project64/Source/Project64/N64 System/Mips/Memory Virtual Mem.cpp

3855 lines
136 KiB
C++
Raw Normal View History

#include "stdafx.h"
DWORD RegModValue;
CMipsMemoryVM::CMipsMemoryVM ( CMipsMemory_CallBack * CallBack, bool SavesReadOnly ) :
CPifRam(SavesReadOnly),
m_CBClass(CallBack),
m_TLB_ReadMap(NULL),
m_TLB_WriteMap(NULL),
m_RomMapped(false),
m_Rom(NULL),
m_RomSize(0),
m_RomWrittenTo(false),
m_RomWroteValue(0)
{
m_RDRAM = NULL;
m_DMEM = NULL;
m_IMEM = NULL;
m_HalfLine = 0;
}
CMipsMemoryVM::~CMipsMemoryVM (void)
{
FreeMemory();
}
void CMipsMemoryVM::Reset( bool EraseMemory )
{
if (m_TLB_ReadMap)
{
memset(m_TLB_ReadMap,0,(0xFFFFF * sizeof(DWORD)));
memset(m_TLB_WriteMap,0,(0xFFFFF * sizeof(DWORD)));
for (DWORD count = 0x80000000; count < 0xC0000000; count += 0x1000)
{
m_TLB_ReadMap[count >> 12] = ((DWORD)m_RDRAM + (count & 0x1FFFFFFF)) - count;
m_TLB_WriteMap[count >> 12] = ((DWORD)m_RDRAM + (count & 0x1FFFFFFF)) - count;
}
if (_Settings->LoadDword(Rdb_TLB_VAddrStart) != 0)
{
DWORD Start = _Settings->LoadDword(Rdb_TLB_VAddrStart); //0x7F000000;
DWORD Len = _Settings->LoadDword(Rdb_TLB_VAddrLen); //0x01000000;
DWORD PAddr = _Settings->LoadDword(Rdb_TLB_PAddrStart); //0x10034b30;
DWORD End = Start + Len;
for (count = Start; count < End; count += 0x1000) {
m_TLB_ReadMap[count >> 12] = ((DWORD)m_RDRAM + (count - Start + PAddr)) - count;
m_TLB_WriteMap[count >> 12] = ((DWORD)m_RDRAM + (count - Start + PAddr)) - count;
}
}
}
}
BOOL CMipsMemoryVM::Initialize ( void )
{
if (m_RDRAM != NULL)
{
return true;
}
DWORD RdramMemorySize = 0x20000000;
if ((CPU_TYPE)_Settings->LoadDword(Game_CpuType) == CPU_SyncCores)
{
RdramMemorySize = 0x18000000;
}
m_RDRAM = (unsigned char *) VirtualAlloc( NULL, RdramMemorySize, MEM_RESERVE | MEM_TOP_DOWN, PAGE_READWRITE );
if( m_RDRAM == NULL )
{
WriteTraceF(TraceError,"CMipsMemoryVM::Initialize:: Failed to Reserve RDRAM (Size: 0x%X)",RdramMemorySize);
FreeMemory();
return false;
}
m_AllocatedRdramSize = _Settings->LoadDword(Game_RDRamSize);
if(VirtualAlloc(m_RDRAM, m_AllocatedRdramSize, MEM_COMMIT, PAGE_READWRITE)==NULL)
{
WriteTraceF(TraceError,"CMipsMemoryVM::Initialize:: Failed to Allocate RDRAM (Size: 0x%X)",m_AllocatedRdramSize);
FreeMemory();
return false;
}
if(VirtualAlloc(m_RDRAM + 0x04000000, 0x2000, MEM_COMMIT, PAGE_READWRITE)==NULL)
{
WriteTraceF(TraceError,"CMipsMemoryVM::Initialize:: Failed to Allocate DMEM/IMEM (Size: 0x%X)",0x2000);
FreeMemory();
return false;
}
m_DMEM = (unsigned char *)(m_RDRAM+0x04000000);
m_IMEM = (unsigned char *)(m_RDRAM+0x04001000);
if (_Settings->LoadBool(Game_LoadRomToMemory))
{
m_RomMapped = true;
m_Rom = m_RDRAM + 0x10000000;
m_RomSize = _Rom->GetRomSize();
if(VirtualAlloc(m_Rom, _Rom->GetRomSize(), MEM_COMMIT, PAGE_READWRITE)==NULL)
{
WriteTraceF(TraceError,"CMipsMemoryVM::Initialize:: Failed to Allocate Rom (Size: 0x%X)",_Rom->GetRomSize());
FreeMemory();
return false;
}
memcpy(m_Rom,_Rom->GetRomAddress(),_Rom->GetRomSize());
DWORD OldProtect;
VirtualProtect(m_Rom,_Rom->GetRomSize(),PAGE_READONLY, &OldProtect);
} else {
m_RomMapped = false;
m_Rom = _Rom->GetRomAddress();
m_RomSize = _Rom->GetRomSize();
}
memset(m_PifRam,0,sizeof(m_PifRam));
m_TLB_ReadMap = (DWORD *)VirtualAlloc(NULL,0xFFFFF * sizeof(DWORD),MEM_RESERVE|MEM_COMMIT,PAGE_READWRITE);
if (m_TLB_ReadMap == NULL)
{
WriteTraceF(TraceError,"CMipsMemoryVM::Initialize:: Failed to Allocate m_TLB_ReadMap (Size: 0x%X)",0xFFFFF * sizeof(DWORD));
FreeMemory();
return false;
}
m_TLB_WriteMap = (DWORD *)VirtualAlloc(NULL,0xFFFFF * sizeof(DWORD),MEM_RESERVE|MEM_COMMIT,PAGE_READWRITE);
if (m_TLB_WriteMap == NULL)
{
WriteTraceF(TraceError,"CMipsMemoryVM::Initialize:: Failed to Allocate m_TLB_ReadMap (Size: 0x%X)",0xFFFFF * sizeof(DWORD));
FreeMemory();
return false;
}
Reset(false);
_Settings->RegisterChangeCB(Game_RDRamSize,this,(CSettings::SettingChangedFunc)RdramChanged);
return true;
}
void CMipsMemoryVM::FreeMemory ( void )
{
_Settings->UnregisterChangeCB(Game_RDRamSize,this,(CSettings::SettingChangedFunc)RdramChanged);
if (m_RDRAM)
{
VirtualFree( m_RDRAM, 0 , MEM_RELEASE);
m_RDRAM = NULL;
m_IMEM = NULL;
m_DMEM = NULL;
}
if (m_TLB_ReadMap)
{
VirtualFree( m_TLB_ReadMap, 0 , MEM_RELEASE);
m_TLB_ReadMap = NULL;
}
if (m_TLB_WriteMap)
{
VirtualFree( m_TLB_WriteMap, 0 , MEM_RELEASE);
m_TLB_WriteMap = NULL;
}
memset(m_PifRam,0,sizeof(m_PifRam));
}
BYTE * CMipsMemoryVM::Rdram ( void )
{
return m_RDRAM;
}
DWORD CMipsMemoryVM::RdramSize ( void )
{
return m_AllocatedRdramSize;
}
BYTE * CMipsMemoryVM::Dmem ( void )
{
return m_DMEM;
}
BYTE * CMipsMemoryVM::Imem ( void )
{
return m_IMEM;
}
BYTE * CMipsMemoryVM::PifRam ( void )
{
return m_PifRam;
}
BOOL CMipsMemoryVM::LB_VAddr ( DWORD VAddr, BYTE & Value )
{
if (m_TLB_ReadMap[VAddr >> 12] == 0) { return FALSE; }
Value = *(BYTE *)(m_TLB_ReadMap[VAddr >> 12] + (VAddr ^ 3));
return TRUE;
}
BOOL CMipsMemoryVM::LH_VAddr ( DWORD VAddr, WORD & Value )
{
if (m_TLB_ReadMap[VAddr >> 12] == 0) { return FALSE; }
Value = *(WORD *)(m_TLB_ReadMap[VAddr >> 12] + (VAddr ^ 2));
return TRUE;
}
BOOL CMipsMemoryVM::LW_VAddr ( DWORD VAddr, DWORD & Value )
{
if (VAddr >= 0xA3F00000 && VAddr < 0xC0000000)
{
if (VAddr < 0xA4000000 || VAddr >= 0xA4002000)
{
VAddr &= 0x1FFFFFFF;
LW_NonMemory(VAddr,&Value);
return true;
}
}
BYTE * BaseAddress = (BYTE *)m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == 0) { return FALSE; }
Value = *(DWORD *)(BaseAddress + VAddr);
// if (LookUpMode == FuncFind_ChangeMemory)
// {
// BreakPoint(__FILE__,__LINE__);
// if ( (Command.Hex >> 16) == 0x7C7C) {
// Command.Hex = OrigMem[(Command.Hex & 0xFFFF)].OriginalValue;
// }
// }
return TRUE;
return false;
}
BOOL CMipsMemoryVM::LD_VAddr ( DWORD VAddr, QWORD & Value )
{
if (m_TLB_ReadMap[VAddr >> 12] == 0) { return FALSE; }
*((DWORD *)(&Value) + 1) = *(DWORD *)(m_TLB_ReadMap[VAddr >> 12] + VAddr);
*((DWORD *)(&Value)) = *(DWORD *)(m_TLB_ReadMap[VAddr >> 12] + VAddr + 4);
return TRUE;
}
BOOL CMipsMemoryVM::SB_VAddr ( DWORD VAddr, BYTE Value )
{
if (m_TLB_WriteMap[VAddr >> 12] == 0) { return FALSE; }
*(BYTE *)(m_TLB_WriteMap[VAddr >> 12] + (VAddr ^ 3)) = Value;
return TRUE;
}
BOOL CMipsMemoryVM::SH_VAddr ( DWORD VAddr, WORD Value )
{
if (m_TLB_WriteMap[VAddr >> 12] == 0) { return FALSE; }
*(WORD *)(m_TLB_WriteMap[VAddr >> 12] + (VAddr ^ 2)) = Value;
return TRUE;
}
BOOL CMipsMemoryVM::SW_VAddr ( DWORD VAddr, DWORD Value )
{
if (VAddr >= 0xA3F00000 && VAddr < 0xC0000000)
{
if (VAddr < 0xA4000000 || VAddr >= 0xA4002000)
{
VAddr &= 0x1FFFFFFF;
return SW_NonMemory(VAddr,Value);
}
}
if (m_TLB_WriteMap[VAddr >> 12] == 0) { return FALSE; }
*(DWORD *)(m_TLB_WriteMap[VAddr >> 12] + VAddr) = Value;
return TRUE;
}
BOOL CMipsMemoryVM::SD_VAddr ( DWORD VAddr, QWORD Value )
{
if (m_TLB_WriteMap[VAddr >> 12] == 0) { return FALSE; }
*(DWORD *)(m_TLB_WriteMap[VAddr >> 12] + VAddr) = *((DWORD *)(&Value) + 1);
*(DWORD *)(m_TLB_WriteMap[VAddr >> 12] + VAddr + 4) = *((DWORD *)(&Value));
return TRUE;
}
bool CMipsMemoryVM::ValidVaddr ( DWORD VAddr ) const
{
return m_TLB_ReadMap[VAddr >> 12] != 0;
}
bool CMipsMemoryVM::TranslateVaddr ( DWORD VAddr, DWORD &PAddr) const
{
//Change the Virtual address to a Phyiscal Address
if (m_TLB_ReadMap[VAddr >> 12] == 0) { return false; }
PAddr = (DWORD)((BYTE *)(m_TLB_ReadMap[VAddr >> 12] + VAddr) - m_RDRAM);
return true;
}
void CMipsMemoryVM::Compile_LB ( x86Reg Reg, DWORD VAddr, BOOL SignExtend) {
DWORD PAddr;
char VarName[100];
if (!TranslateVaddr(VAddr,PAddr)) {
MoveConstToX86reg(0,Reg);
CPU_Message("Compile_LB\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LB\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
case 0x10000000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
if (SignExtend) {
MoveSxVariableToX86regByte(PAddr + m_RDRAM,VarName,Reg);
} else {
MoveZxVariableToX86regByte(PAddr + m_RDRAM,VarName,Reg);
}
break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LB\nFailed to compile address: %X",VAddr); }
}
}
void CMipsMemoryVM::Compile_LH ( x86Reg Reg, DWORD VAddr, BOOL SignExtend) {
char VarName[100];
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr)) {
MoveConstToX86reg(0,Reg);
CPU_Message("Compile_LH\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LH\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
case 0x10000000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
if (SignExtend) {
MoveSxVariableToX86regHalf(PAddr + m_RDRAM,VarName,Reg);
