project64/Source/Project64/3rd Party/Processor Info.cpp

1876 lines
68 KiB
C++
Raw Normal View History

// Filename: Processor.h
// =====================
// Author: Benjamin Jurke
// File history: 27.02.2002 File created.
///////////////////////////////////////////
// Options:
///////////
#define PROCESSOR_FREQUENCY_MEASURE_AVAILABLE
// Includes <windows.h> --> code gets os-dependend (Win32)
typedef struct ProcessorExtensions
{
bool FPU_FloatingPointUnit;
bool VME_Virtual8086ModeEnhancements;
bool DE_DebuggingExtensions;
bool PSE_PageSizeExtensions;
bool TSC_TimeStampCounter;
bool MSR_ModelSpecificRegisters;
bool PAE_PhysicalAddressExtension;
bool MCE_MachineCheckException;
bool CX8_COMPXCHG8B_Instruction;
bool APIC_AdvancedProgrammableInterruptController;
unsigned int APIC_ID;
bool SEP_FastSystemCall;
bool MTRR_MemoryTypeRangeRegisters;
bool PGE_PTE_GlobalFlag;
bool MCA_MachineCheckArchitecture;
bool CMOV_ConditionalMoveAndCompareInstructions;
bool FGPAT_PageAttributeTable;
bool PSE36_36bitPageSizeExtension;
bool PN_ProcessorSerialNumber;
bool CLFSH_CFLUSH_Instruction;
unsigned int CLFLUSH_InstructionCacheLineSize;
bool DS_DebugStore;
bool ACPI_ThermalMonitorAndClockControl;
bool EMMX_MultimediaExtensions;
bool MMX_MultimediaExtensions;
bool FXSR_FastStreamingSIMD_ExtensionsSaveRestore;
bool SSE_StreamingSIMD_Extensions;
bool SSE2_StreamingSIMD2_Extensions;
bool SS_SelfSnoop;
bool HT_HyperThreading;
unsigned int HT_HyterThreadingSiblings;
bool TM_ThermalMonitor;
bool IA64_Intel64BitArchitecture;
bool _3DNOW_InstructionExtensions;
bool _E3DNOW_InstructionExtensions;
bool AA64_AMD64BitArchitecture;
} ProcessorExtensions;
typedef struct ProcessorCache
{
bool bPresent;
char strSize[32];
unsigned int uiAssociativeWays;
unsigned int uiLineSize;
bool bSectored;
char strCache[128];
} ProcessorCache;
typedef struct ProcessorL1Cache
{
ProcessorCache Instruction;
ProcessorCache Data;
} ProcessorL1Cache;
typedef struct ProcessorTLB
{
bool bPresent;
char strPageSize[32];
unsigned int uiAssociativeWays;
unsigned int uiEntries;
char strTLB[128];
} ProcessorTLB;
typedef struct ProcessorInfo
{
char strVendor[16];
unsigned int uiFamily;
unsigned int uiExtendedFamily;
char strFamily[64];
unsigned int uiModel;
unsigned int uiExtendedModel;
char strModel[128];
unsigned int uiStepping;
unsigned int uiType;
char strType[64];
unsigned int uiBrandID;
char strBrandID[64];
char strProcessorSerial[64];
unsigned long MaxSupportedLevel;
unsigned long MaxSupportedExtendedLevel;
ProcessorExtensions _Ext;
ProcessorL1Cache _L1;
ProcessorCache _L2;
ProcessorCache _L3;
ProcessorCache _Trace;
ProcessorTLB _Instruction;
ProcessorTLB _Data;
} ProcessorInfo;
// CProcessor
// ==========
// Class for detecting the processor name, type and available
// extensions as long as it's speed.
/////////////////////////////////////////////////////////////
class CProcessor
{
// Constructor / Destructor:
////////////////////////////
public:
CProcessor();
// Private vars:
////////////////
private:
__int64 uqwFrequency;
char strCPUName[128];
ProcessorInfo CPUInfo;
// Private functions:
/////////////////////
private:
bool AnalyzeIntelProcessor();
bool AnalyzeAMDProcessor();
bool AnalyzeUnknownProcessor();
bool CheckCPUIDPresence();
void DecodeProcessorConfiguration(unsigned int cfg);
void TranslateProcessorConfiguration();
void GetStandardProcessorConfiguration();
void GetStandardProcessorExtensions();
// Public functions:
////////////////////
public:
__int64 GetCPUFrequency(unsigned int uiMeasureMSecs);
const ProcessorInfo *GetCPUInfo();
bool CPUInfoToText(char *strBuffer, unsigned int uiMaxLen);
bool WriteInfoTextFile(const char *strFilename);
};
bool CPUInfoToText(char *strBuffer, unsigned int uiMaxLen)
{
CProcessor cpu;
cpu.WriteInfoTextFile("D:\\cpu.txt");
return false;
//return cpu.CPUInfoToText(strBuffer,uiMaxLen);
}
// Filename: Processor.cpp
// =======================
// Author: Benjamin Jurke
// File history: 27.02.2002 - File created. Support for Intel and AMD processors
// 05.03.2002 - Fixed the CPUID bug: On Pre-Pentium CPUs the CPUID
// command is not available
// - The CProcessor::WriteInfoTextFile function do not
// longer use Win32 file functions (-> os independend)
// - Optional include of the windows.h header which is
// still need for CProcessor::GetCPUFrequency.
// 06.03.2002 - My birthday (18th :-))
// - Replaced the '\r\n' line endings in function
// CProcessor::CPUInfoToText by '\n'
// - Replaced unsigned __int64 by signed __int64 for
// solving some compiler conversion problems
// - Fixed a bug at family=6, model=6 (Celeron -> P2)
//////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <string.h>
#include <memory.h>
#ifdef PROCESSOR_FREQUENCY_MEASURE_AVAILABLE
#include <windows.h>
// We need the QueryPerformanceCounter and Sleep functions
#endif
// Some macros we often need
////////////////////////////
#define CheckBit(var, bit) ((var & (1 << bit)) ? true : false)
// CProcessor::CProcessor
// ======================
// Class constructor:
/////////////////////////
CProcessor::CProcessor()
{
uqwFrequency = 0;
memset(&CPUInfo, 0, sizeof(CPUInfo));
}
// unsigned __int64 CProcessor::GetCPUFrequency(unsigned int uiMeasureMSecs)
// =========================================================================
// Function to measure the current CPU frequency
////////////////////////////////////////////////////////////////////////////
__int64 CProcessor::GetCPUFrequency(unsigned int uiMeasureMSecs)
{
#ifndef PROCESSOR_FREQUENCY_MEASURE_AVAILABLE
return 0;
#else
// If there are invalid measure time parameters, zero msecs for example,
// we've to exit the function
if (uiMeasureMSecs < 1)
{
// If theres already a measured frequency available, we return it
if (uqwFrequency > 0)
return uqwFrequency;
else
return 0;
}
// Now we check if the CPUID command is available
if (!CheckCPUIDPresence())
return 0;
// First we get the CPUID standard level 0x00000001
unsigned long reg;
__asm
{
mov eax, 1
cpuid
mov reg, edx
}
// Then we check, if the RDTSC (Real Date Time Stamp Counter) is available.
// This function is necessary for our measure process.
if (!(reg & (1 << 4)))
return 0;
// After that we declare some vars and check the frequency of the high
// resolution timer for the measure process.
// If there's no high-res timer, we exit.
__int64 starttime, endtime, timedif, freq, start, end, dif;
if (!QueryPerformanceFrequency((LARGE_INTEGER *) &freq))
return 0;
// Now we can init the measure process. We set the process and thread priority
// to the highest available level (Realtime priority). Also we focus the
// first processor in the multiprocessor system.
HANDLE hProcess = GetCurrentProcess();
HANDLE hThread = GetCurrentThread();
unsigned long dwCurPriorityClass = GetPriorityClass(hProcess);
int iCurThreadPriority = GetThreadPriority(hThread);
unsigned long dwProcessMask, dwSystemMask, dwNewMask = 1;
GetProcessAffinityMask(hProcess, &dwProcessMask, &dwSystemMask);
SetPriorityClass(hProcess, REALTIME_PRIORITY_CLASS);
SetThreadPriority(hThread, THREAD_PRIORITY_TIME_CRITICAL);
SetProcessAffinityMask(hProcess, dwNewMask);
// Now we call a CPUID to ensure, that all other prior called functions are
// completed now (serialization)
__asm cpuid
// We ask the high-res timer for the start time
QueryPerformanceCounter((LARGE_INTEGER *) &starttime);
// Then we get the current cpu clock and store it
__asm
{
rdtsc
mov dword ptr [start+4], edx
mov dword ptr [start], eax
}
// Now we wart for some msecs
Sleep(uiMeasureMSecs);
// We ask for the end time
QueryPerformanceCounter((LARGE_INTEGER *) &endtime);
// And also for the end cpu clock
__asm
{
rdtsc
mov dword ptr [end+4], edx
mov dword ptr [end], eax
}
// Now we can restore the default process and thread priorities
SetProcessAffinityMask(hProcess, dwProcessMask);
SetThreadPriority(hThread, iCurThreadPriority);
SetPriorityClass(hProcess, dwCurPriorityClass);
// Then we calculate the time and clock differences
dif = end - start;
timedif = endtime - starttime;
// And finally the frequency is the clock difference divided by the time
// difference.
