, *Jump[2]; #ifndef CompileLrv Cheat_r4300iOpcode(RSP_Opcode_LRV, "RSP_Opcode_LRV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.del != 0) { rsp_UnknownOpcode(); return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) AddConstToX86Reg(x86_EBX, offset); if (Compiler.bAlignVector == false) { TestConstToX86Reg(1, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; // Unaligned CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b(Jump[0], RecompPos); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_LRV, "RSP_Opcode_LRV"); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); } // Aligned MoveX86RegToX86Reg(x86_EBX, x86_EAX); AndConstToX86Reg(x86_EAX, 0x0F); AndConstToX86Reg(x86_EBX, 0x0ff0); MoveX86RegToX86Reg(x86_EAX, x86_ECX); ShiftRightUnsignImmed(x86_ECX, 1); JeLabel8("Done", 0); Jump[0] = RecompPos - 1; /* DecX86reg(x86_EAX); LeaSourceAndOffset(x86_EAX, x86_EAX, (size_t)&RSP_Vect[RSPOpC.vt].s8(0)); DecX86reg(x86_EAX); */ AddConstToX86Reg(x86_EAX, ((size_t)&RSP_Vect[RSPOpC.vt].u8(0)) - 2); CPU_Message(" Loop:"); Loop = RecompPos; MoveX86RegToX86Reg(x86_EBX, x86_ESI); XorConstToX86Reg(x86_ESI, 2); MoveN64MemToX86regHalf(x86_EDX, x86_ESI); MoveX86regHalfToX86regPointer(x86_EDX, x86_EAX); AddConstToX86Reg(x86_EBX, 2); // DMEM pointer SubConstFromX86Reg(x86_EAX, 2); // Vector pointer DecX86reg(x86_ECX); // Loop counter JneLabel8("Loop", 0); x86_SetBranch8b(RecompPos - 1, Loop); if (Compiler.bAlignVector == false) { CPU_Message(" Done:"); x86_SetBranch32b((uint32_t *)Jump[1], (uint32_t *)RecompPos); } x86_SetBranch8b(Jump[0], RecompPos); } void Compile_Opcode_LPV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 3); #ifndef CompileLpv Cheat_r4300iOpcode(RSP_Opcode_LPV, "RSP_Opcode_LPV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) { AddConstToX86Reg(x86_EBX, offset); } MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 0) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 1) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 8); ShiftLeftSignImmed(x86_EDX, 8); sprintf(Reg, "RSP_Vect[%i].HW[7]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(7), Reg); sprintf(Reg, "RSP_Vect[%i].HW[6]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(6), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 2) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 3) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 8); ShiftLeftSignImmed(x86_EDX, 8); sprintf(Reg, "RSP_Vect[%i].HW[5]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(5), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(4), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 4) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 5) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 8); ShiftLeftSignImmed(x86_EDX, 8); sprintf(Reg, "RSP_Vect[%i].HW[3]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(3), Reg); sprintf(Reg, "RSP_Vect[%i].HW[2]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(2), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 6) & 0xF); AddConstToX86Reg(x86_EBX, (0x10 - RSPOpC.del + 7) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EBX, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EBX, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EBX); ShiftLeftSignImmed(x86_ECX, 8); ShiftLeftSignImmed(x86_EDX, 8); sprintf(Reg, "RSP_Vect[%i].HW[1]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(1), Reg); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(0), Reg); } void Compile_Opcode_LUV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 3); #ifndef CompileLuv Cheat_r4300iOpcode(RSP_Opcode_LUV, "RSP_Opcode_LUV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) { AddConstToX86Reg(x86_EBX, offset); } MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 0) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 1) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 