} else {
MoveZxVariableToX86regHalf(PAddr + m_RDRAM,VarName,Reg);
}
break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LHU\nFailed to compile address: %X",VAddr); }
}
}
void CMipsMemoryVM::Compile_LW (x86Reg Reg, DWORD VAddr ) {
char VarName[100];
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr)) {
MoveConstToX86reg(0,Reg);
CPU_Message("Compile_LW\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address %X",VAddr); }
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
case 0x10000000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveVariableToX86reg(PAddr + m_RDRAM,VarName,Reg);
break;
case 0x04000000:
if (PAddr < 0x04002000) {
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveVariableToX86reg(PAddr + m_RDRAM,VarName,Reg);
break;
}
switch (PAddr) {
case 0x04040010: MoveVariableToX86reg(&_Reg->SP_STATUS_REG,"SP_STATUS_REG",Reg); break;
case 0x04040014: MoveVariableToX86reg(&_Reg->SP_DMA_FULL_REG,"SP_DMA_FULL_REG",Reg); break;
case 0x04040018: MoveVariableToX86reg(&_Reg->SP_DMA_BUSY_REG,"SP_DMA_BUSY_REG",Reg); break;
case 0x04080000: MoveVariableToX86reg(&_Reg->SP_PC_REG,"SP_PC_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address: %X",VAddr); }
}
break;
case 0x04100000:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address: %X",VAddr); }
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveVariableToX86reg(PAddr + m_RDRAM,VarName,Reg);
break;
case 0x04300000:
switch (PAddr) {
case 0x04300000: MoveVariableToX86reg(&_Reg->MI_MODE_REG,"MI_MODE_REG",Reg); break;
case 0x04300004: MoveVariableToX86reg(&_Reg->MI_VERSION_REG,"MI_VERSION_REG",Reg); break;
case 0x04300008: MoveVariableToX86reg(&_Reg->MI_INTR_REG,"MI_INTR_REG",Reg); break;
case 0x0430000C: MoveVariableToX86reg(&_Reg->MI_INTR_MASK_REG,"MI_INTR_MASK_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address: %X",VAddr); }
}
break;
case 0x04400000:
switch (PAddr) {
case 0x04400010:
UpdateCounters(m_RegWorkingSet,false,true);
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)this,x86_ECX);
Call_Direct(AddressOf(CMipsMemoryVM::UpdateHalfLine),"CMipsMemoryVM::UpdateHalfLine");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&m_HalfLine,"m_HalfLine",Reg);
break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address: %X",VAddr); }
}
break;
case 0x04500000: /* AI registers */
switch (PAddr) {
case 0x04500004:
if (g_FixedAudio)
{
UpdateCounters(m_RegWorkingSet,false,true);
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Audio,x86_ECX);
Call_Direct(AddressOf(CAudio::GetLength),"CAudio::GetLength");
MoveX86regToVariable(x86_EAX,&m_TempValue,"m_TempValue");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&m_TempValue,"m_TempValue",Reg);
} else {
if (_Plugins->Audio()->ReadLength != NULL) {
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(_Plugins->Audio()->ReadLength,"AiReadLength");
MoveX86regToVariable(x86_EAX,&m_TempValue,"m_TempValue");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&m_TempValue,"m_TempValue",Reg);
} else {
MoveConstToX86reg(0,Reg);
}
}
break;
case 0x0450000C:
if (g_FixedAudio)
{
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Audio,x86_ECX);
Call_Direct(AddressOf(CAudio::GetStatus),"GetStatus");
MoveX86regToVariable(x86_EAX,&m_TempValue,"m_TempValue");
AfterCallDirect(m_RegWorkingSet);
MoveVariableToX86reg(&m_TempValue,"m_TempValue",Reg);
} else {
MoveVariableToX86reg(&_Reg->AI_STATUS_REG,"AI_STATUS_REG",Reg);
}
break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address: %X",VAddr); }
}
break;
case 0x04600000:
switch (PAddr) {
case 0x04600010: MoveVariableToX86reg(&_Reg->PI_STATUS_REG,"PI_STATUS_REG",Reg); break;
case 0x04600014: MoveVariableToX86reg(&_Reg->PI_DOMAIN1_REG,"PI_DOMAIN1_REG",Reg); break;
case 0x04600018: MoveVariableToX86reg(&_Reg->PI_BSD_DOM1_PWD_REG,"PI_BSD_DOM1_PWD_REG",Reg); break;
case 0x0460001C: MoveVariableToX86reg(&_Reg->PI_BSD_DOM1_PGS_REG,"PI_BSD_DOM1_PGS_REG",Reg); break;
case 0x04600020: MoveVariableToX86reg(&_Reg->PI_BSD_DOM1_RLS_REG,"PI_BSD_DOM1_RLS_REG",Reg); break;
case 0x04600024: MoveVariableToX86reg(&_Reg->PI_DOMAIN2_REG,"PI_DOMAIN2_REG",Reg); break;
case 0x04600028: MoveVariableToX86reg(&_Reg->PI_BSD_DOM2_PWD_REG,"PI_BSD_DOM2_PWD_REG",Reg); break;
case 0x0460002C: MoveVariableToX86reg(&_Reg->PI_BSD_DOM2_PGS_REG,"PI_BSD_DOM2_PGS_REG",Reg); break;
case 0x04600030: MoveVariableToX86reg(&_Reg->PI_BSD_DOM2_RLS_REG,"PI_BSD_DOM2_RLS_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address: %X",VAddr); }
}
break;
case 0x04700000:
switch (PAddr) {
case 0x0470000C: MoveVariableToX86reg(&_Reg->RI_SELECT_REG,"RI_SELECT_REG",Reg); break;
case 0x04700010: MoveVariableToX86reg(&_Reg->RI_REFRESH_REG,"RI_REFRESH_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address: %X",VAddr); }
}
break;
case 0x04800000:
switch (PAddr) {
case 0x04800018: MoveVariableToX86reg(&_Reg->SI_STATUS_REG,"SI_STATUS_REG",Reg); break;
default:
MoveConstToX86reg(0,Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_LW\nFailed to translate address: %X",VAddr); }
}
break;
case 0x1FC00000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveVariableToX86reg(PAddr + m_RDRAM,VarName,Reg);
break;
default:
MoveConstToX86reg(((PAddr & 0xFFFF) << 16) | (PAddr & 0xFFFF),Reg);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) {
CPU_Message("Compile_LW\nFailed to translate address: %X",VAddr);
DisplayError("Compile_LW\nFailed to translate address: %X",VAddr);
}
}
}
void CMipsMemoryVM::Compile_SB_Const ( BYTE Value, DWORD VAddr ) {
char VarName[100];
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr)) {
CPU_Message("Compile_SB\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SB\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstByteToVariable(Value,PAddr + m_RDRAM,VarName);
break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SB_Const\ntrying to store %X in %X?",Value,VAddr); }
}
}
void CMipsMemoryVM::Compile_SB_Register ( x86Reg Reg, DWORD VAddr ) {
char VarName[100];
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr)) {
CPU_Message("Compile_SB\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SB\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regByteToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SB_Register\ntrying to store in %X?",VAddr); }
}
}
void CMipsMemoryVM::Compile_SH_Const ( WORD Value, DWORD VAddr ) {
char VarName[100];
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr)) {
CPU_Message("Compile_SH\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SH\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstHalfToVariable(Value,PAddr + m_RDRAM,VarName);
break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SH_Const\ntrying to store %X in %X?",Value,VAddr); }
}
}
void CMipsMemoryVM::Compile_SH_Register ( x86Reg Reg, DWORD VAddr ) {
char VarName[100];
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr)) {
CPU_Message("Compile_SH\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SH\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regHalfToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SH_Register\ntrying to store in %X?",PAddr); }
}
}
void CMipsMemoryVM::Compile_SW_Const ( DWORD Value, DWORD VAddr ) {
char VarName[100];
BYTE * Jump;
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr)) {
CPU_Message("Compile_SW\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstToVariable(Value,PAddr + m_RDRAM,VarName);
break;
case 0x03F00000:
switch (PAddr) {
case 0x03F00000: MoveConstToVariable(Value,&_Reg->RDRAM_CONFIG_REG,"RDRAM_CONFIG_REG"); break;
case 0x03F00004: MoveConstToVariable(Value,&_Reg->RDRAM_DEVICE_ID_REG,"RDRAM_DEVICE_ID_REG"); break;
case 0x03F00008: MoveConstToVariable(Value,&_Reg->RDRAM_DELAY_REG,"RDRAM_DELAY_REG"); break;
case 0x03F0000C: MoveConstToVariable(Value,&_Reg->RDRAM_MODE_REG,"RDRAM_MODE_REG"); break;
case 0x03F00010: MoveConstToVariable(Value,&_Reg->RDRAM_REF_INTERVAL_REG,"RDRAM_REF_INTERVAL_REG"); break;
case 0x03F00014: MoveConstToVariable(Value,&_Reg->RDRAM_REF_ROW_REG,"RDRAM_REF_ROW_REG"); break;
case 0x03F00018: MoveConstToVariable(Value,&_Reg->RDRAM_RAS_INTERVAL_REG,"RDRAM_RAS_INTERVAL_REG"); break;
case 0x03F0001C: MoveConstToVariable(Value,&_Reg->RDRAM_MIN_INTERVAL_REG,"RDRAM_MIN_INTERVAL_REG"); break;
case 0x03F00020: MoveConstToVariable(Value,&_Reg->RDRAM_ADDR_SELECT_REG,"RDRAM_ADDR_SELECT_REG"); break;