uqwFrequency = (__int64) (((double) dif) / (((double) timedif) / (__int64)freq));
// At last we just return the frequency that is also stored in the call
// member var uqwFrequency
return uqwFrequency;
#endif
}
// bool CProcessor::AnalyzeIntelProcessor()
// ========================================
// Private class function for analyzing an Intel processor
//////////////////////////////////////////////////////////
bool CProcessor::AnalyzeIntelProcessor()
{
unsigned long eaxreg, ebxreg, edxreg;
// First we check if the CPUID command is available
if (!CheckCPUIDPresence())
return false;
// Now we get the CPUID standard level 0x00000001
__asm
{
mov eax, 1
cpuid
mov eaxreg, eax
mov ebxreg, ebx
mov edxreg, edx
}
// Then get the cpu model, family, type, stepping and brand id by masking
// the eax and ebx register
CPUInfo.uiStepping = eaxreg & 0xF;
CPUInfo.uiModel = (eaxreg >> 4) & 0xF;
CPUInfo.uiFamily = (eaxreg >> 8) & 0xF;
CPUInfo.uiType = (eaxreg >> 12) & 0x3;
CPUInfo.uiBrandID = ebxreg & 0xF;
// Now we can translate the type number to a more understandable string format
switch (CPUInfo.uiType)
{
case 0: // Type = 0: Original OEM processor
strcpy(CPUInfo.strType, "Original OEM");
strcpy(strCPUName, CPUInfo.strType);
strcat(strCPUName, " ");
break;
case 1: // Type = 1: Overdrive processor
strcpy(CPUInfo.strType, "Overdrive");
strcpy(strCPUName, CPUInfo.strType);
strcat(strCPUName, " ");
break;
case 2: // Type = 2: Dual-capable processor
strcpy(CPUInfo.strType, "Dual-capable");
strcpy(strCPUName, CPUInfo.strType);
strcat(strCPUName, " ");
break;
case 3: // Type = 3: Reserved for future use
strcpy(CPUInfo.strType, "Reserved");
break;
default: // This should be never called, cause we just mask 2 bits --> [0..3]
strcpy(CPUInfo.strType, "Unknown");
break;
}
// Then we translate the brand id:
switch (CPUInfo.uiBrandID)
{
case 0: // Brand id = 0: Brand id not supported on this processor
strcpy(CPUInfo.strBrandID, "Not supported");
break;
case 1: // Brand id = 1: Intel Celeron (0.18 <20>m) processor
strcpy(CPUInfo.strBrandID, "0.18 <20>m Intel Celeron");
break;
case 2: // Brand id = 2: Intel Pentium III (0.18 <20>m) processor
strcpy(CPUInfo.strBrandID, "0.18 <20>m Intel Pentium III");
break;
case 3: // Brand id = 3: Model dependent
if (CPUInfo.uiModel == 6) // If the cpu model is Celeron (well, I'm NOT SURE!!!)
strcpy(CPUInfo.strBrandID, "0.13 <20>m Intel Celeron");
else
strcpy(CPUInfo.strBrandID, "0.18 <20>m Intel Pentium III Xeon");
break;
case 4: // Brand id = 4: Intel Pentium III Tualatin (0.13 <20>m) processor
strcpy(CPUInfo.strBrandID, "0.13 <20>m Intel Pentium III");
break;
case 6: // Brand id = 6: Intel Pentium III mobile (0.13 <20>m) processor
strcpy(CPUInfo.strBrandID, "0.13 <20>m Intel Pentium III mobile");
break;
case 7: // Brand id = 7: Intel Celeron mobile (0.13 <20>m) processor
strcpy(CPUInfo.strBrandID, "0.13 <20>m Intel Celeron mobile");
break;
case 8: // Brand id = 8: Intel Pentium 4 Willamette (0.18 <20>m) processor
strcpy(CPUInfo.strBrandID, "0.18 <20>m Intel Pentium 4");
break;
case 9: // Brand id = 9: Intel Pentium 4 Northwood (0.13 <20>m) processor
strcpy(CPUInfo.strBrandID, "0.13 <20>m Intel Pentium 4");
break;
case 0xA: // Brand id = 0xA: Intel Pentium 4 Northwood (0.13 <20>m processor)
strcpy(CPUInfo.strBrandID, "0.13 <20>m Intel Pentium 4");
break; // No idea, where the difference to id=9 is
case 0xB: // Brand id = 0xB: Intel Pentium 4 Northwood Xeon (0.13 <20>m processor)
strcpy(CPUInfo.strBrandID, "0.13 <20>m Intel Pentium 4 Xeon");
break;
case 0xE: // Brand id = 0xE: Intel Pentium 4 Willamette Xeon (0.18 <20>m processor)
strcpy(CPUInfo.strBrandID, "0.18 <20>m Intel Pentium 4 Xeon");
break;
default: // Should be never called, but sure is sure
strcpy(CPUInfo.strBrandID, "Unknown");
break;
}
// Then we translate the cpu family
switch (CPUInfo.uiFamily)
{
case 3: // Family = 3: i386 (80386) processor family
strcpy(CPUInfo.strFamily, "Intel i386");
break;
case 4: // Family = 4: i486 (80486) processor family
strcpy(CPUInfo.strFamily, "Intel i486");
break;
case 5: // Family = 5: Pentium (80586) processor family
strcpy(CPUInfo.strFamily, "Intel Pentium");
break;
case 6: // Family = 6: Pentium Pro (80686) processor family
strcpy(CPUInfo.strFamily, "Intel Pentium Pro");
break;
case 15: // Family = 15: Extended family specific
// Masking the extended family
CPUInfo.uiExtendedFamily = (eaxreg >> 20) & 0xFF;
switch (CPUInfo.uiExtendedFamily)
{
case 0: // Family = 15, Ext. Family = 0: Pentium 4 (80786 ??) processor family
strcpy(CPUInfo.strFamily, "Intel Pentium 4");
break;
case 1: // Family = 15, Ext. Family = 1: McKinley (64-bit) processor family
strcpy(CPUInfo.strFamily, "Intel McKinley (IA-64)");
break;
default: // Sure is sure
strcpy(CPUInfo.strFamily, "Unknown Intel Pentium 4+");
break;
}
break;
default: // Failsave
strcpy(CPUInfo.strFamily, "Unknown");
break;
}
// Now we come to the big deal, the exact model name
switch (CPUInfo.uiFamily)
{
case 3: // i386 (80386) processor family
strcpy(CPUInfo.strModel, "Unknown Intel i386");
strcat(strCPUName, "Intel i386");
break;
case 4: // i486 (80486) processor family
switch (CPUInfo.uiModel)
{
case 0: // Model = 0: i486 DX-25/33 processor model
strcpy(CPUInfo.strModel, "Intel i486 DX-25/33");
strcat(strCPUName, "Intel i486 DX-25/33");
break;
case 1: // Model = 1: i486 DX-50 processor model
strcpy(CPUInfo.strModel, "Intel i486 DX-50");
strcat(strCPUName, "Intel i486 DX-50");
break;
case 2: // Model = 2: i486 SX processor model
strcpy(CPUInfo.strModel, "Intel i486 SX");
strcat(strCPUName, "Intel i486 SX");
break;
case 3: // Model = 3: i486 DX2 (with i487 numeric coprocessor) processor model
strcpy(CPUInfo.strModel, "Intel i486 487/DX2");
strcat(strCPUName, "Intel i486 DX2 with i487 numeric coprocessor");
break;
case 4: // Model = 4: i486 SL processor model (never heard ?!?)
strcpy(CPUInfo.strModel, "Intel i486 SL");
strcat(strCPUName, "Intel i486 SL");
break;
case 5: // Model = 5: i486 SX2 processor model
strcpy(CPUInfo.strModel, "Intel i486 SX2");
strcat(strCPUName, "Intel i486 SX2");
break;
case 7: // Model = 7: i486 write-back enhanced DX2 processor model
strcpy(CPUInfo.strModel, "Intel i486 write-back enhanced DX2");
strcat(strCPUName, "Intel i486 write-back enhanced DX2");
break;
case 8: // Model = 8: i486 DX4 processor model
strcpy(CPUInfo.strModel, "Intel i486 DX4");
strcat(strCPUName, "Intel i486 DX4");
break;
case 9: // Model = 9: i486 write-back enhanced DX4 processor model
strcpy(CPUInfo.strModel, "Intel i486 write-back enhanced DX4");
strcat(strCPUName, "Intel i486 DX4");
break;
default: // ...
strcpy(CPUInfo.strModel, "Unknown Intel i486");
strcat(strCPUName, "Intel i486 (Unknown model)");
break;
}
break;
case 5: // Pentium (80586) processor family
switch (CPUInfo.uiModel)
{
case 0: // Model = 0: Pentium (P5 A-Step) processor model
strcpy(CPUInfo.strModel, "Intel Pentium (P5 A-Step)");
strcat(strCPUName, "Intel Pentium (P5 A-Step core)");
break; // Famous for the DIV bug, as far as I know
case 1: // Model = 1: Pentium 60/66 processor model
strcpy(CPUInfo.strModel, "Intel Pentium 60/66 (P5)");
strcat(strCPUName, "Intel Pentium 60/66 (P5 core)");
break;
case 2: // Model = 2: Pentium 75-200 (P54C) processor model
strcpy(CPUInfo.strModel, "Intel Pentium 75-200 (P54C)");
strcat(strCPUName, "Intel Pentium 75-200 (P54C core)");
break;
case 3: // Model = 3: Pentium overdrive for 486 systems processor model
strcpy(CPUInfo.strModel, "Intel Pentium for 486 system (P24T Overdrive)");
strcat(strCPUName, "Intel Pentium for 486 (P24T overdrive core)");
break;
case 4: // Model = 4: Pentium MMX processor model
strcpy(CPUInfo.strModel, "Intel Pentium MMX (P55C)");
strcat(strCPUName, "Intel Pentium MMX (P55C core)");
break;
case 7: // Model = 7: Pentium processor model (don't know difference to Model=2)
strcpy(CPUInfo.strModel, "Intel Pentium (P54C)");
strcat(strCPUName, "Intel Pentium (P54C core)");
break;
case 8: // Model = 8: Pentium MMX (0.25 <20>m) processor model
strcpy(CPUInfo.strModel, "Intel Pentium MMX (P55C), 0.25 <20>m");
strcat(strCPUName, "Intel Pentium MMX (P55C core), 0.25 <20>m");
break;
default: // ...