7); ShiftLeftSignImmed(x86_EDX, 7); sprintf(Reg, "RSP_Vect[%i].HW[7]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(7), Reg); sprintf(Reg, "RSP_Vect[%i].HW[6]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(6), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 2) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 3) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 7); ShiftLeftSignImmed(x86_EDX, 7); sprintf(Reg, "RSP_Vect[%i].HW[5]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(5), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(4), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 4) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 5) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 7); ShiftLeftSignImmed(x86_EDX, 7); sprintf(Reg, "RSP_Vect[%i].HW[3]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(3), Reg); sprintf(Reg, "RSP_Vect[%i].HW[2]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(2), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 6) & 0xF); AddConstToX86Reg(x86_EBX, (0x10 - RSPOpC.del + 7) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EBX, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EBX, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EBX); ShiftLeftSignImmed(x86_ECX, 7); ShiftLeftSignImmed(x86_EDX, 7); sprintf(Reg, "RSP_Vect[%i].HW[1]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(1), Reg); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(0), Reg); } void Compile_Opcode_LHV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 4); #ifndef CompileLhv Cheat_r4300iOpcode(RSP_Opcode_LHV, "RSP_Opcode_LHV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) { AddConstToX86Reg(x86_EBX, offset); } MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 0) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 2) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 7); ShiftLeftSignImmed(x86_EDX, 7); sprintf(Reg, "RSP_Vect[%i].HW[7]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(7), Reg); sprintf(Reg, "RSP_Vect[%i].HW[6]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(6), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 4) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 6) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 7); ShiftLeftSignImmed(x86_EDX, 7); sprintf(Reg, "RSP_Vect[%i].HW[5]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(5), Reg); sprintf(Reg, "RSP_Vect[%i].HW[4]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(4), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); MoveX86RegToX86Reg(x86_EBX, x86_EDI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 8) & 0xF); AddConstToX86Reg(x86_EDI, (0x10 - RSPOpC.del + 10) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EDI, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EDI, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EDI); ShiftLeftSignImmed(x86_ECX, 7); ShiftLeftSignImmed(x86_EDX, 7); sprintf(Reg, "RSP_Vect[%i].HW[3]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(3), Reg); sprintf(Reg, "RSP_Vect[%i].HW[2]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(2), Reg); MoveX86RegToX86Reg(x86_EBX, x86_ESI); AddConstToX86Reg(x86_ESI, (0x10 - RSPOpC.del + 12) & 0xF); AddConstToX86Reg(x86_EBX, (0x10 - RSPOpC.del + 14) & 0xF); XorConstToX86Reg(x86_ESI, 3); XorConstToX86Reg(x86_EBX, 3); AndConstToX86Reg(x86_ESI, 0x0fff); AndConstToX86Reg(x86_EBX, 0x0fff); MoveZxN64MemToX86regByte(x86_ECX, x86_ESI); MoveZxN64MemToX86regByte(x86_EDX, x86_EBX); ShiftLeftSignImmed(x86_ECX, 7); ShiftLeftSignImmed(x86_EDX, 7); sprintf(Reg, "RSP_Vect[%i].HW[1]", RSPOpC.rt); MoveX86regHalfToVariable(x86_ECX, &RSP_Vect[RSPOpC.vt].s16(1), Reg); sprintf(Reg, "RSP_Vect[%i].HW[0]", RSPOpC.rt); MoveX86regHalfToVariable(x86_EDX, &RSP_Vect[RSPOpC.vt].s16(0), Reg); } void