case 0x03F00024: MoveConstToVariable(Value,&_Reg->RDRAM_DEVICE_MANUF_REG,"RDRAM_DEVICE_MANUF_REG"); break;
case 0x03F04004: break;
case 0x03F08004: break;
case 0x03F80004: break;
case 0x03F80008: break;
case 0x03F8000C: break;
case 0x03F80014: break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
break;
case 0x04000000:
if (PAddr < 0x04002000) {
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstToVariable(Value,PAddr + m_RDRAM,VarName);
break;
}
switch (PAddr) {
case 0x04040000: MoveConstToVariable(Value,&_Reg->SP_MEM_ADDR_REG,"SP_MEM_ADDR_REG"); break;
case 0x04040004: MoveConstToVariable(Value,&_Reg->SP_DRAM_ADDR_REG,"SP_DRAM_ADDR_REG"); break;
case 0x04040008:
MoveConstToVariable(Value,&_Reg->SP_RD_LEN_REG,"SP_RD_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(&SP_DMA_READ,"SP_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04040010:
{
DWORD ModValue;
ModValue = 0;
if ( ( Value & SP_CLR_HALT ) != 0 ) { ModValue |= SP_STATUS_HALT; }
if ( ( Value & SP_CLR_BROKE ) != 0 ) { ModValue |= SP_STATUS_BROKE; }
if ( ( Value & SP_CLR_SSTEP ) != 0 ) { ModValue |= SP_STATUS_SSTEP; }
if ( ( Value & SP_CLR_INTR_BREAK ) != 0 ) { ModValue |= SP_STATUS_INTR_BREAK; }
if ( ( Value & SP_CLR_SIG0 ) != 0 ) { ModValue |= SP_STATUS_SIG0; }
if ( ( Value & SP_CLR_SIG1 ) != 0 ) { ModValue |= SP_STATUS_SIG1; }
if ( ( Value & SP_CLR_SIG2 ) != 0 ) { ModValue |= SP_STATUS_SIG2; }
if ( ( Value & SP_CLR_SIG3 ) != 0 ) { ModValue |= SP_STATUS_SIG3; }
if ( ( Value & SP_CLR_SIG4 ) != 0 ) { ModValue |= SP_STATUS_SIG4; }
if ( ( Value & SP_CLR_SIG5 ) != 0 ) { ModValue |= SP_STATUS_SIG5; }
if ( ( Value & SP_CLR_SIG6 ) != 0 ) { ModValue |= SP_STATUS_SIG6; }
if ( ( Value & SP_CLR_SIG7 ) != 0 ) { ModValue |= SP_STATUS_SIG7; }
if (ModValue != 0) {
AndConstToVariable(~ModValue,&_Reg->SP_STATUS_REG,"SP_STATUS_REG");
}
ModValue = 0;
if ( ( Value & SP_SET_HALT ) != 0 ) { ModValue |= SP_STATUS_HALT; }
if ( ( Value & SP_SET_SSTEP ) != 0 ) { ModValue |= SP_STATUS_SSTEP; }
if ( ( Value & SP_SET_INTR_BREAK ) != 0) { ModValue |= SP_STATUS_INTR_BREAK; }
if ( ( Value & SP_SET_SIG0 ) != 0 ) { ModValue |= SP_STATUS_SIG0; }
if ( ( Value & SP_SET_SIG1 ) != 0 ) { ModValue |= SP_STATUS_SIG1; }
if ( ( Value & SP_SET_SIG2 ) != 0 ) { ModValue |= SP_STATUS_SIG2; }
if ( ( Value & SP_SET_SIG3 ) != 0 ) { ModValue |= SP_STATUS_SIG3; }
if ( ( Value & SP_SET_SIG4 ) != 0 ) { ModValue |= SP_STATUS_SIG4; }
if ( ( Value & SP_SET_SIG5 ) != 0 ) { ModValue |= SP_STATUS_SIG5; }
if ( ( Value & SP_SET_SIG6 ) != 0 ) { ModValue |= SP_STATUS_SIG6; }
if ( ( Value & SP_SET_SIG7 ) != 0 ) { ModValue |= SP_STATUS_SIG7; }
if (ModValue != 0) {
OrConstToVariable(ModValue,&_Reg->SP_STATUS_REG,"SP_STATUS_REG");
}
if ( ( Value & SP_SET_SIG0 ) != 0 && _Settings->LoadBool(Game_RspAudioSignal) )
{
OrConstToVariable(MI_INTR_SP,&_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
}
if ( ( Value & SP_CLR_INTR ) != 0) {
AndConstToVariable(~MI_INTR_SP,&_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(RunRsp,"RunRsp");
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
} else {
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(RunRsp,"RunRsp");
AfterCallDirect(m_RegWorkingSet);
}
}
break;
case 0x0404001C: MoveConstToVariable(0,&_Reg->SP_SEMAPHORE_REG,"SP_SEMAPHORE_REG"); break;
case 0x04080000: MoveConstToVariable(Value & 0xFFC,&_Reg->SP_PC_REG,"SP_PC_REG"); break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
break;
case 0x04300000:
switch (PAddr) {
case 0x04300000:
{
DWORD ModValue;
ModValue = 0x7F;
if ( ( Value & MI_CLR_INIT ) != 0 ) { ModValue |= MI_MODE_INIT; }
if ( ( Value & MI_CLR_EBUS ) != 0 ) { ModValue |= MI_MODE_EBUS; }
if ( ( Value & MI_CLR_RDRAM ) != 0 ) { ModValue |= MI_MODE_RDRAM; }
if (ModValue != 0) {
AndConstToVariable(~ModValue,&_Reg->MI_MODE_REG,"MI_MODE_REG");
}
ModValue = (Value & 0x7F);
if ( ( Value & MI_SET_INIT ) != 0 ) { ModValue |= MI_MODE_INIT; }
if ( ( Value & MI_SET_EBUS ) != 0 ) { ModValue |= MI_MODE_EBUS; }
if ( ( Value & MI_SET_RDRAM ) != 0 ) { ModValue |= MI_MODE_RDRAM; }
if (ModValue != 0) {
OrConstToVariable(ModValue,&_Reg->MI_MODE_REG,"MI_MODE_REG");
}
if ( ( Value & MI_CLR_DP_INTR ) != 0 ) {
AndConstToVariable(~MI_INTR_DP,&_Reg->MI_INTR_REG,"MI_INTR_REG");
}
}
break;
case 0x0430000C:
{
DWORD ModValue;
ModValue = 0;
if ( ( Value & MI_INTR_MASK_CLR_SP ) != 0 ) { ModValue |= MI_INTR_MASK_SP; }
if ( ( Value & MI_INTR_MASK_CLR_SI ) != 0 ) { ModValue |= MI_INTR_MASK_SI; }
if ( ( Value & MI_INTR_MASK_CLR_AI ) != 0 ) { ModValue |= MI_INTR_MASK_AI; }
if ( ( Value & MI_INTR_MASK_CLR_VI ) != 0 ) { ModValue |= MI_INTR_MASK_VI; }
if ( ( Value & MI_INTR_MASK_CLR_PI ) != 0 ) { ModValue |= MI_INTR_MASK_PI; }
if ( ( Value & MI_INTR_MASK_CLR_DP ) != 0 ) { ModValue |= MI_INTR_MASK_DP; }
if (ModValue != 0) {
AndConstToVariable(~ModValue,&_Reg->MI_INTR_MASK_REG,"MI_INTR_MASK_REG");
}
ModValue = 0;
if ( ( Value & MI_INTR_MASK_SET_SP ) != 0 ) { ModValue |= MI_INTR_MASK_SP; }
if ( ( Value & MI_INTR_MASK_SET_SI ) != 0 ) { ModValue |= MI_INTR_MASK_SI; }
if ( ( Value & MI_INTR_MASK_SET_AI ) != 0 ) { ModValue |= MI_INTR_MASK_AI; }
if ( ( Value & MI_INTR_MASK_SET_VI ) != 0 ) { ModValue |= MI_INTR_MASK_VI; }
if ( ( Value & MI_INTR_MASK_SET_PI ) != 0 ) { ModValue |= MI_INTR_MASK_PI; }
if ( ( Value & MI_INTR_MASK_SET_DP ) != 0 ) { ModValue |= MI_INTR_MASK_DP; }
if (ModValue != 0) {
OrConstToVariable(ModValue,&_Reg->MI_INTR_MASK_REG,"MI_INTR_MASK_REG");
}
}
break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
break;
case 0x04400000:
switch (PAddr) {
case 0x04400000:
if (_Plugins->Gfx()->ViStatusChanged != NULL) {
CompConstToVariable(Value,&_Reg->VI_STATUS_REG,"VI_STATUS_REG");
JeLabel8("Continue",0);
Jump = m_RecompPos - 1;
MoveConstToVariable(Value,&_Reg->VI_STATUS_REG,"VI_STATUS_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(_Plugins->Gfx()->ViStatusChanged,"ViStatusChanged");
AfterCallDirect(m_RegWorkingSet);
CPU_Message("");
CPU_Message(" Continue:");
*((BYTE *)(Jump))=(BYTE)(m_RecompPos - Jump - 1);
}
break;
case 0x04400004: MoveConstToVariable((Value & 0xFFFFFF),&_Reg->VI_ORIGIN_REG,"VI_ORIGIN_REG"); break;
case 0x04400008:
if (_Plugins->Gfx()->ViWidthChanged != NULL) {
CompConstToVariable(Value,&_Reg->VI_WIDTH_REG,"VI_WIDTH_REG");
JeLabel8("Continue",0);
Jump = m_RecompPos - 1;
MoveConstToVariable(Value,&_Reg->VI_WIDTH_REG,"VI_WIDTH_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(_Plugins->Gfx()->ViWidthChanged,"ViWidthChanged");
AfterCallDirect(m_RegWorkingSet);
CPU_Message("");
CPU_Message(" Continue:");
*((BYTE *)(Jump))=(BYTE)(m_RecompPos - Jump - 1);
}
break;
case 0x0440000C: MoveConstToVariable(Value,&_Reg->VI_INTR_REG,"VI_INTR_REG"); break;
case 0x04400010:
AndConstToVariable(~MI_INTR_VI,&_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04400014: MoveConstToVariable(Value,&_Reg->VI_BURST_REG,"VI_BURST_REG"); break;
case 0x04400018: MoveConstToVariable(Value,&_Reg->VI_V_SYNC_REG,"VI_V_SYNC_REG"); break;
case 0x0440001C: MoveConstToVariable(Value,&_Reg->VI_H_SYNC_REG,"VI_H_SYNC_REG"); break;
case 0x04400020: MoveConstToVariable(Value,&_Reg->VI_LEAP_REG,"VI_LEAP_REG"); break;
case 0x04400024: MoveConstToVariable(Value,&_Reg->VI_H_START_REG,"VI_H_START_REG"); break;
case 0x04400028: MoveConstToVariable(Value,&_Reg->VI_V_START_REG,"VI_V_START_REG"); break;
case 0x0440002C: MoveConstToVariable(Value,&_Reg->VI_V_BURST_REG,"VI_V_BURST_REG"); break;
case 0x04400030: MoveConstToVariable(Value,&_Reg->VI_X_SCALE_REG,"VI_X_SCALE_REG"); break;
case 0x04400034: MoveConstToVariable(Value,&_Reg->VI_Y_SCALE_REG,"VI_Y_SCALE_REG"); break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
break;
case 0x04500000: /* AI registers */
switch (PAddr) {
case 0x04500000: MoveConstToVariable(Value,&_Reg->AI_DRAM_ADDR_REG,"AI_DRAM_ADDR_REG"); break;
case 0x04500004:
MoveConstToVariable(Value,&_Reg->AI_LEN_REG,"AI_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
if (g_FixedAudio)
{
X86BreakPoint(__FILE__,__LINE__);
MoveConstToX86reg((DWORD)_Audio,x86_ECX);
Call_Direct(AddressOf(CAudio::LenChanged),"LenChanged");
} else {
Call_Direct(_Plugins->Audio()->LenChanged,"AiLenChanged");
}
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04500008: MoveConstToVariable((Value & 1),&_Reg->AI_CONTROL_REG,"AI_CONTROL_REG"); break;
case 0x0450000C:
/* Clear Interrupt */;
AndConstToVariable(~MI_INTR_AI,&_Reg->MI_INTR_REG,"MI_INTR_REG");
#ifdef tofix
if (!g_FixedAudio)
{