strcpy(CPUInfo.strModel, "Unknown Intel Pentium");
strcat(strCPUName, "Intel Pentium (Unknown P5-model)");
break;
}
break;
case 6: // Pentium Pro (80686) processor family
switch (CPUInfo.uiModel)
{
case 0: // Model = 0: Pentium Pro (P6 A-Step) processor model
strcpy(CPUInfo.strModel, "Intel Pentium Pro (P6 A-Step)");
strcat(strCPUName, "Intel Pentium Pro (P6 A-Step core)");
break;
case 1: // Model = 1: Pentium Pro
strcpy(CPUInfo.strModel, "Intel Pentium Pro (P6)");
strcat(strCPUName, "Intel Pentium Pro (P6 core)");
break;
case 3: // Model = 3: Pentium II (66 MHz FSB, I think) processor model
strcpy(CPUInfo.strModel, "Intel Pentium II Model 3, 0.28 <20>m");
strcat(strCPUName, "Intel Pentium II (Model 3 core, 0.28 <20>m process)");
break;
case 5: // Model = 5: Pentium II/Xeon/Celeron (0.25 <20>m) processor model
strcpy(CPUInfo.strModel, "Intel Pentium II Model 5/Xeon/Celeron, 0.25 <20>m");
strcat(strCPUName, "Intel Pentium II/Xeon/Celeron (Model 5 core, 0.25 <20>m process)");
break;
case 6: // Model = 6: Pentium II with internal L2 cache
strcpy(CPUInfo.strModel, "Intel Pentium II - internal L2 cache");
strcat(strCPUName, "Intel Pentium II with internal L2 cache");
break;
case 7: // Model = 7: Pentium III/Xeon (extern L2 cache) processor model
strcpy(CPUInfo.strModel, "Intel Pentium III/Pentium III Xeon - external L2 cache, 0.25 <20>m");
strcat(strCPUName, "Intel Pentium III/Pentium III Xeon (0.25 <20>m process) with external L2 cache");
break;
case 8: // Model = 8: Pentium III/Xeon/Celeron (256 KB on-die L2 cache) processor model
strcpy(CPUInfo.strModel, "Intel Pentium III/Celeron/Pentium III Xeon - internal L2 cache, 0.18 <20>m");
// We want to know it exactly:
switch (CPUInfo.uiBrandID)
{
case 1: // Model = 8, Brand id = 1: Celeron (on-die L2 cache) processor model
strcat(strCPUName, "Intel Celeron (0.18 <20>m process) with internal L2 cache");
break;
case 2: // Model = 8, Brand id = 2: Pentium III (on-die L2 cache) processor model (my current cpu :-))
strcat(strCPUName, "Intel Pentium III (0.18 <20>m process) with internal L2 cache");
break;
case 3: // Model = 8, Brand id = 3: Pentium III Xeon (on-die L2 cache) processor model
strcat(strCPUName, "Intel Pentium III Xeon (0.18 <20>m process) with internal L2 cache");
break;
default: // ...<2E>
strcat(strCPUName, "Intel Pentium III core (unknown model, 0.18 <20>m process) with internal L2 cache");
break;
}
break;
case 0xA: // Model = 0xA: Pentium III/Xeon/Celeron (1 or 2 MB on-die L2 cache) processor model
strcpy(CPUInfo.strModel, "Intel Pentium III/Celeron/Pentium III Xeon - internal L2 cache, 0.18 <20>m");
// Exact detection:
switch (CPUInfo.uiBrandID)
{
case 1: // Model = 0xA, Brand id = 1: Celeron (1 or 2 MB on-die L2 cache (does it exist??)) processor model
strcat(strCPUName, "Intel Celeron (0.18 <20>m process) with internal L2 cache");
break;
case 2: // Model = 0xA, Brand id = 2: Pentium III (1 or 2 MB on-die L2 cache (never seen...)) processor model
strcat(strCPUName, "Intel Pentium III (0.18 <20>m process) with internal L2 cache");
break;
case 3: // Model = 0xA, Brand id = 3: Pentium III Xeon (1 or 2 MB on-die L2 cache) processor model
strcat(strCPUName, "Intel Pentium III Xeon (0.18 <20>m process) with internal L2 cache");
break;
default: // Getting bored of this............
strcat(strCPUName, "Intel Pentium III core (unknown model, 0.18 <20>m process) with internal L2 cache");
break;
}
break;
case 0xB: // Model = 0xB: Pentium III/Xeon/Celeron (Tualatin core, on-die cache) processor model
strcpy(CPUInfo.strModel, "Intel Pentium III/Celeron/Pentium III Xeon - internal L2 cache, 0.13 <20>m");
// Omniscient: ;-)
switch (CPUInfo.uiBrandID)
{
case 3: // Model = 0xB, Brand id = 3: Celeron (Tualatin core) processor model
strcat(strCPUName, "Intel Celeron (Tualatin core, 0.13 <20>m process) with internal L2 cache");
break;
case 4: // Model = 0xB, Brand id = 4: Pentium III (Tualatin core) processor model
strcat(strCPUName, "Intel Pentium III (Tualatin core, 0.13 <20>m process) with internal L2 cache");
break;
case 7: // Model = 0xB, Brand id = 7: Celeron mobile (Tualatin core) processor model
strcat(strCPUName, "Intel Celeron mobile (Tualatin core, 0.13 <20>m process) with internal L2 cache");
break;
default: // *bored*
strcat(strCPUName, "Intel Pentium III Tualatin core (unknown model, 0.13 <20>m process) with internal L2 cache");
break;
}
break;
default: // *more bored*
strcpy(CPUInfo.strModel, "Unknown Intel Pentium Pro");
strcat(strCPUName, "Intel Pentium Pro (Unknown model)");
break;
}
break;
case 15: // Extended processor family
// Masking the extended model
CPUInfo.uiExtendedModel = (eaxreg >> 16) & 0xFF;
switch (CPUInfo.uiModel)
{
case 0: // Model = 0: Pentium 4 Willamette (A-Step) core
if ((CPUInfo.uiBrandID) == 8) // Brand id = 8: P4 Willamette
{
strcpy(CPUInfo.strModel, "Intel Pentium 4 Willamette (A-Step)");
strcat(strCPUName, "Intel Pentium 4 Willamette (A-Step)");
}
else // else Xeon
{
strcpy(CPUInfo.strModel, "Intel Pentium 4 Willamette Xeon (A-Step)");
strcat(strCPUName, "Intel Pentium 4 Willamette Xeon (A-Step)");
}
break;
case 1: // Model = 1: Pentium 4 Willamette core
if ((CPUInfo.uiBrandID) == 8) // Brand id = 8: P4 Willamette
{
strcpy(CPUInfo.strModel, "Intel Pentium 4 Willamette");
strcat(strCPUName, "Intel Pentium 4 Willamette");
}
else // else Xeon
{
strcpy(CPUInfo.strModel, "Intel Pentium 4 Willamette Xeon");
strcat(strCPUName, "Intel Pentium 4 Willamette Xeon");
}
break;
case 2: // Model = 2: Pentium 4 Northwood core
if (((CPUInfo.uiBrandID) == 9) || ((CPUInfo.uiBrandID) == 0xA)) // P4 Willamette
{
strcpy(CPUInfo.strModel, "Intel Pentium 4 Northwood");
strcat(strCPUName, "Intel Pentium 4 Northwood");
}
else // Xeon
{
strcpy(CPUInfo.strModel, "Intel Pentium 4 Northwood Xeon");
strcat(strCPUName, "Intel Pentium 4 Northwood Xeon");
}
break;
default: // Silly stupid never used failsave option
strcpy(CPUInfo.strModel, "Unknown Intel Pentium 4");
strcat(strCPUName, "Intel Pentium 4 (Unknown model)");
break;
}
break;
default: // *grmpf*
strcpy(CPUInfo.strModel, "Unknown Intel model");
strcat(strCPUName, "Intel (Unknown model)");
break;
}
// After the long processor model block we now come to the processors serial
// number.
// First of all we check if the processor supports the serial number
if (CPUInfo.MaxSupportedLevel >= 3)
{
// If it supports the serial number CPUID level 0x00000003 we read the data
unsigned long sig1, sig2, sig3;
__asm
{
mov eax, 1
cpuid
mov sig1, eax
mov eax, 3
cpuid
mov sig2, ecx
mov sig3, edx
}
// Then we convert the data to an readable string
sprintf(CPUInfo.strProcessorSerial, "%04lX-%04lX-%04lX-%04lX-%04lX-%04lX", sig1 >> 16, sig1 & 0xFFFF, sig3 >> 16, sig3 & 0xFFFF, sig2 >> 16, sig2 & 0xFFFF);
}
else
{
// If there's no serial number support we just mark put "No serial number"
strcpy(CPUInfo.strProcessorSerial, "No Processor Serial Number");
}
// Now we get the standard processor extensions
GetStandardProcessorExtensions();
// And finally the processor configuration (caches, TLBs, ...) and translate
// the data to readable strings
GetStandardProcessorConfiguration();
TranslateProcessorConfiguration();
// At last...