Compile_Opcode_LFV(void) { Cheat_r4300iOpcode(RSP_Opcode_LFV, "RSP_Opcode_LFV"); } void Compile_Opcode_LTV(void) { Cheat_r4300iOpcode(RSP_Opcode_LTV, "RSP_Opcode_LTV"); } // SC2 functions void Compile_Opcode_SBV(void) { Cheat_r4300iOpcode(RSP_Opcode_SBV, "RSP_Opcode_SBV"); } void Compile_Opcode_SSV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 1); if (RSPOpC.del > 14) { rsp_UnknownOpcode(); return; } #ifndef CompileSsv Cheat_r4300iOpcode(RSP_Opcode_SSV, "RSP_Opcode_SSV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + offset) & 0xfff; if ((Addr & 1) != 0) { sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 0)); MoveVariableToX86regByte(&RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 0))), Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 1)); MoveVariableToX86regByte(&RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 1))), Reg, x86_EDX); sprintf(Reg, "DMEM + %Xh", (Addr + 0) ^ 3); MoveX86regByteToVariable(x86_ECX, RSPInfo.DMEM + ((Addr + 0) ^ 3), Reg); sprintf(Reg, "DMEM + %Xh", (Addr + 1) ^ 3); MoveX86regByteToVariable(x86_EDX, RSPInfo.DMEM + ((Addr + 1) ^ 3), Reg); } else { sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 1)); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 1))), Reg, x86_ECX); sprintf(Reg, "DMEM + %Xh", Addr ^ 2); MoveX86regHalfToVariable(x86_ECX, RSPInfo.DMEM + (Addr ^ 2), Reg); } return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) AddConstToX86Reg(x86_EBX, offset); AndConstToX86Reg(x86_EBX, 0x0FFF); if (Compiler.bAlignVector == true) { sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 1)); MoveVariableToX86regHalf(&RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 1))), Reg, x86_ECX); XorConstToX86Reg(x86_EBX, 2); MoveX86regHalfToN64Mem(x86_ECX, x86_EBX); } else { LeaSourceAndOffset(x86_EAX, x86_EBX, 1); XorConstToX86Reg(x86_EBX, 3); XorConstToX86Reg(x86_EAX, 3); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 0)); MoveVariableToX86regByte(&RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 0))), Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 15 - (RSPOpC.del + 1)); MoveVariableToX86regByte(&RSP_Vect[RSPOpC.vt].s8((uint8_t)(15 - (RSPOpC.del + 1))), Reg, x86_EDX); MoveX86regByteToN64Mem(x86_ECX, x86_EBX); MoveX86regByteToN64Mem(x86_EDX, x86_EAX); } } void Compile_Opcode_SLV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 2); uint8_t * Jump[2]; #ifndef CompileSlv Cheat_r4300iOpcode(RSP_Opcode_SLV, "RSP_Opcode_SLV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); // if ((RSPOpC.del & 0x3) != 0) { // rsp_UnknownOpcode(); // return; // } if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + offset) & 0xfff; if ((Addr & 3) != 0) { CompilerWarning("Unaligned SLV at constant address"); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_SLV, "RSP_Opcode_SLV"); return; } sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 16 - RSPOpC.del - 4); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8((uint8_t)(16 - RSPOpC.del - 4)), Reg, x86_EAX); sprintf(Reg, "DMEM + %Xh", Addr); MoveX86regToVariable(x86_EAX, RSPInfo.DMEM + Addr, Reg); return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) AddConstToX86Reg(x86_EBX, offset); TestConstToX86Reg(3, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; // Unaligned CompilerToggleBuffer(); CPU_Message(" Unaligned:"); *((uint32_t *)(Jump[0])) = (uint32_t)(RecompPos - Jump[0] - 4); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_SLV, "RSP_Opcode_SLV"); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); // Aligned // Because of byte swapping this swizzle works nicely sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, 16 - RSPOpC.del - 4); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8((uint8_t)(16 - RSPOpC.del - 4)), Reg, x86_EAX); AndConstToX86Reg(x86_EBX, 0x0fff); MoveX86regToN64Mem(x86_EAX, x86_EBX); CPU_Message(" Done:"); *((uint32_t *)(Jump[1])) = (uint32_t)(RecompPos - Jump[1] - 4); } void Compile_Opcode_SDV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 3); uint8_t *Jump[2], *LoopEntry; //if ((RSPOpC.del & 0x7) != 0) { // rsp_UnknownOpcode(); // return; //} #ifndef CompileSdv Cheat_r4300iOpcode(RSP_Opcode_SDV, "RSP_Opcode_SDV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + offset) & 0xfff; if ((Addr & 3) != 0) { CompilerWarning(stdstr_f("Unaligned SDV at constant address PC = %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_SDV, "RSP_Opcode_SDV"); return; } sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, (16 - RSPOpC.del - 4) & 0xF); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8((16 - RSPOpC.del - 4) & 0xF), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, (16 - RSPOpC.del - 8) & 0xF); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8((16 - RSPOpC.del - 8) & 0xF), Reg, x86_EBX); sprintf(Reg, "DMEM + %Xh", Addr); MoveX86regToVariable(x86_EAX, RSPInfo.DMEM + Addr, Reg); sprintf(Reg, "DMEM + %Xh", Addr + 4); MoveX86regToVariable(x86_EBX, RSPInfo.DMEM + Addr + 4, Reg); return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) { AddConstToX86Reg(x86_EBX, offset); } AndConstToX86Reg(x86_EBX, 0x0fff); TestConstToX86Reg(3, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b((uint32_t *)Jump[0], (uint32_t *)RecompPos); sprintf(Reg, "RSP_Vect[%i].UB[%i]", RSPOpC.rt, 15 - RSPOpC.del); MoveOffsetToX86reg((size_t)&RSP_Vect[RSPOpC.vt].u8((uint8_t)(15 - RSPOpC.del)), Reg, x86_EDI); MoveConstToX86reg(8, x86_ECX); CPU_Message(" Loop:"); LoopEntry = RecompPos; MoveX86RegToX86Reg(x86_EBX, x86_EAX); XorConstToX86Reg(x86_EAX, 3); MoveX86regPointerToX86regByte(x86_EDX, x86_EDI); MoveX86regByteToN64Mem(x86_EDX, x86_EAX); IncX86reg(x86_EBX); // Address constant DecX86reg(x86_EDI); // Vector pointer DecX86reg(x86_ECX); // Counter JneLabel8("Loop", 0); x86_SetBranch8b(RecompPos - 1, LoopEntry); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, (16 - RSPOpC.del - 4) & 0xF); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8((16 - RSPOpC.del - 4) & 0xF), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[%i]", RSPOpC.rt, (16 - RSPOpC.del - 8) & 0xF); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8((16 - RSPOpC.del - 8) & 0xF), Reg, x86_ECX); MoveX86regToN64Mem(x86_EAX, x86_EBX); MoveX86regToN64MemDisp(x86_ECX, x86_EBX, 4); CPU_Message(" Done:"); x86_SetBranch32b((uint32_t *)Jump[1], (uint32_t *)RecompPos); } void Compile_Opcode_SQV(void) { char Reg[256]; int offset = (RSPOpC.voffset << 4); uint8_t * Jump[2]; #ifndef CompileSqv Cheat_r4300iOpcode(RSP_Opcode_SQV, "RSP_Opcode_SQV"); return; #endif CPU_Message(" %X %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); if (RSPOpC.del != 0 && RSPOpC.del != 12) { rsp_UnknownOpcode(); return; } if (IsRegConst(RSPOpC.base)) { uint32_t Addr = (MipsRegConst(RSPOpC.base) + offset) & 0xfff; if (Addr & 15) { CompilerWarning(stdstr_f("Unaligned SQV at constant address %04X", CompilePC).c_str()); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_SQV, "RSP_Opcode_SQV"); return; } // Aligned store if (IsSseEnabled == false) { if (RSPOpC.del == 12) { sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(0), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[12]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(12), Reg, x86_EBX); sprintf(Reg, "RSP_Vect[%i].B[8]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(8), Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].B[4]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(4), Reg, x86_EDX); } else { sprintf(Reg, "RSP_Vect[%i].B[12]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(12), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[8]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(8), Reg, x86_EBX); sprintf(Reg, "RSP_Vect[%i].B[4]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(4), Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(0), Reg, x86_EDX); } sprintf(Reg, "DMEM+%Xh+0", Addr); MoveX86regToVariable(x86_EAX, RSPInfo.DMEM + Addr + 0, Reg); sprintf(Reg, "DMEM+%Xh+4", Addr); MoveX86regToVariable(x86_EBX, RSPInfo.DMEM + Addr + 4, Reg); sprintf(Reg, "DMEM+%Xh+8", Addr); MoveX86regToVariable(x86_ECX, RSPInfo.DMEM + Addr + 8, Reg); sprintf(Reg, "DMEM+%Xh+C", Addr); MoveX86regToVariable(x86_EDX, RSPInfo.DMEM + Addr + 12, Reg); } else { sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); SseMoveAlignedVariableToReg(&RSP_Vect[RSPOpC.vt].s8(0), Reg, x86_XMM0); if (RSPOpC.del == 12) { SseShuffleReg(x86_XMM0, x86_MM0, 0x6c); } else { SseShuffleReg(x86_XMM0, x86_MM0, 0x1b); } sprintf(Reg, "DMEM+%Xh", Addr); SseMoveUnalignedRegToVariable(x86_XMM0, RSPInfo.DMEM + Addr, Reg); } return; } MoveVariableToX86reg(&RSP_GPR[RSPOpC.base].UW, GPR_Name(RSPOpC.base), x86_EBX); if (offset != 0) { AddConstToX86Reg(x86_EBX, offset); } TestConstToX86Reg(15, x86_EBX); JneLabel32("Unaligned", 0); Jump[0] = RecompPos - 4; CompilerToggleBuffer(); CPU_Message(" Unaligned:"); x86_SetBranch32b((uint32_t *)Jump[0], (uint32_t *)RecompPos); Cheat_r4300iOpcodeNoMessage(RSP_Opcode_SQV, "RSP_Opcode_SQV"); JmpLabel32("Done", 0); Jump[1] = RecompPos - 4; CompilerToggleBuffer(); AndConstToX86Reg(x86_EBX, 0x0fff); if (IsSseEnabled == false) { if (RSPOpC.del == 12) { sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(0), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[12]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(12), Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].B[8]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(8), Reg, x86_EDX); sprintf(Reg, "RSP_Vect[%i].B[4]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(4), Reg, x86_EDI); } else { sprintf(Reg, "RSP_Vect[%i].B[12]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(12), Reg, x86_EAX); sprintf(Reg, "RSP_Vect[%i].B[8]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(8), Reg, x86_ECX); sprintf(Reg, "RSP_Vect[%i].B[4]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(4), Reg, x86_EDX); sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); MoveVariableToX86reg(&RSP_Vect[RSPOpC.vt].s8(0), Reg, x86_EDI); } MoveX86regToN64MemDisp(x86_EAX, x86_EBX, 0); MoveX86regToN64MemDisp(x86_ECX, x86_EBX, 4); MoveX86regToN64MemDisp(x86_EDX, x86_EBX, 8); MoveX86regToN64MemDisp(x86_EDI, x86_EBX, 12); } else { sprintf(Reg, "RSP_Vect[%i].B[0]", RSPOpC.rt); SseMoveAlignedVariableToReg(&RSP_Vect[RSPOpC.vt].s8(0), Reg, x86_XMM0); if (RSPOpC.del == 12) { SseShuffleReg(x86_XMM0, x86_MM0, 0x6c); } else { SseShuffleReg(x86_XMM0, x86_MM0, 0x1b); } SseMoveUnalignedRegToN64Mem(x86_XMM0, x86_EBX); } CPU_Message(" Done:"); x86_SetBranch32b((uint32_t *)Jump[1], (uint32_t *)RecompPos); } void Compile_Opcode_SRV(void) { Cheat_r4300iOpcode(RSP_Opcode_SRV, "RSP_Opcode_SRV"); } void Compile_Opcode_SPV(void) { Cheat_r4300iOpcode(RSP_Opcode_SPV, "RSP_Opcode_SPV"); } void Compile_Opcode_SUV(void) { Cheat_r4300iOpcode(RSP_Opcode_SUV, "RSP_Opcode_SUV"); } void Compile_Opcode_SHV(void) { Cheat_r4300iOpcode(RSP_Opcode_SHV, "RSP_Opcode_SHV"); } void Compile_Opcode_SFV(void) { Cheat_r4300iOpcode(RSP_Opcode_SFV, "RSP_Opcode_SFV"); } void Compile_Opcode_STV(void) { Cheat_r4300iOpcode(RSP_Opcode_STV, "RSP_Opcode_STV"); } void Compile_Opcode_SWV(void) { Cheat_r4300iOpcode(RSP_Opcode_SWV, "RSP_Opcode_SWV"); } // Other functions void Compile_UnknownOpcode(void) { CPU_Message(" %X Unhandled Opcode: %s", CompilePC, RSPInstruction(CompilePC, RSPOpC.Value).NameAndParam().c_str()); NextInstruction = RSPPIPELINE_FINISH_BLOCK; MoveConstToVariable(CompilePC, PrgCount, "RSP PC"); MoveConstToVariable(RSPOpC.Value, &RSPOpC.Value, "RSPOpC.Value"); Call_Direct((void *)rsp_UnknownOpcode, "rsp_UnknownOpcode"); Ret(); }