AndConstToVariable(~MI_INTR_AI,&_Reg->m_AudioIntrReg,"m_AudioIntrReg");
}
#endif
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04500010:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstToVariable(Value,PAddr + m_RDRAM,VarName);
break;
case 0x04500014: MoveConstToVariable(Value,&_Reg->AI_BITRATE_REG,"AI_BITRATE_REG"); break;
default:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveConstToVariable(Value,PAddr + m_RDRAM,VarName);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
break;
case 0x04600000:
switch (PAddr) {
case 0x04600000: MoveConstToVariable(Value,&_Reg->PI_DRAM_ADDR_REG,"PI_DRAM_ADDR_REG"); break;
case 0x04600004: MoveConstToVariable(Value,&_Reg->PI_CART_ADDR_REG,"PI_CART_ADDR_REG"); break;
case 0x04600008:
MoveConstToVariable(Value,&_Reg->PI_RD_LEN_REG,"PI_RD_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(&PI_DMA_READ,"PI_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0460000C:
MoveConstToVariable(Value,&_Reg->PI_WR_LEN_REG,"PI_WR_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(&PI_DMA_WRITE,"PI_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04600010:
if ((Value & PI_CLR_INTR) != 0 ) {
AndConstToVariable(~MI_INTR_PI,&_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
}
break;
case 0x04600014: MoveConstToVariable((Value & 0xFF),&_Reg->PI_DOMAIN1_REG,"PI_DOMAIN1_REG"); break;
case 0x04600018: MoveConstToVariable((Value & 0xFF),&_Reg->PI_BSD_DOM1_PWD_REG,"PI_BSD_DOM1_PWD_REG"); break;
case 0x0460001C: MoveConstToVariable((Value & 0xFF),&_Reg->PI_BSD_DOM1_PGS_REG,"PI_BSD_DOM1_PGS_REG"); break;
case 0x04600020: MoveConstToVariable((Value & 0xFF),&_Reg->PI_BSD_DOM1_RLS_REG,"PI_BSD_DOM1_RLS_REG"); break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
break;
case 0x04700000:
switch (PAddr) {
case 0x04700000: MoveConstToVariable(Value,&_Reg->RI_MODE_REG,"RI_MODE_REG"); break;
case 0x04700004: MoveConstToVariable(Value,&_Reg->RI_CONFIG_REG,"RI_CONFIG_REG"); break;
case 0x04700008: MoveConstToVariable(Value,&_Reg->RI_CURRENT_LOAD_REG,"RI_CURRENT_LOAD_REG"); break;
case 0x0470000C: MoveConstToVariable(Value,&_Reg->RI_SELECT_REG,"RI_SELECT_REG"); break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
break;
case 0x04800000:
switch (PAddr) {
case 0x04800000: MoveConstToVariable(Value,&_Reg->SI_DRAM_ADDR_REG,"SI_DRAM_ADDR_REG"); break;
case 0x04800004:
MoveConstToVariable(Value,&_Reg->SI_PIF_ADDR_RD64B_REG,"SI_PIF_ADDR_RD64B_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)((CPifRam *)this),x86_ECX);
Call_Direct(AddressOf(CPifRam::SI_DMA_READ),"CPifRam::SI_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04800010:
MoveConstToVariable(Value,&_Reg->SI_PIF_ADDR_WR64B_REG,"SI_PIF_ADDR_WR64B_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)((CPifRam *)this),x86_ECX);
Call_Direct(AddressOf(CPifRam::SI_DMA_WRITE),"CPifRam::SI_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04800018:
AndConstToVariable(~MI_INTR_SI,&_Reg->MI_INTR_REG,"MI_INTR_REG");
AndConstToVariable(~SI_STATUS_INTERRUPT,&_Reg->SI_STATUS_REG,"SI_STATUS_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Const\ntrying to store %X in %X?",Value,VAddr); }
}
}
void CMipsMemoryVM::Compile_SW_Register (x86Reg Reg, DWORD VAddr )
{
char VarName[100];
BYTE * Jump;
DWORD PAddr;
if (!TranslateVaddr(VAddr, PAddr)) {
CPU_Message("Compile_SW_Register\nFailed to translate address %X",VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\nFailed to translate address %X",VAddr); }
return;
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
case 0x04000000:
switch (PAddr) {
case 0x04040000: MoveX86regToVariable(Reg,&_Reg->SP_MEM_ADDR_REG,"SP_MEM_ADDR_REG"); break;
case 0x04040004: MoveX86regToVariable(Reg,&_Reg->SP_DRAM_ADDR_REG,"SP_DRAM_ADDR_REG"); break;
case 0x04040008:
MoveX86regToVariable(Reg,&_Reg->SP_RD_LEN_REG,"SP_RD_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(&SP_DMA_READ,"SP_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0404000C:
MoveX86regToVariable(Reg,&_Reg->SP_WR_LEN_REG,"SP_WR_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(&SP_DMA_WRITE,"SP_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04040010:
MoveX86regToVariable(Reg,&RegModValue,"RegModValue");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(ChangeSpStatus,"ChangeSpStatus");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0404001C: MoveConstToVariable(0,&_Reg->SP_SEMAPHORE_REG,"SP_SEMAPHORE_REG"); break;
case 0x04080000:
MoveX86regToVariable(Reg,&_Reg->SP_PC_REG,"SP_PC_REG");
AndConstToVariable(0xFFC,&_Reg->SP_PC_REG,"SP_PC_REG");
break;
default:
if (PAddr < 0x04002000) {
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
} else {
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); }
}
}
break;
case 0x04100000:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); }
case 0x04300000:
switch (PAddr) {
case 0x04300000:
MoveX86regToVariable(Reg,&RegModValue,"RegModValue");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(ChangeMiIntrMask,"ChangeMiModeReg");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0430000C:
MoveX86regToVariable(Reg,&RegModValue,"RegModValue");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(ChangeMiIntrMask,"ChangeMiIntrMask");
AfterCallDirect(m_RegWorkingSet);
break;
default:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); }
}
break;
case 0x04400000:
switch (PAddr) {
case 0x04400000:
if (_Plugins->Gfx()->ViStatusChanged != NULL) {
CompX86regToVariable(Reg,&_Reg->VI_STATUS_REG,"VI_STATUS_REG");
JeLabel8("Continue",0);
Jump = m_RecompPos - 1;
MoveX86regToVariable(Reg,&_Reg->VI_STATUS_REG,"VI_STATUS_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(_Plugins->Gfx()->ViStatusChanged,"ViStatusChanged");
AfterCallDirect(m_RegWorkingSet);
CPU_Message("");
CPU_Message(" Continue:");
*((BYTE *)(Jump))=(BYTE)(m_RecompPos - Jump - 1);
}
break;
case 0x04400004:
MoveX86regToVariable(Reg,&_Reg->VI_ORIGIN_REG,"VI_ORIGIN_REG");
AndConstToVariable(0xFFFFFF,&_Reg->VI_ORIGIN_REG,"VI_ORIGIN_REG");
break;
case 0x04400008:
if (_Plugins->Gfx()->ViWidthChanged != NULL) {
CompX86regToVariable(Reg,&_Reg->VI_WIDTH_REG,"VI_WIDTH_REG");
JeLabel8("Continue",0);
Jump = m_RecompPos - 1;
MoveX86regToVariable(Reg,&_Reg->VI_WIDTH_REG,"VI_WIDTH_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(_Plugins->Gfx()->ViWidthChanged,"ViWidthChanged");
AfterCallDirect(m_RegWorkingSet);
CPU_Message("");
CPU_Message(" Continue:");
*((BYTE *)(Jump))=(BYTE)(m_RecompPos - Jump - 1);
}
break;
case 0x0440000C: MoveX86regToVariable(Reg,&_Reg->VI_INTR_REG,"VI_INTR_REG"); break;
case 0x04400010:
AndConstToVariable(~MI_INTR_VI,&_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04400014: MoveX86regToVariable(Reg,&_Reg->VI_BURST_REG,"VI_BURST_REG"); break;
case 0x04400018: MoveX86regToVariable(Reg,&_Reg->VI_V_SYNC_REG,"VI_V_SYNC_REG"); break;
case 0x0440001C: MoveX86regToVariable(Reg,&_Reg->VI_H_SYNC_REG,"VI_H_SYNC_REG"); break;
case 0x04400020: MoveX86regToVariable(Reg,&_Reg->VI_LEAP_REG,"VI_LEAP_REG"); break;
case 0x04400024: MoveX86regToVariable(Reg,&_Reg->VI_H_START_REG,"VI_H_START_REG"); break;
case 0x04400028: MoveX86regToVariable(Reg,&_Reg->VI_V_START_REG,"VI_V_START_REG"); break;
case 0x0440002C: MoveX86regToVariable(Reg,&_Reg->VI_V_BURST_REG,"VI_V_BURST_REG"); break;
case 0x04400030: MoveX86regToVariable(Reg,&_Reg->VI_X_SCALE_REG,"VI_X_SCALE_REG"); break;
case 0x04400034: MoveX86regToVariable(Reg,&_Reg->VI_Y_SCALE_REG,"VI_Y_SCALE_REG"); break;
default:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); }
}
break;
case 0x04500000: /* AI registers */
switch (PAddr) {
case 0x04500000: MoveX86regToVariable(Reg,&_Reg->AI_DRAM_ADDR_REG,"AI_DRAM_ADDR_REG"); break;
case 0x04500004:
UpdateCounters(m_RegWorkingSet,false,true);
MoveX86regToVariable(Reg,&_Reg->AI_LEN_REG,"AI_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
if (g_FixedAudio)
{
MoveConstToX86reg((DWORD)_Audio,x86_ECX);
Call_Direct(AddressOf(CAudio::LenChanged),"LenChanged");
} else {
Call_Direct(_Plugins->Audio()->LenChanged,"_Plugins->Audio()->LenChanged");
}
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04500008:
MoveX86regToVariable(Reg,&_Reg->AI_CONTROL_REG,"AI_CONTROL_REG");
AndConstToVariable(1,&_Reg->AI_CONTROL_REG,"AI_CONTROL_REG");
case 0x0450000C:
/* Clear Interrupt */;
AndConstToVariable(~MI_INTR_AI,&_Reg->MI_INTR_REG,"MI_INTR_REG");