return true;
}
// bool CProcessor::AnalyzeAMDProcessor()
// ======================================
// Private class function for analyzing an AMD processor
////////////////////////////////////////////////////////
bool CProcessor::AnalyzeAMDProcessor()
{
unsigned long eaxreg, ebxreg, ecxreg, edxreg;
// First of all we check if the CPUID command is available
if (!CheckCPUIDPresence())
return 0;
// Now we get the CPUID standard level 0x00000001
__asm
{
mov eax, 1
cpuid
mov eaxreg, eax
mov ebxreg, ebx
mov edxreg, edx
}
// Then we mask the model, family, stepping and type (AMD does not support brand id)
CPUInfo.uiStepping = eaxreg & 0xF;
CPUInfo.uiModel = (eaxreg >> 4) & 0xF;
CPUInfo.uiFamily = (eaxreg >> 8) & 0xF;
CPUInfo.uiType = (eaxreg >> 12) & 0x3;
// After that, we translate the processor type (see CProcessor::AnalyzeIntelProcessor()
// for further comments on this)
switch (CPUInfo.uiType)
{
case 0:
strcpy(CPUInfo.strType, "Original OEM");
strcpy(strCPUName, CPUInfo.strType);
strcat(strCPUName, " ");
break;
case 1:
strcpy(CPUInfo.strType, "Overdrive");
strcpy(strCPUName, CPUInfo.strType);
strcat(strCPUName, " ");
break;
case 2:
strcpy(CPUInfo.strType, "Dual-capable");
strcpy(strCPUName, CPUInfo.strType);
strcat(strCPUName, " ");
break;
case 3:
strcpy(CPUInfo.strType, "Reserved");
break;
default:
strcpy(CPUInfo.strType, "Unknown");
break;
}
// Now we check if the processor supports the brand id string extended CPUID level
if (CPUInfo.MaxSupportedExtendedLevel >= 0x80000004)
{
// If it supports the extended CPUID level 0x80000004 we read the data
char tmp[52];
memset(tmp, 0, sizeof(tmp));
__asm
{
mov eax, 0x80000002
cpuid
mov dword ptr [tmp], eax
mov dword ptr [tmp+4], ebx
mov dword ptr [tmp+8], ecx
mov dword ptr [tmp+12], edx
mov eax, 0x80000003
cpuid
mov dword ptr [tmp+16], eax
mov dword ptr [tmp+20], ebx
mov dword ptr [tmp+24], ecx
mov dword ptr [tmp+28], edx
mov eax, 0x80000004
cpuid
mov dword ptr [tmp+32], eax
mov dword ptr [tmp+36], ebx
mov dword ptr [tmp+40], ecx
mov dword ptr [tmp+44], edx
}
// And copy it to the brand id string
strcpy(CPUInfo.strBrandID, tmp);
}
else
{
// Or just tell there is no brand id string support
strcpy(CPUInfo.strBrandID, "Not supported");
}
// After that we translate the processor family
switch(CPUInfo.uiFamily)
{
case 4: // Family = 4: 486 (80486) or 5x86 (80486) processor family
switch (CPUInfo.uiModel)
{
case 3: // Thanks to AMD for this nice form of family
case 7: // detection.... *grmpf*
case 8:
case 9:
strcpy(CPUInfo.strFamily, "AMD 80486");
break;
case 0xE:
case 0xF:
strcpy(CPUInfo.strFamily, "AMD 5x86");
break;
default:
strcpy(CPUInfo.strFamily, "Unknown family");
break;
}
break;
case 5: // Family = 5: K5 or K6 processor family
switch (CPUInfo.uiModel)
{
case 0:
case 1:
case 2:
case 3:
strcpy(CPUInfo.strFamily, "AMD K5");
break;
case 6:
case 7:
case 8:
case 9:
strcpy(CPUInfo.strFamily, "AMD K6");
break;
default:
strcpy(CPUInfo.strFamily, "Unknown family");
break;
}
break;
case 6: // Family = 6: K7 (Athlon, ...) processor family
strcpy(CPUInfo.strFamily, "AMD K7");
break;
default: // For security
strcpy(CPUInfo.strFamily, "Unknown family");
break;
}
// After the family detection we come to the specific processor model
// detection
switch (CPUInfo.uiFamily)
{
case 4: // Family = 4: 486 (80486) or 5x85 (80486) processor family
switch (CPUInfo.uiModel)
{
case 3: // Model = 3: 80486 DX2
strcpy(CPUInfo.strModel, "AMD 80486 DX2");
strcat(strCPUName, "AMD 80486 DX2");
break;
case 7: // Model = 7: 80486 write-back enhanced DX2
strcpy(CPUInfo.strModel, "AMD 80486 write-back enhanced DX2");
strcat(strCPUName, "AMD 80486 write-back enhanced DX2");
break;
case 8: // Model = 8: 80486 DX4
strcpy(CPUInfo.strModel, "AMD 80486 DX4");
strcat(strCPUName, "AMD 80486 DX4");
break;
case 9: // Model = 9: 80486 write-back enhanced DX4
strcpy(CPUInfo.strModel, "AMD 80486 write-back enhanced DX4");
strcat(strCPUName, "AMD 80486 write-back enhanced DX4");
break;
case 0xE: // Model = 0xE: 5x86
strcpy(CPUInfo.strModel, "AMD 5x86");
strcat(strCPUName, "AMD 5x86");
break;
case 0xF: // Model = 0xF: 5x86 write-back enhanced (oh my god.....)
strcpy(CPUInfo.strModel, "AMD 5x86 write-back enhanced");
strcat(strCPUName, "AMD 5x86 write-back enhanced");
break;
default: // ...
strcpy(CPUInfo.strModel, "Unknown AMD 80486 or 5x86 model");
strcat(strCPUName, "AMD 80486 or 5x86 (Unknown model)");
break;
}
break;
case 5: // Family = 5: K5 / K6 processor family
switch (CPUInfo.uiModel)
{
case 0: // Model = 0: K5 SSA 5 (Pentium Rating *ggg* 75, 90 and 100 Mhz)
strcpy(CPUInfo.strModel, "AMD K5 SSA5 (PR75, PR90, PR100)");
strcat(strCPUName, "AMD K5 SSA5 (PR75, PR90, PR100)");
break;
case 1: // Model = 1: K5 5k86 (PR 120 and 133 MHz)
strcpy(CPUInfo.strModel, "AMD K5 5k86 (PR120, PR133)");
strcat(strCPUName, "AMD K5 5k86 (PR120, PR133)");
break;
case 2: // Model = 2: K5 5k86 (PR 166 MHz)
strcpy(CPUInfo.strModel, "AMD K5 5k86 (PR166)");
strcat(strCPUName, "AMD K5 5k86 (PR166)");
break;
case 3: // Model = 3: K5 5k86 (PR 200 MHz)
strcpy(CPUInfo.strModel, "AMD K5 5k86 (PR200)");
strcat(strCPUName, "AMD K5 5k86 (PR200)");
break;
case 6: // Model = 6: K6
strcpy(CPUInfo.strModel, "AMD K6 (0.30 <20>m)");
strcat(strCPUName, "AMD K6 (0.30 <20>m)");
break;
case 7: // Model = 7: K6 (0.25 <20>m)
strcpy(CPUInfo.strModel, "AMD K6 (0.25 <20>m)");
strcat(strCPUName, "AMD K6 (0.25 <20>m)");
break;
case 8: // Model = 8: K6-2
strcpy(CPUInfo.strModel, "AMD K6-2");
strcat(strCPUName, "AMD K6-2");
break;
case 9: // Model = 9: K6-III
strcpy(CPUInfo.strModel, "AMD K6-III");
strcat(strCPUName, "AMD K6-III");
break;
case 0xD: // Model = 0xD: K6-2+ / K6-III+
strcpy(CPUInfo.strModel, "AMD K6-2+ or K6-III+ (0.18 <20>m)");
strcat(strCPUName, "AMD K6-2+ or K6-III+ (0.18 <20>m)");
break;
default: // ...
strcpy(CPUInfo.strModel, "Unknown AMD K5 or K6 model");
strcat(strCPUName, "AMD K5 or K6 (Unknown model)");
break;
}
break;
case 6: // Family = 6: K7 processor family (AMDs first good processors)
switch (CPUInfo.uiModel)
{
case 1: // Athlon
strcpy(CPUInfo.strModel, "AMD Athlon (0.25 <20>m)");
strcat(strCPUName, "AMD Athlon (0.25 <20>m)");
break;
case 2: // Athlon (0.18 <20>m)
strcpy(CPUInfo.strModel, "AMD Athlon (0.18 <20>m)");
strcat(strCPUName, "AMD Athlon (0.18 <20>m)");
break;
case 3: // Duron (Spitfire core)
strcpy(CPUInfo.strModel, "AMD Duron (Spitfire)");
strcat(strCPUName, "AMD Duron (Spitfire core)");
break;
case 4: // Athlon (Thunderbird core)
strcpy(CPUInfo.strModel, "AMD Athlon (Thunderbird)");
strcat(strCPUName, "AMD Athlon (Thunderbird core)");
break;
case 6: // Athlon MP / Mobile Athlon (Palomino core)
strcpy(CPUInfo.strModel, "AMD Athlon MP/Mobile Athlon (Palomino)");
strcat(strCPUName, "AMD Athlon MP/Mobile Athlon (Palomino core)");
break;
case 7: // Mobile Duron (Morgan core)
strcpy(CPUInfo.strModel, "AMD Mobile Duron (Morgan)");
strcat(strCPUName, "AMD Mobile Duron (Morgan core)");
break;
default: // ...
strcpy(CPUInfo.strModel, "Unknown AMD K7 model");
strcat(strCPUName, "AMD K7 (Unknown model)");
break;
}
break;
default: // ...