AndConstToVariable(~MI_INTR_AI,&_Reg->m_AudioIntrReg,"m_AudioIntrReg");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04500010:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
case 0x04500014: MoveX86regToVariable(Reg,&_Reg->AI_BITRATE_REG,"AI_BITRATE_REG"); break;
default:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); } }
break;
case 0x04600000:
switch (PAddr) {
case 0x04600000: MoveX86regToVariable(Reg,&_Reg->PI_DRAM_ADDR_REG,"PI_DRAM_ADDR_REG"); break;
case 0x04600004: MoveX86regToVariable(Reg,&_Reg->PI_CART_ADDR_REG,"PI_CART_ADDR_REG"); break;
case 0x04600008:
MoveX86regToVariable(Reg,&_Reg->PI_RD_LEN_REG,"PI_RD_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(&PI_DMA_READ,"PI_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x0460000C:
MoveX86regToVariable(Reg,&_Reg->PI_WR_LEN_REG,"PI_WR_LEN_REG");
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(&PI_DMA_WRITE,"PI_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04600010:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); }
AndConstToVariable(~MI_INTR_PI,&_Reg->MI_INTR_REG,"MI_INTR_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
MoveX86regToVariable(Reg,&_Reg->VI_ORIGIN_REG,"VI_ORIGIN_REG");
AndConstToVariable(0xFFFFFF,&_Reg->VI_ORIGIN_REG,"VI_ORIGIN_REG");
case 0x04600014:
MoveX86regToVariable(Reg,&_Reg->PI_DOMAIN1_REG,"PI_DOMAIN1_REG");
AndConstToVariable(0xFF,&_Reg->PI_DOMAIN1_REG,"PI_DOMAIN1_REG");
break;
case 0x04600018:
MoveX86regToVariable(Reg,&_Reg->PI_BSD_DOM1_PWD_REG,"PI_BSD_DOM1_PWD_REG");
AndConstToVariable(0xFF,&_Reg->PI_BSD_DOM1_PWD_REG,"PI_BSD_DOM1_PWD_REG");
break;
case 0x0460001C:
MoveX86regToVariable(Reg,&_Reg->PI_BSD_DOM1_PGS_REG,"PI_BSD_DOM1_PGS_REG");
AndConstToVariable(0xFF,&_Reg->PI_BSD_DOM1_PGS_REG,"PI_BSD_DOM1_PGS_REG");
break;
case 0x04600020:
MoveX86regToVariable(Reg,&_Reg->PI_BSD_DOM1_RLS_REG,"PI_BSD_DOM1_RLS_REG");
AndConstToVariable(0xFF,&_Reg->PI_BSD_DOM1_RLS_REG,"PI_BSD_DOM1_RLS_REG");
break;
default:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); }
}
break;
case 0x04700000:
switch (PAddr) {
case 0x04700010: MoveX86regToVariable(Reg,&_Reg->RI_REFRESH_REG,"RI_REFRESH_REG"); break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); }
}
break;
case 0x04800000:
switch (PAddr) {
case 0x04800000: MoveX86regToVariable(Reg,&_Reg->SI_DRAM_ADDR_REG,"SI_DRAM_ADDR_REG"); break;
case 0x04800004:
MoveX86regToVariable(Reg,&_Reg->SI_PIF_ADDR_RD64B_REG,"SI_PIF_ADDR_RD64B_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)((CPifRam *)this),x86_ECX);
Call_Direct(AddressOf(CPifRam::SI_DMA_READ),"CPifRam::SI_DMA_READ");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04800010:
MoveX86regToVariable(Reg,&_Reg->SI_PIF_ADDR_WR64B_REG,"SI_PIF_ADDR_WR64B_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)((CPifRam *)this),x86_ECX);
Call_Direct(AddressOf(CPifRam::SI_DMA_WRITE),"CPifRam::SI_DMA_WRITE");
AfterCallDirect(m_RegWorkingSet);
break;
case 0x04800018:
AndConstToVariable(~MI_INTR_SI,&_Reg->MI_INTR_REG,"MI_INTR_REG");
AndConstToVariable(~SI_STATUS_INTERRUPT,&_Reg->SI_STATUS_REG,"SI_STATUS_REG");
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((DWORD)_Reg,x86_ECX);
Call_Direct(AddressOf(CRegisters::CheckInterrupts),"CRegisters::CheckInterrupts");
AfterCallDirect(m_RegWorkingSet);
break;
default:
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store at %X?",VAddr); }
}
break;
case 0x1FC00000:
sprintf(VarName,"m_RDRAM + %X",PAddr);
MoveX86regToVariable(Reg,PAddr + m_RDRAM,VarName);
break;
default:
CPU_Message(" Should be moving %s in to %X ?!?",x86_Name(Reg),VAddr);
if (_Settings->LoadBool(Debugger_ShowUnhandledMemory)) { DisplayError("Compile_SW_Register\ntrying to store in %X?",VAddr); }
}
}
void CMipsMemoryVM::ResetMemoryStack ( void)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
x86Reg Reg, TempReg;
CPU_Message(" ResetMemoryStack");
x86reg = Map_MemoryStack(Section, x86_Any, false);
if (x86reg >= 0) { UnMap_X86reg(Section,x86reg); }
x86reg = Map_TempReg(x86_Any, 29, FALSE);
if (_Settings->LoadBool(Game_UseTlb))
{
TempReg = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(x86reg,TempReg);
ShiftRightUnsignImmed(TempReg,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg,TempReg,4);
AddX86RegToX86Reg(x86reg,TempReg);
} else {
AndConstToX86Reg(x86reg,0x1FFFFFFF);
AddConstToX86Reg(x86reg,(DWORD)m_RDRAM);
}
MoveX86regToVariable(x86reg, g_MemoryStack, "MemoryStack");
#endif
}
int CMipsMemoryVM::MemoryFilter( DWORD dwExptCode, void * lpExceptionPointer )
{
if (dwExptCode != EXCEPTION_ACCESS_VIOLATION)
{
return EXCEPTION_CONTINUE_SEARCH;
}
//convert the pointer since we are not having win32 stuctures in headers
LPEXCEPTION_POINTERS lpEP = (LPEXCEPTION_POINTERS)lpExceptionPointer;
DWORD MemAddress = (char *)lpEP->ExceptionRecord->ExceptionInformation[1] - (char *)_MMU->Rdram();
if ((int)(MemAddress) < 0 || MemAddress > 0x1FFFFFFF)
{
return EXCEPTION_CONTINUE_SEARCH;
}
DWORD * Reg;
BYTE * TypePos = (unsigned char *)lpEP->ContextRecord->Eip;
EXCEPTION_RECORD exRec = *lpEP->ExceptionRecord;
if (*TypePos == 0xF3 && *(TypePos + 1) == 0xA5) {
DWORD Start, End;
Start = (lpEP->ContextRecord->Edi - (DWORD)m_RDRAM);
End = (Start + (lpEP->ContextRecord->Ecx << 2) - 1);
if ((int)Start < 0) {
#ifndef EXTERNAL_RELEASE
DisplayError("hmmm.... where does this dma start ?");
#endif
return EXCEPTION_CONTINUE_SEARCH;
}
#ifdef CFB_READ
DWORD count, OldProtect;
if (Start >= CFBStart && End < CFBEnd) {
for ( count = Start; count < End; count += 0x1000 ) {
VirtualProtect(m_RDRAM+count,4,PAGE_READONLY, &OldProtect);
if (FrameBufferRead) { FrameBufferRead(count & ~0xFFF); }
}
return EXCEPTION_CONTINUE_EXECUTION;
}
#endif
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if ((int)End < RdramSize) {
for ( count = Start; count < End; count += 0x1000 ) {
BreakPoint(__FILE__,__LINE__);
if (N64_Blocks.NoOfRDRamBlocks[(count >> 12)] > 0) {
N64_Blocks.NoOfRDRamBlocks[(count >> 12)] = 0;
memset(JumpTable + ((count & 0x00FFFFF0) >> 2),0,0x1000);
*(DelaySlotTable + count) = NULL;
if (VirtualProtect(m_RDRAM + count, 4, PAGE_READWRITE, &OldProtect) == 0) {
#ifndef EXTERNAL_RELEASE
DisplayError("Failed to unprotect %X\n1", count);
#endif
}
}
}
return EXCEPTION_CONTINUE_EXECUTION;
}
if (Start >= 0x04000000 && End < 0x04001000) {
BreakPoint(__FILE__,__LINE__);
N64_Blocks.NoOfDMEMBlocks = 0;
memset(JumpTable + (0x04000000 >> 2),0,0x1000);
*(DelaySlotTable + (0x04000000 >> 12)) = NULL;
if (VirtualProtect(m_RDRAM + 0x04000000, 4, PAGE_READWRITE, &OldProtect) == 0) {
#ifndef EXTERNAL_RELEASE
DisplayError("Failed to unprotect %X\n7", 0x04000000);
#endif
}
return EXCEPTION_CONTINUE_EXECUTION;
}
if (Start >= 0x04001000 && End < 0x04002000) {
BreakPoint(__FILE__,__LINE__);
N64_Blocks.NoOfIMEMBlocks = 0;
memset(JumpTable + (0x04001000 >> 2),0,0x1000);
*(DelaySlotTable + (0x04001000 >> 12)) = NULL;
if (VirtualProtect(m_RDRAM + 0x04001000, 4, PAGE_READWRITE, &OldProtect) == 0) {
#ifndef EXTERNAL_RELEASE
DisplayError("Failed to unprotect %X\n6", 0x04001000);
#endif
}
return EXCEPTION_CONTINUE_EXECUTION;
}
#ifndef EXTERNAL_RELEASE
DisplayError("hmmm.... where does this dma End ?\nstart: %X\nend:%X\nlocation %X",
Start,End,lpEP->ContextRecord->Eip);
#endif
#endif
return EXCEPTION_CONTINUE_SEARCH;
}
BYTE * ReadPos;
if (*TypePos == 0x0F && *(TypePos + 1) == 0xB6) {
ReadPos = TypePos + 2;
} else if (*TypePos == 0x0F && *(TypePos + 1) == 0xB7) {
ReadPos = TypePos + 2;
} else if (*TypePos == 0x0F && *(TypePos + 1) == 0xBE) {
ReadPos = TypePos + 2;
} else if (*TypePos == 0x0F && *(TypePos + 1) == 0xBF) {
ReadPos = TypePos + 2;
} else if (*TypePos == 0x66) {
ReadPos = TypePos + 2;
} else {
ReadPos = TypePos + 1;
}
switch ((*ReadPos & 0x38)) {
case 0x00: Reg = &lpEP->ContextRecord->Eax; break;
case 0x08: Reg = &lpEP->ContextRecord->Ecx; break;
case 0x10: Reg = &lpEP->ContextRecord->Edx; break;
case 0x18: Reg = &lpEP->ContextRecord->Ebx; break;
case 0x20: Reg = &lpEP->ContextRecord->Esp; break;
case 0x28: Reg = &lpEP->ContextRecord->Ebp; break;
case 0x30: Reg = &lpEP->ContextRecord->Esi; break;
case 0x38: Reg = &lpEP->ContextRecord->Edi; break;
}
switch ((*ReadPos & 0xC7)) {
case 0: ReadPos += 1; break;
case 1: ReadPos += 1; break;
case 2: ReadPos += 1; break;
case 3: ReadPos += 1; break;
case 4:
ReadPos += 1;
switch ((*ReadPos & 0xC7)) {
case 0: ReadPos += 1; break;
case 1: ReadPos += 1; break;
case 2: ReadPos += 1; break;
case 3: ReadPos += 1; break;
case 6: ReadPos += 1; break;
case 7: ReadPos += 1; break;
default:
BreakPoint(__FILE__,__LINE__);
}
break;
case 5: ReadPos += 5; break;
case 6: ReadPos += 1; break;
case 7: ReadPos += 1; break;
case 0x40: ReadPos += 2; break;
case 0x41: ReadPos += 2; break;
case 0x42: ReadPos += 2; break;
case 0x43: ReadPos += 2; break;
case 0x46: ReadPos += 2; break;
case 0x47: ReadPos += 2; break;
case 0x80: ReadPos += 5; break;
case 0x81: ReadPos += 5; break;
case 0x82: ReadPos += 5; break;
case 0x83: ReadPos += 5; break;
case 0x86: ReadPos += 5; break;
case 0x87: ReadPos += 5; break;
default:
DisplayError("Unknown x86 opcode %X\nlocation %X\nloc: %X\nfgh2",
*(unsigned char *)lpEP->ContextRecord->Eip, lpEP->ContextRecord->Eip, (char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM);
return EXCEPTION_CONTINUE_SEARCH;
}
switch(*TypePos) {
case 0x0F:
switch(*(TypePos + 1)) {
case 0xB6:
if (!LB_NonMemory(MemAddress,(DWORD *)Reg,FALSE)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to load byte\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xB7:
if (!LH_NonMemory(MemAddress,(DWORD *)Reg,FALSE)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to load half word\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xBE:
if (!LB_NonMemory(MemAddress,Reg,TRUE)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to load byte\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xBF:
if (!LH_NonMemory(MemAddress,Reg,TRUE)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to load half word\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
default:
DisplayError("Unkown x86 opcode %X\nlocation %X\nloc: %X\nfhfgh2",
*(unsigned char *)lpEP->ContextRecord->Eip, lpEP->ContextRecord->Eip, (char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM);
return EXCEPTION_CONTINUE_SEARCH;
}
break;
case 0x66:
switch(*(TypePos + 1)) {
case 0x8B:
if (!LH_NonMemory(MemAddress,Reg,FALSE)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to half word\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0x89:
if (!SH_NonMemory(MemAddress,*(WORD *)Reg)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to store half word\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xC7:
if (Reg != &lpEP->ContextRecord->Eax) { return EXCEPTION_CONTINUE_SEARCH; }
if (!SH_NonMemory(MemAddress,*(WORD *)ReadPos)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to store half word\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)(ReadPos + 2);
return EXCEPTION_CONTINUE_EXECUTION;
default:
DisplayError("Unkown x86 opcode %X\nlocation %X\nloc: %X\nfhfgh2",
*(unsigned char *)lpEP->ContextRecord->Eip, lpEP->ContextRecord->Eip, (char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM);
return EXCEPTION_CONTINUE_SEARCH;
}
break;
case 0x88:
if (!SB_NonMemory(MemAddress,*(BYTE *)Reg)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to store byte\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0x8A:
if (!LB_NonMemory(MemAddress,Reg,FALSE)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to load byte\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0x8B:
if (!LW_NonMemory(MemAddress,Reg)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to load word\n\nMIPS Address: %X\nX86 Address",
(char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0x89:
if (!SW_NonMemory(MemAddress,*(DWORD *)Reg)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to store word\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)ReadPos;
return EXCEPTION_CONTINUE_EXECUTION;
case 0xC6:
if (Reg != &lpEP->ContextRecord->Eax) { return EXCEPTION_CONTINUE_SEARCH; }
if (!SB_NonMemory(MemAddress,*(BYTE *)ReadPos)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to store byte\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)(ReadPos + 1);
return EXCEPTION_CONTINUE_EXECUTION;
case 0xC7:
if (Reg != &lpEP->ContextRecord->Eax) { return EXCEPTION_CONTINUE_SEARCH; }
if (!SW_NonMemory(MemAddress,*(DWORD *)ReadPos)) {
if (_Settings->LoadDword(Debugger_ShowUnhandledMemory)) {
DisplayError("Failed to store word\n\nMIPS Address: %X\nX86 Address",MemAddress,
*(unsigned char *)lpEP->ContextRecord->Eip);
}
}
lpEP->ContextRecord->Eip = (DWORD)(ReadPos + 4);
return EXCEPTION_CONTINUE_EXECUTION;
default:
DisplayError("Unkown x86 opcode %X\nlocation %X\nloc: %X\nfhfgh2",
*(unsigned char *)lpEP->ContextRecord->Eip, lpEP->ContextRecord->Eip, (char *)exRec.ExceptionInformation[1] - (char *)m_RDRAM);
return EXCEPTION_CONTINUE_SEARCH;
}
return EXCEPTION_CONTINUE_SEARCH;
}
int CMipsMemoryVM::LB_NonMemory ( DWORD PAddr, DWORD * Value, BOOL SignExtend ) {
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (PAddr >= 0x10000000 && PAddr < 0x16000000) {
if (WrittenToRom) { return FALSE; }
if ((PAddr & 2) == 0) { PAddr = (PAddr + 4) ^ 2; }
if ((PAddr - 0x10000000) < RomFileSize) {
if (SignExtend) {
*Value = (int)((char)ROM[PAddr - 0x10000000]);
} else {
*Value = ROM[PAddr - 0x10000000];
}
return TRUE;
} else {
*Value = 0;
return FALSE;
}
}
#endif
// switch (PAddr & 0xFFF00000) {
// default:
* Value = 0;
return FALSE;
// break;
// }
// return TRUE;
}
int CMipsMemoryVM::LH_NonMemory ( DWORD PAddr, DWORD * Value, int SignExtend ) {
// switch (PAddr & 0xFFF00000) {
// default:
* Value = 0;
return FALSE;
// break;
// }
// return TRUE;
}
int CMipsMemoryVM::LW_NonMemory ( DWORD PAddr, DWORD * Value ) {
#ifdef CFB_READ
if (PAddr >= CFBStart && PAddr < CFBEnd) {
DWORD OldProtect;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READONLY, &OldProtect);
if (FrameBufferRead) { FrameBufferRead(PAddr & ~0xFFF); }
*Value = *(DWORD *)(m_RDRAM+PAddr);
return TRUE;
}
#endif
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
if (m_RomWrittenTo)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
*Value = WroteToRom;
//LogMessage("%X: Read crap from Rom %X from %X",PROGRAM_COUNTER,*Value,PAddr);
WrittenToRom = FALSE;
#ifdef ROM_IN_MAPSPACE
{
DWORD OldProtect;
VirtualProtect(ROM,RomFileSize,PAGE_READONLY, &OldProtect);
}
#endif
#endif
return TRUE;
}
if ((PAddr - 0x10000000) < m_RomSize) {
*Value = *(DWORD *)&m_Rom[PAddr - 0x10000000];
return TRUE;
} else {
*Value = PAddr & 0xFFFF;
*Value = (*Value << 16) | *Value;
return FALSE;
}
}
switch (PAddr & 0xFFF00000) {
case 0x03F00000:
switch (PAddr) {
case 0x03F00000: * Value = _Reg->RDRAM_CONFIG_REG; break;
case 0x03F00004: * Value = _Reg->RDRAM_DEVICE_ID_REG; break;
case 0x03F00008: * Value = _Reg->RDRAM_DELAY_REG; break;
case 0x03F0000C: * Value = _Reg->RDRAM_MODE_REG; break;
case 0x03F00010: * Value = _Reg->RDRAM_REF_INTERVAL_REG; break;
case 0x03F00014: * Value = _Reg->RDRAM_REF_ROW_REG; break;
case 0x03F00018: * Value = _Reg->RDRAM_RAS_INTERVAL_REG; break;
case 0x03F0001C: * Value = _Reg->RDRAM_MIN_INTERVAL_REG; break;
case 0x03F00020: * Value = _Reg->RDRAM_ADDR_SELECT_REG; break;
case 0x03F00024: * Value = _Reg->RDRAM_DEVICE_MANUF_REG; break;
default:
* Value = 0;
return FALSE;
}
break;
case 0x04000000:
switch (PAddr) {
case 0x04040010: *Value = _Reg->SP_STATUS_REG; break;
case 0x04040014: *Value = _Reg->SP_DMA_FULL_REG; break;
case 0x04040018: *Value = _Reg->SP_DMA_BUSY_REG; break;
case 0x04080000: *Value = _Reg->SP_PC_REG; break;
default:
* Value = 0;
return FALSE;
}
break;
case 0x04100000:
switch (PAddr) {
case 0x0410000C: *Value = _Reg->DPC_STATUS_REG; break;
case 0x04100010: *Value = _Reg->DPC_CLOCK_REG; break;
case 0x04100014: *Value = _Reg->DPC_BUFBUSY_REG; break;
case 0x04100018: *Value = _Reg->DPC_PIPEBUSY_REG; break;
case 0x0410001C: *Value = _Reg->DPC_TMEM_REG; break;
default:
* Value = 0;
return FALSE;
}
break;
case 0x04300000:
switch (PAddr) {
case 0x04300000: * Value = _Reg->MI_MODE_REG; break;
case 0x04300004: * Value = _Reg->MI_VERSION_REG; break;
case 0x04300008: * Value = _Reg->MI_INTR_REG; break;
case 0x0430000C: * Value = _Reg->MI_INTR_MASK_REG; break;
default:
* Value = 0;
return FALSE;
}
break;
case 0x04400000:
switch (PAddr) {
case 0x04400000: *Value = _Reg->VI_STATUS_REG; break;
case 0x04400004: *Value = _Reg->VI_ORIGIN_REG; break;
case 0x04400008: *Value = _Reg->VI_WIDTH_REG; break;
case 0x0440000C: *Value = _Reg->VI_INTR_REG; break;
case 0x04400010:
UpdateHalfLine();
*Value = m_HalfLine;
break;
case 0x04400014: *Value = _Reg->VI_BURST_REG; break;
case 0x04400018: *Value = _Reg->VI_V_SYNC_REG; break;
case 0x0440001C: *Value = _Reg->VI_H_SYNC_REG; break;
case 0x04400020: *Value = _Reg->VI_LEAP_REG; break;
case 0x04400024: *Value = _Reg->VI_H_START_REG; break;