strcpy(CPUInfo.strModel, "Unknown AMD model");
strcat(strCPUName, "AMD (Unknown model)");
break;
}
// Now we read the standard processor extension that are stored in the same
// way the Intel standard extensions are
GetStandardProcessorExtensions();
// Then we check if theres an extended CPUID level support
if (CPUInfo.MaxSupportedExtendedLevel >= 0x80000001)
{
// If we can access the extended CPUID level 0x80000001 we get the
// edx register
__asm
{
mov eax, 0x80000001
cpuid
mov edxreg, edx
}
// Now we can mask some AMD specific cpu extensions
CPUInfo._Ext.EMMX_MultimediaExtensions = CheckBit(edxreg, 22);
CPUInfo._Ext.AA64_AMD64BitArchitecture = CheckBit(edxreg, 29);
CPUInfo._Ext._E3DNOW_InstructionExtensions = CheckBit(edxreg, 30);
CPUInfo._Ext._3DNOW_InstructionExtensions = CheckBit(edxreg, 31);
}
// After that we check if the processor supports the ext. CPUID level
// 0x80000006
if (CPUInfo.MaxSupportedExtendedLevel >= 0x80000006)
{
// If it's present, we read it out
__asm
{
mov eax, 0x80000005
cpuid
mov eaxreg, eax
mov ebxreg, ebx
mov ecxreg, ecx
mov edxreg, edx
}
// Then we mask the L1 Data TLB information
if ((ebxreg >> 16) && (eaxreg >> 16))
{
CPUInfo._Data.bPresent = true;
strcpy(CPUInfo._Data.strPageSize, "4 KB / 2 MB / 4MB");
CPUInfo._Data.uiAssociativeWays = (eaxreg >> 24) & 0xFF;
CPUInfo._Data.uiEntries = (eaxreg >> 16) & 0xFF;
}
else if (eaxreg >> 16)
{
CPUInfo._Data.bPresent = true;
strcpy(CPUInfo._Data.strPageSize, "2 MB / 4MB");
CPUInfo._Data.uiAssociativeWays = (eaxreg >> 24) & 0xFF;
CPUInfo._Data.uiEntries = (eaxreg >> 16) & 0xFF;
}
else if (ebxreg >> 16)
{
CPUInfo._Data.bPresent = true;
strcpy(CPUInfo._Data.strPageSize, "4 KB");
CPUInfo._Data.uiAssociativeWays = (ebxreg >> 24) & 0xFF;
CPUInfo._Data.uiEntries = (ebxreg >> 16) & 0xFF;
}
if (CPUInfo._Data.uiAssociativeWays == 0xFF)
CPUInfo._Data.uiAssociativeWays = (unsigned int) -1;
// Now the L1 Instruction/Code TLB information
if ((ebxreg & 0xFFFF) && (eaxreg & 0xFFFF))
{
CPUInfo._Instruction.bPresent = true;
strcpy(CPUInfo._Instruction.strPageSize, "4 KB / 2 MB / 4MB");
CPUInfo._Instruction.uiAssociativeWays = (eaxreg >> 8) & 0xFF;
CPUInfo._Instruction.uiEntries = eaxreg & 0xFF;
}
else if (eaxreg & 0xFFFF)
{
CPUInfo._Instruction.bPresent = true;
strcpy(CPUInfo._Instruction.strPageSize, "2 MB / 4MB");
CPUInfo._Instruction.uiAssociativeWays = (eaxreg >> 8) & 0xFF;
CPUInfo._Instruction.uiEntries = eaxreg & 0xFF;
}
else if (ebxreg & 0xFFFF)
{
CPUInfo._Instruction.bPresent = true;
strcpy(CPUInfo._Instruction.strPageSize, "4 KB");
CPUInfo._Instruction.uiAssociativeWays = (ebxreg >> 8) & 0xFF;
CPUInfo._Instruction.uiEntries = ebxreg & 0xFF;
}
if (CPUInfo._Instruction.uiAssociativeWays == 0xFF)
CPUInfo._Instruction.uiAssociativeWays = (unsigned int) -1;
// Then we read the L1 data cache information
if ((ecxreg >> 24) > 0)
{
CPUInfo._L1.Data.bPresent = true;
sprintf(CPUInfo._L1.Data.strSize, "%d KB", ecxreg >> 24);
CPUInfo._L1.Data.uiAssociativeWays = (ecxreg >> 15) & 0xFF;
CPUInfo._L1.Data.uiLineSize = ecxreg & 0xFF;
}
// After that we read the L2 instruction/code cache information
if ((edxreg >> 24) > 0)
{
CPUInfo._L1.Instruction.bPresent = true;
sprintf(CPUInfo._L1.Instruction.strSize, "%d KB", edxreg >> 24);
CPUInfo._L1.Instruction.uiAssociativeWays = (edxreg >> 15) & 0xFF;
CPUInfo._L1.Instruction.uiLineSize = edxreg & 0xFF;
}
// Note: I'm not absolutely sure that the L1 page size code (the
// 'if/else if/else if' structs above) really detects the real page
// size for the TLB. Somebody should check it....
// Now we read the ext. CPUID level 0x80000006
__asm
{
mov eax, 0x80000006
cpuid
mov eaxreg, eax
mov ebxreg, ebx
mov ecxreg, ecx
}
// We only mask the unified L2 cache masks (never heard of an
// L2 cache that is divided in data and code parts)
if (((ecxreg >> 12) & 0xF) > 0)
{
CPUInfo._L2.bPresent = true;
sprintf(CPUInfo._L2.strSize, "%d KB", ecxreg >> 16);
switch ((ecxreg >> 12) & 0xF)
{
case 1:
CPUInfo._L2.uiAssociativeWays = 1;
break;
case 2:
CPUInfo._L2.uiAssociativeWays = 2;
break;
case 4:
CPUInfo._L2.uiAssociativeWays = 4;
break;
case 6:
CPUInfo._L2.uiAssociativeWays = 8;
break;
case 8:
CPUInfo._L2.uiAssociativeWays = 16;
break;
case 0xF:
CPUInfo._L2.uiAssociativeWays = (unsigned int) -1;
break;
default:
CPUInfo._L2.uiAssociativeWays = 0;
break;
}
CPUInfo._L2.uiLineSize = ecxreg & 0xFF;
}
}
else
{
// If we could not detect the ext. CPUID level 0x80000006 we
// try to read the standard processor configuration.
GetStandardProcessorConfiguration();
}
// After reading we translate the configuration to strings
TranslateProcessorConfiguration();
// And finally exit
return true;
}
// bool CProcessor::AnalyzeUnknownProcessor()
// ==========================================
// Private class function to analyze an unknown (No Intel or AMD) processor
///////////////////////////////////////////////////////////////////////////
bool CProcessor::AnalyzeUnknownProcessor()
{
unsigned long eaxreg, ebxreg;
// We check if the CPUID command is available
if (!CheckCPUIDPresence())
return false;
// First of all we read the standard CPUID level 0x00000001
// This level should be available on every x86-processor clone
__asm
{
mov eax, 1
cpuid
mov eaxreg, eax
mov ebxreg, ebx
}
// Then we mask the processor model, family, type and stepping
CPUInfo.uiStepping = eaxreg & 0xF;
CPUInfo.uiModel = (eaxreg >> 4) & 0xF;
CPUInfo.uiFamily = (eaxreg >> 8) & 0xF;
CPUInfo.uiType = (eaxreg >> 12) & 0x3;
// To have complete information we also mask the brand id
CPUInfo.uiBrandID = ebxreg & 0xF;
// Then we get the standard processor extensions
GetStandardProcessorExtensions();
// Now we mark everything we do not know as unknown
strcpy(strCPUName, "Unknown");
strcpy(CPUInfo._Data.strTLB, "Unknown");
strcpy(CPUInfo._Instruction.strTLB, "Unknown");
strcpy(CPUInfo._Trace.strCache, "Unknown");
strcpy(CPUInfo._L1.Data.strCache, "Unknown");
strcpy(CPUInfo._L1.Instruction.strCache, "Unknown");
strcpy(CPUInfo._L2.strCache, "Unknown");
strcpy(CPUInfo._L3.strCache, "Unknown");
strcpy(CPUInfo.strProcessorSerial, "Unknown / Not supported");
// For the family, model and brand id we can only print the numeric value
sprintf(CPUInfo.strBrandID, "Brand-ID number %d", CPUInfo.uiBrandID);
sprintf(CPUInfo.strFamily, "Family number %d", CPUInfo.uiFamily);
sprintf(CPUInfo.strModel, "Model number %d", CPUInfo.uiModel);
// Nevertheless we can determine the processor type
switch (CPUInfo.uiType)
{
case 0:
strcpy(CPUInfo.strType, "Original OEM");
break;
case 1:
strcpy(CPUInfo.strType, "Overdrive");
break;
case 2:
strcpy(CPUInfo.strType, "Dual-capable");
break;
case 3:
strcpy(CPUInfo.strType, "Reserved");
break;
default:
strcpy(CPUInfo.strType, "Unknown");
break;
}
// And thats it
return true;
}
// bool CProcessor::CheckCPUIDPresence()
// =====================================
// This function checks if the CPUID command is available on the current
// processor
////////////////////////////////////////////////////////////////////////
bool CProcessor::CheckCPUIDPresence()
{
unsigned long BitChanged;
// We've to check if we can toggle the flag register bit 21
// If we can't the processor does not support the CPUID command
__asm
{
pushfd
pop eax
mov ebx, eax
xor eax, 0x00200000
push eax
popfd
pushfd
pop eax
xor eax,ebx
mov BitChanged, eax
}
return ((BitChanged) ? true : false);
}
// void CProcessor::DecodeProcessorConfiguration(unsigned int cfg)
// ===============================================================
// This function (or switch ?!) just translates a one-byte processor configuration
// byte to understandable values
//////////////////////////////////////////////////////////////////////////////////
void CProcessor::DecodeProcessorConfiguration(unsigned int cfg)
{
// First we ensure that there's only one single byte
cfg &= 0xFF;
// Then we do a big switch
switch(cfg)
{
case 0: // cfg = 0: Unused
break;
case 0x1: // cfg = 0x1: code TLB present, 4 KB pages, 4 ways, 32 entries
CPUInfo._Instruction.bPresent = true;
strcpy(CPUInfo._Instruction.strPageSize, "4 KB");
CPUInfo._Instruction.uiAssociativeWays = 4;
CPUInfo._Instruction.uiEntries = 32;
break;
case 0x2: // cfg = 0x2: code TLB present, 4 MB pages, fully associative, 2 entries
CPUInfo._Instruction.bPresent = true;
strcpy(CPUInfo._Instruction.strPageSize, "4 MB");
CPUInfo._Instruction.uiAssociativeWays = 4;
CPUInfo._Instruction.uiEntries = 2;
break;
case 0x3: // cfg = 0x3: data TLB present, 4 KB pages, 4 ways, 64 entries
CPUInfo._Data.bPresent = true;
strcpy(CPUInfo._Data.strPageSize, "4 KB");
CPUInfo._Data.uiAssociativeWays = 4;
CPUInfo._Data.uiEntries = 64;
break;
case 0x4: // cfg = 0x4: data TLB present, 4 MB pages, 4 ways, 8 entries
CPUInfo._Data.bPresent = true;
strcpy(CPUInfo._Data.strPageSize, "4 MB");
CPUInfo._Data.uiAssociativeWays = 4;
CPUInfo._Data.uiEntries = 8;
break;
case 0x6: // cfg = 0x6: code L1 cache present, 8 KB, 4 ways, 32 byte lines
CPUInfo._L1.Instruction.bPresent = true;
strcpy(CPUInfo._L1.Instruction.strSize, "8 KB");
CPUInfo._L1.Instruction.uiAssociativeWays = 4;
CPUInfo._L1.Instruction.uiLineSize = 32;
break;
case 0x8: // cfg = 0x8: code L1 cache present, 16 KB, 4 ways, 32 byte lines
CPUInfo._L1.Instruction.bPresent = true;
strcpy(CPUInfo._L1.Instruction.strSize, "16 KB");
CPUInfo._L1.Instruction.uiAssociativeWays = 4;
CPUInfo._L1.Instruction.uiLineSize = 32;
break;
case 0xA: // cfg = 0xA: data L1 cache present, 8 KB, 2 ways, 32 byte lines
CPUInfo._L1.Data.bPresent = true;
strcpy(CPUInfo._L1.Data.strSize, "8 KB");
CPUInfo._L1.Data.uiAssociativeWays = 2;
CPUInfo._L1.Data.uiLineSize = 32;
break;
case 0xC: // cfg = 0xC: data L1 cache present, 16 KB, 4 ways, 32 byte lines
CPUInfo._L1.Data.bPresent = true;
strcpy(CPUInfo._L1.Data.strSize, "16 KB");
CPUInfo._L1.Data.uiAssociativeWays = 4;
CPUInfo._L1.Data.uiLineSize = 32;
break;
case 0x22: // cfg = 0x22: code and data L3 cache present, 512 KB, 4 ways, 64 byte lines, sectored
CPUInfo._L3.bPresent = true;
strcpy(CPUInfo._L3.strSize, "512 KB");
CPUInfo._L3.uiAssociativeWays = 4;
CPUInfo._L3.uiLineSize = 64;
CPUInfo._L3.bSectored = true;
break;
case 0x23: // cfg = 0x23: code and data L3 cache present, 1024 KB, 8 ways, 64 byte lines, sectored
CPUInfo._L3.bPresent = true;
strcpy(CPUInfo._L3.strSize, "1024 KB");
CPUInfo._L3.uiAssociativeWays = 8;
CPUInfo._L3.uiLineSize = 64;
CPUInfo._L3.bSectored = true;
break;
case 0x25: // cfg = 0x25: code and data L3 cache present, 2048 KB, 8 ways, 64 byte lines, sectored
CPUInfo._L3.bPresent = true;
strcpy(CPUInfo._L3.strSize, "2048 KB");
CPUInfo._L3.uiAssociativeWays = 8;
CPUInfo._L3.uiLineSize = 64;
CPUInfo._L3.bSectored = true;
break;
case 0x29: // cfg = 0x29: code and data L3 cache present, 4096 KB, 8 ways, 64 byte lines, sectored
CPUInfo._L3.bPresent = true;
strcpy(CPUInfo._L3.strSize, "4096 KB");
CPUInfo._L3.uiAssociativeWays = 8;
CPUInfo._L3.uiLineSize = 64;
CPUInfo._L3.bSectored = true;
break;
case 0x40: // cfg = 0x40: no integrated L2 cache (P6 core) or L3 cache (P4 core)
break;
case 0x41: // cfg = 0x41: code and data L2 cache present, 128 KB, 4 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "128 KB");
CPUInfo._L2.uiAssociativeWays = 4;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x42: // cfg = 0x42: code and data L2 cache present, 256 KB, 4 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "256 KB");
CPUInfo._L2.uiAssociativeWays = 4;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x43: // cfg = 0x43: code and data L2 cache present, 512 KB, 4 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "512 KB");
CPUInfo._L2.uiAssociativeWays = 4;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x44: // cfg = 0x44: code and data L2 cache present, 1024 KB, 4 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "1 MB");
CPUInfo._L2.uiAssociativeWays = 4;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x45: // cfg = 0x45: code and data L2 cache present, 2048 KB, 4 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "2 MB");
CPUInfo._L2.uiAssociativeWays = 4;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x50: // cfg = 0x50: code TLB present, 4 KB / 4 MB / 2 MB pages, fully associative, 64 entries
CPUInfo._Instruction.bPresent = true;
strcpy(CPUInfo._Instruction.strPageSize, "4 KB / 2 MB / 4 MB");
CPUInfo._Instruction.uiAssociativeWays = (unsigned int) -1;
CPUInfo._Instruction.uiEntries = 64;
break;
case 0x51: // cfg = 0x51: code TLB present, 4 KB / 4 MB / 2 MB pages, fully associative, 128 entries
CPUInfo._Instruction.bPresent = true;
strcpy(CPUInfo._Instruction.strPageSize, "4 KB / 2 MB / 4 MB");
CPUInfo._Instruction.uiAssociativeWays = (unsigned int) -1;
CPUInfo._Instruction.uiEntries = 128;
break;
case 0x52: // cfg = 0x52: code TLB present, 4 KB / 4 MB / 2 MB pages, fully associative, 256 entries
CPUInfo._Instruction.bPresent = true;
strcpy(CPUInfo._Instruction.strPageSize, "4 KB / 2 MB / 4 MB");
CPUInfo._Instruction.uiAssociativeWays = (unsigned int) -1;
CPUInfo._Instruction.uiEntries = 256;
break;
case 0x5B: // cfg = 0x5B: data TLB present, 4 KB / 4 MB pages, fully associative, 64 entries
CPUInfo._Data.bPresent = true;
strcpy(CPUInfo._Data.strPageSize, "4 KB / 4 MB");
CPUInfo._Data.uiAssociativeWays = (unsigned int) -1;
CPUInfo._Data.uiEntries = 64;
break;
case 0x5C: // cfg = 0x5C: data TLB present, 4 KB / 4 MB pages, fully associative, 128 entries
CPUInfo._Data.bPresent = true;
strcpy(CPUInfo._Data.strPageSize, "4 KB / 4 MB");
CPUInfo._Data.uiAssociativeWays = (unsigned int) -1;
CPUInfo._Data.uiEntries = 128;
break;
case 0x5d: // cfg = 0x5D: data TLB present, 4 KB / 4 MB pages, fully associative, 256 entries
CPUInfo._Data.bPresent = true;
strcpy(CPUInfo._Data.strPageSize, "4 KB / 4 MB");
CPUInfo._Data.uiAssociativeWays = (unsigned int) -1;
CPUInfo._Data.uiEntries = 256;
break;
case 0x66: // cfg = 0x66: data L1 cache present, 8 KB, 4 ways, 64 byte lines, sectored
CPUInfo._L1.Data.bPresent = true;
strcpy(CPUInfo._L1.Data.strSize, "8 KB");
CPUInfo._L1.Data.uiAssociativeWays = 4;
CPUInfo._L1.Data.uiLineSize = 64;
break;
case 0x67: // cfg = 0x67: data L1 cache present, 16 KB, 4 ways, 64 byte lines, sectored
CPUInfo._L1.Data.bPresent = true;
strcpy(CPUInfo._L1.Data.strSize, "16 KB");
CPUInfo._L1.Data.uiAssociativeWays = 4;
CPUInfo._L1.Data.uiLineSize = 64;
break;
case 0x68: // cfg = 0x68: data L1 cache present, 32 KB, 4 ways, 64 byte lines, sectored
CPUInfo._L1.Data.bPresent = true;
strcpy(CPUInfo._L1.Data.strSize, "32 KB");
CPUInfo._L1.Data.uiAssociativeWays = 4;
CPUInfo._L1.Data.uiLineSize = 64;
break;
case 0x70: // cfg = 0x70: trace L1 cache present, 12 K<>OPs, 4 ways
CPUInfo._Trace.bPresent = true;
strcpy(CPUInfo._Trace.strSize, "12 K-micro-ops");
CPUInfo._Trace.uiAssociativeWays = 4;
break;
case 0x71: // cfg = 0x71: trace L1 cache present, 16 K<>OPs, 4 ways
CPUInfo._Trace.bPresent = true;
strcpy(CPUInfo._Trace.strSize, "16 K-micro-ops");
CPUInfo._Trace.uiAssociativeWays = 4;
break;
case 0x72: // cfg = 0x72: trace L1 cache present, 32 K<>OPs, 4 ways
CPUInfo._Trace.bPresent = true;
strcpy(CPUInfo._Trace.strSize, "32 K-micro-ops");
CPUInfo._Trace.uiAssociativeWays = 4;
break;
case 0x79: // cfg = 0x79: code and data L2 cache present, 128 KB, 8 ways, 64 byte lines, sectored
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "128 KB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 64;
CPUInfo._L2.bSectored = true;
break;
case 0x7A: // cfg = 0x7A: code and data L2 cache present, 256 KB, 8 ways, 64 byte lines, sectored
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "256 KB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 64;
CPUInfo._L2.bSectored = true;
break;
case 0x7B: // cfg = 0x7B: code and data L2 cache present, 512 KB, 8 ways, 64 byte lines, sectored
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "512 KB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 64;
CPUInfo._L2.bSectored = true;
break;
case 0x7C: // cfg = 0x7C: code and data L2 cache present, 1024 KB, 8 ways, 64 byte lines, sectored
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "1 MB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 64;
CPUInfo._L2.bSectored = true;
break;
case 0x81: // cfg = 0x81: code and data L2 cache present, 128 KB, 8 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "128 KB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x82: // cfg = 0x82: code and data L2 cache present, 256 KB, 8 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "256 KB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x83: // cfg = 0x83: code and data L2 cache present, 512 KB, 8 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "512 KB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x84: // cfg = 0x84: code and data L2 cache present, 1024 KB, 8 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "1 MB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 32;
break;
case 0x85: // cfg = 0x85: code and data L2 cache present, 2048 KB, 8 ways, 32 byte lines
CPUInfo._L2.bPresent = true;
strcpy(CPUInfo._L2.strSize, "2 MB");
CPUInfo._L2.uiAssociativeWays = 8;
CPUInfo._L2.uiLineSize = 32;
break;
}
}
__forceinline static char *TranslateAssociativeWays(unsigned int uiWays, char *buf)
{
// We define 0xFFFFFFFF (= -1) as fully associative
if (uiWays == ((unsigned int) -1))
strcpy(buf, "fully associative");
else
{
if (uiWays == 1) // A one way associative cache is just direct mapped
strcpy(buf, "direct mapped");
else if (uiWays == 0) // This should not happen...