case 0x04400028: *Value = _Reg->VI_V_START_REG ; break;
case 0x0440002C: *Value = _Reg->VI_V_BURST_REG; break;
case 0x04400030: *Value = _Reg->VI_X_SCALE_REG; break;
case 0x04400034: *Value = _Reg->VI_Y_SCALE_REG; break;
default:
* Value = 0;
return FALSE;
}
break;
case 0x04500000:
switch (PAddr) {
case 0x04500004:
if (g_FixedAudio)
{
*Value = _Audio->GetLength();
} else {
if (_Plugins->Audio()->ReadLength != NULL) {
*Value = _Plugins->Audio()->ReadLength();
} else {
*Value = 0;
}
}
break;
case 0x0450000C:
if (g_FixedAudio)
{
*Value = _Audio->GetStatus();
} else {
*Value = _Reg->AI_STATUS_REG;
}
break;
default:
* Value = 0;
return FALSE;
}
break;
case 0x04600000:
switch (PAddr) {
case 0x04600010: *Value = _Reg->PI_STATUS_REG; break;
case 0x04600014: *Value = _Reg->PI_DOMAIN1_REG; break;
case 0x04600018: *Value = _Reg->PI_BSD_DOM1_PWD_REG; break;
case 0x0460001C: *Value = _Reg->PI_BSD_DOM1_PGS_REG; break;
case 0x04600020: *Value = _Reg->PI_BSD_DOM1_RLS_REG; break;
case 0x04600024: *Value = _Reg->PI_DOMAIN2_REG; break;
case 0x04600028: *Value = _Reg->PI_BSD_DOM2_PWD_REG; break;
case 0x0460002C: *Value = _Reg->PI_BSD_DOM2_PGS_REG; break;
case 0x04600030: *Value = _Reg->PI_BSD_DOM2_RLS_REG; break;
default:
* Value = 0;
return FALSE;
}
break;
case 0x04700000:
switch (PAddr) {
case 0x04700000: * Value = _Reg->RI_MODE_REG; break;
case 0x04700004: * Value = _Reg->RI_CONFIG_REG; break;
case 0x04700008: * Value = _Reg->RI_CURRENT_LOAD_REG; break;
case 0x0470000C: * Value = _Reg->RI_SELECT_REG; break;
case 0x04700010: * Value = _Reg->RI_REFRESH_REG; break;
case 0x04700014: * Value = _Reg->RI_LATENCY_REG; break;
case 0x04700018: * Value = _Reg->RI_RERROR_REG; break;
case 0x0470001C: * Value = _Reg->RI_WERROR_REG; break;
default:
* Value = 0;
return FALSE;
}
break;
case 0x04800000:
switch (PAddr) {
case 0x04800018: *Value = _Reg->SI_STATUS_REG; break;
default:
*Value = 0;
return FALSE;
}
break;
case 0x05000000:
*Value = PAddr & 0xFFFF;
*Value = (*Value << 16) | *Value;
return FALSE;
case 0x08000000:
if (g_SaveUsing == SaveChip_Auto) { g_SaveUsing = SaveChip_FlashRam; }
if (g_SaveUsing != SaveChip_FlashRam) {
*Value = PAddr & 0xFFFF;
*Value = (*Value << 16) | *Value;
return FALSE;
}
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
*Value = ReadFromFlashStatus(PAddr);
#endif
break;
case 0x1FC00000:
if (PAddr < 0x1FC007C0) {
/* DWORD ToSwap = *(DWORD *)(&PifRom[PAddr - 0x1FC00000]);
_asm {
mov eax,ToSwap
bswap eax
mov ToSwap,eax
}
* Value = ToSwap;*/
BreakPoint(__FILE__,__LINE__);
return TRUE;
}
else if (PAddr < 0x1FC00800)
{
BYTE * PIF_Ram = _MMU->PifRam();
DWORD ToSwap = *(DWORD *)(&PIF_Ram[PAddr - 0x1FC007C0]);
_asm {
mov eax,ToSwap
bswap eax
mov ToSwap,eax
}
* Value = ToSwap;
return TRUE;
} else {
* Value = 0;
return FALSE;
}
BreakPoint(__FILE__,__LINE__);
break;
default:
*Value = PAddr & 0xFFFF;
*Value = (*Value << 16) | *Value;
return FALSE;
break;
}
return TRUE;
}
int CMipsMemoryVM::SB_NonMemory ( DWORD PAddr, BYTE Value ) {
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
#ifdef CFB_READ
if (PAddr >= CFBStart && PAddr < CFBEnd) {
DWORD OldProtect;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(BYTE *)(m_RDRAM+PAddr) = Value;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,OldProtect, &OldProtect);
DisplayError("FrameBufferWrite");
if (FrameBufferWrite) { FrameBufferWrite(PAddr,1); }
break;
}
#endif
if (PAddr < RdramSize()) {
bool ProtectMem = false;
DWORD Start = PAddr & ~0xFFF;
WriteTraceF(TraceDebug,"WriteToProtectedMemory Addres: %X Len: %d",PAddr,1);
if (!ClearRecompCodeProtectMem(Start,0xFFF)) { ProtectMem = true; }
DWORD OldProtect;
VirtualProtect((m_RDRAM + PAddr), 1, PAGE_READWRITE, &OldProtect);
*(BYTE *)(m_RDRAM+PAddr) = Value;
if (ProtectMem)
{
VirtualProtect((m_RDRAM + PAddr), 1, PAGE_READONLY, &OldProtect);
}
}
break;
default:
return FALSE;
break;
}
return TRUE;
}
int CMipsMemoryVM::SH_NonMemory ( DWORD PAddr, WORD Value ) {
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
#ifdef CFB_READ
if (PAddr >= CFBStart && PAddr < CFBEnd) {
DWORD OldProtect;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(WORD *)(m_RDRAM+PAddr) = Value;
if (FrameBufferWrite) { FrameBufferWrite(PAddr & ~0xFFF,2); }
//*(WORD *)(m_RDRAM+PAddr) = 0xFFFF;
//VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_NOACCESS, &OldProtect);
DisplayError("PAddr = %x",PAddr);
break;
}
#endif
if (PAddr < RdramSize()) {
bool ProtectMem = false;
DWORD Start = PAddr & ~0xFFF;
WriteTraceF(TraceDebug,"WriteToProtectedMemory Addres: %X Len: %d",PAddr,1);
if (!ClearRecompCodeProtectMem(Start,0xFFF)) { ProtectMem = true; }
DWORD OldProtect;
VirtualProtect((m_RDRAM + PAddr), 1, PAGE_READWRITE, &OldProtect);
*(WORD *)(m_RDRAM+PAddr) = Value;
if (ProtectMem)
{
VirtualProtect((m_RDRAM + PAddr), 1, PAGE_READONLY, &OldProtect);
}
}
break;
default:
return FALSE;
break;
}
return TRUE;
}
int CMipsMemoryVM::SW_NonMemory ( DWORD PAddr, DWORD Value ) {
if (PAddr >= 0x10000000 && PAddr < 0x16000000) {
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if ((PAddr - 0x10000000) < RomFileSize) {
WrittenToRom = TRUE;
WroteToRom = Value;
#ifdef ROM_IN_MAPSPACE
{
DWORD OldProtect;
VirtualProtect(ROM,RomFileSize,PAGE_NOACCESS, &OldProtect);
}
#endif
//LogMessage("%X: Wrote To Rom %X from %X",PROGRAM_COUNTER,Value,PAddr);
} else {
return FALSE;
}
#endif
}
switch (PAddr & 0xFFF00000) {
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
#ifdef CFB_READ
if (PAddr >= CFBStart && PAddr < CFBEnd) {
DWORD OldProtect;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,PAGE_READWRITE, &OldProtect);
*(DWORD *)(m_RDRAM+PAddr) = Value;
VirtualProtect(m_RDRAM+(PAddr & ~0xFFF),0xFFC,OldProtect, &OldProtect);
DisplayError("FrameBufferWrite %X",PAddr);
if (FrameBufferWrite) { FrameBufferWrite(PAddr,4); }
break;
}
#endif
if (PAddr < RdramSize()) {
bool ProtectMem = false;
DWORD Start = PAddr & ~0xFFF;
WriteTraceF(TraceDebug,"WriteToProtectedMemory Addres: %X Len: %d",PAddr,1);
if (!ClearRecompCodeProtectMem(Start,0xFFF)) { ProtectMem = true; }
DWORD OldProtect;
VirtualProtect((m_RDRAM + PAddr), 4, PAGE_READWRITE, &OldProtect);
*(DWORD *)(m_RDRAM+PAddr) = Value;
if (ProtectMem)
{
VirtualProtect((m_RDRAM + PAddr), 4, PAGE_READONLY, &OldProtect);
}
}
break;
case 0x03F00000:
switch (PAddr) {
case 0x03F00000: _Reg->RDRAM_CONFIG_REG = Value; break;
case 0x03F00004: _Reg->RDRAM_DEVICE_ID_REG = Value; break;
case 0x03F00008: _Reg->RDRAM_DELAY_REG = Value; break;
case 0x03F0000C: _Reg->RDRAM_MODE_REG = Value; break;
case 0x03F00010: _Reg->RDRAM_REF_INTERVAL_REG = Value; break;
case 0x03F00014: _Reg->RDRAM_REF_ROW_REG = Value; break;
case 0x03F00018: _Reg->RDRAM_RAS_INTERVAL_REG = Value; break;
case 0x03F0001C: _Reg->RDRAM_MIN_INTERVAL_REG = Value; break;
case 0x03F00020: _Reg->RDRAM_ADDR_SELECT_REG = Value; break;
case 0x03F00024: _Reg->RDRAM_DEVICE_MANUF_REG = Value; break;
case 0x03F04004: break;
case 0x03F08004: break;
case 0x03F80004: break;
case 0x03F80008: break;
case 0x03F8000C: break;
case 0x03F80014: break;
default:
return FALSE;
}
break;
case 0x04000000:
if (PAddr < 0x04002000) {
bool ProtectMem = false;
DWORD Start = PAddr & ~0xFFF;
WriteTraceF(TraceDebug,"WriteToProtectedMemory Addres: %X Len: %d",PAddr,1);
if (!ClearRecompCodeProtectMem(Start,0xFFF)) { ProtectMem = true; }
DWORD OldProtect;
VirtualProtect((m_RDRAM + PAddr), 4, PAGE_READWRITE, &OldProtect);
*(DWORD *)(m_RDRAM+PAddr) = Value;
if (ProtectMem)
{
VirtualProtect((m_RDRAM + PAddr), 4, PAGE_READONLY, &OldProtect);
}
} else {
switch (PAddr) {
case 0x04040000: _Reg->SP_MEM_ADDR_REG = Value; break;
case 0x04040004: _Reg->SP_DRAM_ADDR_REG = Value; break;
case 0x04040008:
_Reg->SP_RD_LEN_REG = Value;
SP_DMA_READ();
break;
case 0x0404000C:
_Reg->SP_WR_LEN_REG = Value;
SP_DMA_WRITE();
break;
case 0x04040010:
if ( ( Value & SP_CLR_HALT ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_HALT; }
if ( ( Value & SP_SET_HALT ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_HALT; }
if ( ( Value & SP_CLR_BROKE ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_BROKE; }
if ( ( Value & SP_CLR_INTR ) != 0) {
_Reg->MI_INTR_REG &= ~MI_INTR_SP;
_Reg->CheckInterrupts();
}
#ifndef EXTERNAL_RELEASE
if ( ( Value & SP_SET_INTR ) != 0) { DisplayError("SP_SET_INTR"); }
#endif
if ( ( Value & SP_CLR_SSTEP ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SSTEP; }