strcpy(buf, "unknown associative ways");
else // The x-way associative cache
sprintf(buf, "%d ways associative", uiWays);
}
// To ease the function use we return the buffer
return buf;
}
__forceinline static void TranslateTLB(ProcessorTLB *tlb)
{
char buf[64];
// We just check if the TLB is present
if (tlb->bPresent)
sprintf(tlb->strTLB, "%s page size, %s, %d entries", tlb->strPageSize, TranslateAssociativeWays(tlb->uiAssociativeWays, buf), tlb->uiEntries);
else
strcpy(tlb->strTLB, "Not present");
}
__forceinline static void TranslateCache(ProcessorCache *cache)
{
char buf[64];
// We just check if the cache is present
if (cache->bPresent)
{
// If present we construct the string
sprintf(cache->strCache, "%s cache size, %s, %d bytes line size", cache->strSize, TranslateAssociativeWays(cache->uiAssociativeWays, buf), cache->uiLineSize);
if (cache->bSectored)
strcat(cache->strCache, ", sectored");
}
else
{
// Else we just say "Not present"
strcpy(cache->strCache, "Not present");
}
}
// void CProcessor::TranslateProcessorConfiguration()
// ==================================================
// Private class function to translate the processor configuration values
// to strings
/////////////////////////////////////////////////////////////////////////
void CProcessor::TranslateProcessorConfiguration()
{
// We just call the small functions defined above
TranslateTLB(&CPUInfo._Data);
TranslateTLB(&CPUInfo._Instruction);
TranslateCache(&CPUInfo._Trace);
TranslateCache(&CPUInfo._L1.Instruction);
TranslateCache(&CPUInfo._L1.Data);
TranslateCache(&CPUInfo._L2);
TranslateCache(&CPUInfo._L3);
}
// void CProcessor::GetStandardProcessorConfiguration()
// ====================================================
// Private class function to read the standard processor configuration
//////////////////////////////////////////////////////////////////////
void CProcessor::GetStandardProcessorConfiguration()
{
unsigned long eaxreg, ebxreg, ecxreg, edxreg;
// We check if the CPUID function is available
if (!CheckCPUIDPresence())
return;
// First we check if the processor supports the standard
// CPUID level 0x00000002
if (CPUInfo.MaxSupportedLevel >= 2)
{
// Now we go read the std. CPUID level 0x00000002 the first time
unsigned long count, num = 255;
for (count = 0; count < num; count++)
{
__asm
{
mov eax, 2
cpuid
mov eaxreg, eax
mov ebxreg, ebx
mov ecxreg, ecx
mov edxreg, edx
}
// We have to repeat this reading for 'num' times
num = eaxreg & 0xFF;
// Then we call the big decode switch function
DecodeProcessorConfiguration(eaxreg >> 8);
DecodeProcessorConfiguration(eaxreg >> 16);
DecodeProcessorConfiguration(eaxreg >> 24);
// If ebx contains additional data we also decode it
if ((ebxreg & 0x80000000) == 0)
{
DecodeProcessorConfiguration(ebxreg);
DecodeProcessorConfiguration(ebxreg >> 8);
DecodeProcessorConfiguration(ebxreg >> 16);
DecodeProcessorConfiguration(ebxreg >> 24);
}
// And also the ecx register
if ((ecxreg & 0x80000000) == 0)
{
DecodeProcessorConfiguration(ecxreg);
DecodeProcessorConfiguration(ecxreg >> 8);
DecodeProcessorConfiguration(ecxreg >> 16);
DecodeProcessorConfiguration(ecxreg >> 24);
}
// At last the edx processor register
if ((edxreg & 0x80000000) == 0)
{
DecodeProcessorConfiguration(edxreg);
DecodeProcessorConfiguration(edxreg >> 8);
DecodeProcessorConfiguration(edxreg >> 16);
DecodeProcessorConfiguration(edxreg >> 24);
}
}
}
}
// void CProcessor::GetStandardProcessorExtensions()
// =================================================
// Private class function to read the standard processor extensions
///////////////////////////////////////////////////////////////////
void CProcessor::GetStandardProcessorExtensions()
{
unsigned long ebxreg, edxreg;
// We check if the CPUID command is available
if (!CheckCPUIDPresence())
return;
// We just get the standard CPUID level 0x00000001 which should be
// available on every x86 processor
__asm
{
mov eax, 1
cpuid
mov ebxreg, ebx
mov edxreg, edx
}
// Then we mask some bits
CPUInfo._Ext.FPU_FloatingPointUnit = CheckBit(edxreg, 0);
CPUInfo._Ext.VME_Virtual8086ModeEnhancements = CheckBit(edxreg, 1);
CPUInfo._Ext.DE_DebuggingExtensions = CheckBit(edxreg, 2);
CPUInfo._Ext.PSE_PageSizeExtensions = CheckBit(edxreg, 3);
CPUInfo._Ext.TSC_TimeStampCounter = CheckBit(edxreg, 4);
CPUInfo._Ext.MSR_ModelSpecificRegisters = CheckBit(edxreg, 5);
CPUInfo._Ext.PAE_PhysicalAddressExtension = CheckBit(edxreg, 6);
CPUInfo._Ext.MCE_MachineCheckException = CheckBit(edxreg, 7);
CPUInfo._Ext.CX8_COMPXCHG8B_Instruction = CheckBit(edxreg, 8);
CPUInfo._Ext.APIC_AdvancedProgrammableInterruptController = CheckBit(edxreg, 9);
CPUInfo._Ext.APIC_ID = (ebxreg >> 24) & 0xFF;
CPUInfo._Ext.SEP_FastSystemCall = CheckBit(edxreg, 11);
CPUInfo._Ext.MTRR_MemoryTypeRangeRegisters = CheckBit(edxreg, 12);
CPUInfo._Ext.PGE_PTE_GlobalFlag = CheckBit(edxreg, 13);
CPUInfo._Ext.MCA_MachineCheckArchitecture = CheckBit(edxreg, 14);
CPUInfo._Ext.CMOV_ConditionalMoveAndCompareInstructions = CheckBit(edxreg, 15);
CPUInfo._Ext.FGPAT_PageAttributeTable = CheckBit(edxreg, 16);
CPUInfo._Ext.PSE36_36bitPageSizeExtension = CheckBit(edxreg, 17);
CPUInfo._Ext.PN_ProcessorSerialNumber = CheckBit(edxreg, 18);
CPUInfo._Ext.CLFSH_CFLUSH_Instruction = CheckBit(edxreg, 19);
CPUInfo._Ext.CLFLUSH_InstructionCacheLineSize = (ebxreg >> 8) & 0xFF;
CPUInfo._Ext.DS_DebugStore = CheckBit(edxreg, 21);
CPUInfo._Ext.ACPI_ThermalMonitorAndClockControl = CheckBit(edxreg, 22);
CPUInfo._Ext.MMX_MultimediaExtensions = CheckBit(edxreg, 23);
CPUInfo._Ext.FXSR_FastStreamingSIMD_ExtensionsSaveRestore = CheckBit(edxreg, 24);
CPUInfo._Ext.SSE_StreamingSIMD_Extensions = CheckBit(edxreg, 25);
CPUInfo._Ext.SSE2_StreamingSIMD2_Extensions = CheckBit(edxreg, 26);
CPUInfo._Ext.SS_SelfSnoop = CheckBit(edxreg, 27);
CPUInfo._Ext.HT_HyperThreading = CheckBit(edxreg, 28);
CPUInfo._Ext.HT_HyterThreadingSiblings = (ebxreg >> 16) & 0xFF;
CPUInfo._Ext.TM_ThermalMonitor = CheckBit(edxreg, 29);
CPUInfo._Ext.IA64_Intel64BitArchitecture = CheckBit(edxreg, 30);
}
// const ProcessorInfo *CProcessor::GetCPUInfo()
// =============================================
// Calls all the other detection function to create an detailed
// processor information
///////////////////////////////////////////////////////////////
const ProcessorInfo *CProcessor::GetCPUInfo()
{
unsigned long eaxreg, ebxreg, ecxreg, edxreg;
// First of all we check if the CPUID command is available
if (!CheckCPUIDPresence())
return NULL;
// We read the standard CPUID level 0x00000000 which should
// be available on every x86 processor
__asm
{
mov eax, 0
cpuid
mov eaxreg, eax
mov ebxreg, ebx
mov edxreg, edx
mov ecxreg, ecx
}
// Then we connect the single register values to the vendor string
*((unsigned long *) CPUInfo.strVendor) = ebxreg;
*((unsigned long *) (CPUInfo.strVendor+4)) = edxreg;
*((unsigned long *) (CPUInfo.strVendor+8)) = ecxreg;
// We can also read the max. supported standard CPUID level
CPUInfo.MaxSupportedLevel = eaxreg & 0xFFFF;
// Then we read the ext. CPUID level 0x80000000
__asm
{
mov eax, 0x80000000
cpuid
mov eaxreg, eax
}
// ...to check the max. supportted extended CPUID level
CPUInfo.MaxSupportedExtendedLevel = eaxreg;
// Then we switch to the specific processor vendors
switch (ebxreg)
{
case 0x756E6547: // GenuineIntel
AnalyzeIntelProcessor();
break;
case 0x68747541: // AuthenticAMD
AnalyzeAMDProcessor();
break;
case 0x69727943: // CyrixInstead
// I really do not know anyone owning such a piece of crab
// So we analyze it as an unknown processor *ggggg*
default:
AnalyzeUnknownProcessor();
break;
}
// After all we return the class CPUInfo member var
return (&CPUInfo);
}
// bool CProcessor::CPUInfoToText(char *strBuffer, unsigned int uiMaxLen)
// ======================================================================
// Gets the frequency and processor information and writes it to a string
/////////////////////////////////////////////////////////////////////////
bool CProcessor::CPUInfoToText(char *strBuffer, unsigned int uiMaxLen)
{
#define LENCHECK len = (unsigned int) strlen(buf); if (len >= uiMaxLen) return false; strcpy(strBuffer, buf); strBuffer += len;
#define COPYADD(str) strcpy(buf, str); LENCHECK;
#define FORMATADD(format, var) sprintf(buf, format, var); LENCHECK;
#define BOOLADD(str, boolvar) COPYADD(str); if (boolvar) { COPYADD(" Yes\n"); } else { COPYADD(" No\n"); }
char buf[1024];
unsigned int len;
// First we have to get the frequency
GetCPUFrequency(50);
// Then we get the processor information
GetCPUInfo();
// Now we construct the string (see the macros at function beginning)
strBuffer[0] = 0;
COPYADD("// CPU General Information\n//////////////////////////\n");
FORMATADD("Processor name: %s\n", strCPUName);
FORMATADD("Frequency: %.2f MHz\n\n", (float) uqwFrequency / 1000000.0f);
FORMATADD("Vendor: %s\n", CPUInfo.strVendor);
FORMATADD("Family: %s\n", CPUInfo.strFamily);
FORMATADD("Extended family: %d\n", CPUInfo.uiExtendedFamily);
FORMATADD("Model: %s\n", CPUInfo.strModel);
FORMATADD("Extended model: %d\n", CPUInfo.uiExtendedModel);
FORMATADD("Type: %s\n", CPUInfo.strType);
FORMATADD("Brand ID: %s\n", CPUInfo.strBrandID);
if (CPUInfo._Ext.PN_ProcessorSerialNumber)
{
FORMATADD("Processor Serial: %s\n", CPUInfo.strProcessorSerial);
}
else
{
COPYADD("Processor Serial: Disabled\n");
}
COPYADD("\n\n// CPU Configuration\n////////////////////\n");
FORMATADD("L1 instruction cache: %s\n", CPUInfo._L1.Instruction.strCache);
FORMATADD("L1 data cache: %s\n", CPUInfo._L1.Data.strCache);
FORMATADD("L2 cache: %s\n", CPUInfo._L2.strCache);
FORMATADD("L3 cache: %s\n", CPUInfo._L3.strCache);
FORMATADD("Trace cache: %s\n", CPUInfo._Trace.strCache);
FORMATADD("Instruction TLB: %s\n", CPUInfo._Instruction.strTLB);
FORMATADD("Data TLB: %s\n", CPUInfo._Data.strTLB);
FORMATADD("Max Supported CPUID-Level: 0x%08lX\n", CPUInfo.MaxSupportedLevel);
FORMATADD("Max Supported Ext. CPUID-Level: 0x%08lX\n", CPUInfo.MaxSupportedExtendedLevel);
COPYADD("\n\n// CPU Extensions\n/////////////////\n");
BOOLADD("AA64 AMD 64-bit Architecture: ", CPUInfo._Ext.AA64_AMD64BitArchitecture);
BOOLADD("ACPI Thermal Monitor And Clock Control: ", CPUInfo._Ext.ACPI_ThermalMonitorAndClockControl);
BOOLADD("APIC Advanced Programmable Interrupt Controller: ", CPUInfo._Ext.APIC_AdvancedProgrammableInterruptController);
FORMATADD(" APIC-ID: %d\n", CPUInfo._Ext.APIC_ID);
BOOLADD("CLFSH CLFLUSH Instruction Presence: ", CPUInfo._Ext.CLFSH_CFLUSH_Instruction);
FORMATADD(" CLFLUSH Instruction Cache Line Size: %d\n", CPUInfo._Ext.CLFLUSH_InstructionCacheLineSize);
BOOLADD("CMOV Conditional Move And Compare Instructions: ", CPUInfo._Ext.CMOV_ConditionalMoveAndCompareInstructions);
BOOLADD("CX8 COMPXCHG8B Instruction: ", CPUInfo._Ext.CX8_COMPXCHG8B_Instruction);
BOOLADD("DE Debugging Extensions: ", CPUInfo._Ext.DE_DebuggingExtensions);
BOOLADD("DS Debug Store: ", CPUInfo._Ext.DS_DebugStore);
BOOLADD("FGPAT Page Attribute Table: ", CPUInfo._Ext.FGPAT_PageAttributeTable);
BOOLADD("FPU Floating Point Unit: ", CPUInfo._Ext.FPU_FloatingPointUnit);
BOOLADD("FXSR Fast Streaming SIMD Extensions Save/Restore:", CPUInfo._Ext.FXSR_FastStreamingSIMD_ExtensionsSaveRestore);
BOOLADD("HT Hyper Threading: ", CPUInfo._Ext.HT_HyperThreading);
BOOLADD("IA64 Intel 64-Bit Architecture: ", CPUInfo._Ext.IA64_Intel64BitArchitecture);
BOOLADD("MCA Machine Check Architecture: ", CPUInfo._Ext.MCA_MachineCheckArchitecture);
BOOLADD("MCE Machine Check Exception: ", CPUInfo._Ext.MCE_MachineCheckException);
BOOLADD("MMX Multimedia Extensions: ", CPUInfo._Ext.MMX_MultimediaExtensions);
BOOLADD("MMX+ Multimedia Extensions: ", CPUInfo._Ext.EMMX_MultimediaExtensions);
BOOLADD("MSR Model Specific Registers: ", CPUInfo._Ext.MSR_ModelSpecificRegisters);
BOOLADD("MTRR Memory Type Range Registers: ", CPUInfo._Ext.MTRR_MemoryTypeRangeRegisters);
BOOLADD("PAE Physical Address Extension: ", CPUInfo._Ext.PAE_PhysicalAddressExtension);
BOOLADD("PGE PTE Global Flag: ", CPUInfo._Ext.PGE_PTE_GlobalFlag);
if (CPUInfo._Ext.PN_ProcessorSerialNumber)
{
FORMATADD("PN Processor Serial Number: %s\n", CPUInfo.strProcessorSerial);
}
else
{
COPYADD("PN Processor Serial Number: Disables\n");
}
BOOLADD("PSE Page Size Extensions: ", CPUInfo._Ext.PSE_PageSizeExtensions);
BOOLADD("PSE36 36-bit Page Size Extension: ", CPUInfo._Ext.PSE36_36bitPageSizeExtension);
BOOLADD("SEP Fast System Call: ", CPUInfo._Ext.SEP_FastSystemCall);
BOOLADD("SS Self Snoop: ", CPUInfo._Ext.SS_SelfSnoop);
BOOLADD("SSE Streaming SIMD Extensions: ", CPUInfo._Ext.SSE_StreamingSIMD_Extensions);
BOOLADD("SSE2 Streaming SIMD 2 Extensions: ", CPUInfo._Ext.SSE2_StreamingSIMD2_Extensions);
BOOLADD("TM Thermal Monitor: ", CPUInfo._Ext.TM_ThermalMonitor);
BOOLADD("TSC Time Stamp Counter: ", CPUInfo._Ext.TSC_TimeStampCounter);
BOOLADD("VME Virtual 8086 Mode Enhancements: ", CPUInfo._Ext.VME_Virtual8086ModeEnhancements);
BOOLADD("3DNow! Instructions: ", CPUInfo._Ext._3DNOW_InstructionExtensions);
BOOLADD("Enhanced 3DNow! Instructions: ", CPUInfo._Ext._E3DNOW_InstructionExtensions);
// Yippie!!!
return true;
}
// bool CProcessor::WriteInfoTextFile(const char *strFilename)
// ===========================================================
// Takes use of CProcessor::CPUInfoToText and saves the string to a
// file
///////////////////////////////////////////////////////////////////
bool CProcessor::WriteInfoTextFile(const char *strFilename)
{
char buf[16384];
// First we get the string
if (!CPUInfoToText(buf, 16383))
return false;
// Then we create a new file (CREATE_ALWAYS)
FILE *file = fopen(strFilename, "w");
if (!file)
return false;
// After that we write the string to the file
unsigned long dwBytesToWrite, dwBytesWritten;
dwBytesToWrite = (unsigned long) strlen(buf);
dwBytesWritten = (unsigned long) fwrite(buf, 1, dwBytesToWrite, file);
fclose(file);
if (dwBytesToWrite != dwBytesWritten)
return false;
// Done
return true;
}