if ( ( Value & SP_SET_SSTEP ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SSTEP; }
if ( ( Value & SP_CLR_INTR_BREAK ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_INTR_BREAK; }
if ( ( Value & SP_SET_INTR_BREAK ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_INTR_BREAK; }
if ( ( Value & SP_CLR_SIG0 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG0; }
if ( ( Value & SP_SET_SIG0 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG0; }
if ( ( Value & SP_CLR_SIG1 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG1; }
if ( ( Value & SP_SET_SIG1 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG1; }
if ( ( Value & SP_CLR_SIG2 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG2; }
if ( ( Value & SP_SET_SIG2 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG2; }
if ( ( Value & SP_CLR_SIG3 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG3; }
if ( ( Value & SP_SET_SIG3 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG3; }
if ( ( Value & SP_CLR_SIG4 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG4; }
if ( ( Value & SP_SET_SIG4 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG4; }
if ( ( Value & SP_CLR_SIG5 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG5; }
if ( ( Value & SP_SET_SIG5 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG5; }
if ( ( Value & SP_CLR_SIG6 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG6; }
if ( ( Value & SP_SET_SIG6 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG6; }
if ( ( Value & SP_CLR_SIG7 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG7; }
if ( ( Value & SP_SET_SIG7 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG7; }
#ifdef tofix
if ( ( Value & SP_SET_SIG0 ) != 0 && AudioSignal)
{
MI_INTR_REG |= MI_INTR_SP;
_Reg->CheckInterrupts();
}
#endif
//if (*( DWORD *)(DMEM + 0xFC0) == 1) {
// ChangeTimer(RspTimer,0x30000);
//} else {
RunRsp();
//}
break;
case 0x0404001C: _Reg->SP_SEMAPHORE_REG = 0; break;
case 0x04080000: _Reg->SP_PC_REG = Value & 0xFFC; break;
default:
return FALSE;
}
}
break;
case 0x04100000:
switch (PAddr) {
case 0x04100000:
_Reg->DPC_START_REG = Value;
_Reg->DPC_CURRENT_REG = Value;
break;
case 0x04100004:
_Reg->DPC_END_REG = Value;
if (_Plugins->Gfx()->ProcessRDPList) { _Plugins->Gfx()->ProcessRDPList(); }
break;
//case 0x04100008: _Reg->DPC_CURRENT_REG = Value; break;
case 0x0410000C:
if ( ( Value & DPC_CLR_XBUS_DMEM_DMA ) != 0) { _Reg->DPC_STATUS_REG &= ~DPC_STATUS_XBUS_DMEM_DMA; }
if ( ( Value & DPC_SET_XBUS_DMEM_DMA ) != 0) { _Reg->DPC_STATUS_REG |= DPC_STATUS_XBUS_DMEM_DMA; }
if ( ( Value & DPC_CLR_FREEZE ) != 0) { _Reg->DPC_STATUS_REG &= ~DPC_STATUS_FREEZE; }
if ( ( Value & DPC_SET_FREEZE ) != 0) { _Reg->DPC_STATUS_REG |= DPC_STATUS_FREEZE; }
if ( ( Value & DPC_CLR_FLUSH ) != 0) { _Reg->DPC_STATUS_REG &= ~DPC_STATUS_FLUSH; }
if ( ( Value & DPC_SET_FLUSH ) != 0) { _Reg->DPC_STATUS_REG |= DPC_STATUS_FLUSH; }
if ( ( Value & DPC_CLR_FREEZE ) != 0)
{
if ( ( _Reg->SP_STATUS_REG & SP_STATUS_HALT ) == 0)
{
if ( ( _Reg->SP_STATUS_REG & SP_STATUS_BROKE ) == 0 )
{
RunRsp();
}
}
}
#ifdef tofix
if (ShowUnhandledMemory) {
//if ( ( Value & DPC_CLR_TMEM_CTR ) != 0) { DisplayError("RSP: DPC_STATUS_REG: DPC_CLR_TMEM_CTR"); }
//if ( ( Value & DPC_CLR_PIPE_CTR ) != 0) { DisplayError("RSP: DPC_STATUS_REG: DPC_CLR_PIPE_CTR"); }
//if ( ( Value & DPC_CLR_CMD_CTR ) != 0) { DisplayError("RSP: DPC_STATUS_REG: DPC_CLR_CMD_CTR"); }
//if ( ( Value & DPC_CLR_CLOCK_CTR ) != 0) { DisplayError("RSP: DPC_STATUS_REG: DPC_CLR_CLOCK_CTR"); }
}
#endif
break;
default:
return FALSE;
}
break;
case 0x04300000:
switch (PAddr) {
case 0x04300000:
_Reg->MI_MODE_REG &= ~0x7F;
_Reg->MI_MODE_REG |= (Value & 0x7F);
if ( ( Value & MI_CLR_INIT ) != 0 ) { _Reg->MI_MODE_REG &= ~MI_MODE_INIT; }
if ( ( Value & MI_SET_INIT ) != 0 ) { _Reg->MI_MODE_REG |= MI_MODE_INIT; }
if ( ( Value & MI_CLR_EBUS ) != 0 ) { _Reg->MI_MODE_REG &= ~MI_MODE_EBUS; }
if ( ( Value & MI_SET_EBUS ) != 0 ) { _Reg->MI_MODE_REG |= MI_MODE_EBUS; }
if ( ( Value & MI_CLR_DP_INTR ) != 0 ) {
_Reg->MI_INTR_REG &= ~MI_INTR_DP;
_Reg->CheckInterrupts();
}
if ( ( Value & MI_CLR_RDRAM ) != 0 ) { _Reg->MI_MODE_REG &= ~MI_MODE_RDRAM; }
if ( ( Value & MI_SET_RDRAM ) != 0 ) { _Reg->MI_MODE_REG |= MI_MODE_RDRAM; }
break;
case 0x0430000C:
if ( ( Value & MI_INTR_MASK_CLR_SP ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SP; }
if ( ( Value & MI_INTR_MASK_SET_SP ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SP; }
if ( ( Value & MI_INTR_MASK_CLR_SI ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SI; }
if ( ( Value & MI_INTR_MASK_SET_SI ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SI; }
if ( ( Value & MI_INTR_MASK_CLR_AI ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_AI; }
if ( ( Value & MI_INTR_MASK_SET_AI ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_AI; }
if ( ( Value & MI_INTR_MASK_CLR_VI ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_VI; }
if ( ( Value & MI_INTR_MASK_SET_VI ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_VI; }
if ( ( Value & MI_INTR_MASK_CLR_PI ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_PI; }
if ( ( Value & MI_INTR_MASK_SET_PI ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_PI; }
if ( ( Value & MI_INTR_MASK_CLR_DP ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_DP; }
if ( ( Value & MI_INTR_MASK_SET_DP ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_DP; }
break;
default:
return FALSE;
}
break;
case 0x04400000:
switch (PAddr) {
case 0x04400000:
if (_Reg->VI_STATUS_REG != Value) {
_Reg->VI_STATUS_REG = Value;
if (_Plugins->Gfx()->ViStatusChanged != NULL ) { _Plugins->Gfx()->ViStatusChanged(); }
}
break;
case 0x04400004:
#ifdef CFB_READ
if (_Reg->VI_ORIGIN_REG > 0x280) {
SetFrameBuffer(_Reg->VI_ORIGIN_REG, (DWORD)(VI_WIDTH_REG * (VI_WIDTH_REG *.75)));
}
#endif
_Reg->VI_ORIGIN_REG = (Value & 0xFFFFFF);
//if (UpdateScreen != NULL ) { UpdateScreen(); }
break;
case 0x04400008:
if (_Reg->VI_WIDTH_REG != Value) {
_Reg->VI_WIDTH_REG = Value;
if (_Plugins->Gfx()->ViWidthChanged != NULL ) { _Plugins->Gfx()->ViWidthChanged(); }
}
break;
case 0x0440000C: _Reg->VI_INTR_REG = Value; break;
case 0x04400010:
_Reg->MI_INTR_REG &= ~MI_INTR_VI;
_Reg->CheckInterrupts();
break;
case 0x04400014: _Reg->VI_BURST_REG = Value; break;
case 0x04400018: _Reg->VI_V_SYNC_REG = Value; break;
case 0x0440001C: _Reg->VI_H_SYNC_REG = Value; break;
case 0x04400020: _Reg->VI_LEAP_REG = Value; break;
case 0x04400024: _Reg->VI_H_START_REG = Value; break;
case 0x04400028: _Reg->VI_V_START_REG = Value; break;
case 0x0440002C: _Reg->VI_V_BURST_REG = Value; break;
case 0x04400030: _Reg->VI_X_SCALE_REG = Value; break;
case 0x04400034: _Reg->VI_Y_SCALE_REG = Value; break;
default:
return FALSE;
}
break;
case 0x04500000:
switch (PAddr) {
case 0x04500000: _Reg->AI_DRAM_ADDR_REG = Value; break;
case 0x04500004:
_Reg->AI_LEN_REG = Value;
if (g_FixedAudio)
{
_Audio->LenChanged();
} else {
if (_Plugins->Audio()->LenChanged != NULL) { _Plugins->Audio()->LenChanged(); }
}
break;
case 0x04500008: _Reg->AI_CONTROL_REG = (Value & 1); break;
case 0x0450000C:
/* Clear Interrupt */;
_Reg->MI_INTR_REG &= ~MI_INTR_AI;
_Reg->m_AudioIntrReg &= ~MI_INTR_AI;
_Reg->CheckInterrupts();
break;
case 0x04500010:
_Reg->AI_DACRATE_REG = Value;
DacrateChanged(g_SystemType);
if (g_FixedAudio)
{
#ifdef tofix
g_Audio->AiSetFrequency(Value,g_SystemType);
#endif
}
break;
case 0x04500014: _Reg->AI_BITRATE_REG = Value; break;
default:
return FALSE;
}
break;
case 0x04600000:
switch (PAddr) {
case 0x04600000: _Reg->PI_DRAM_ADDR_REG = Value; break;
case 0x04600004: _Reg->PI_CART_ADDR_REG = Value; break;
case 0x04600008:
_Reg->PI_RD_LEN_REG = Value;
PI_DMA_READ();
break;
case 0x0460000C:
_Reg->PI_WR_LEN_REG = Value;
PI_DMA_WRITE();
break;
case 0x04600010:
//if ((Value & PI_SET_RESET) != 0 ) { DisplayError("reset Controller"); }
if ((Value & PI_CLR_INTR) != 0 ) {
_Reg->MI_INTR_REG &= ~MI_INTR_PI;
_Reg->CheckInterrupts();
}
break;
case 0x04600014: _Reg->PI_DOMAIN1_REG = (Value & 0xFF); break;
case 0x04600018: _Reg->PI_BSD_DOM1_PWD_REG = (Value & 0xFF); break;
case 0x0460001C: _Reg->PI_BSD_DOM1_PGS_REG = (Value & 0xFF); break;
case 0x04600020: _Reg->PI_BSD_DOM1_RLS_REG = (Value & 0xFF); break;
default:
return FALSE;
}
break;
case 0x04700000:
switch (PAddr) {
case 0x04700000: _Reg->RI_MODE_REG = Value; break;
case 0x04700004: _Reg->RI_CONFIG_REG = Value; break;
case 0x04700008: _Reg->RI_CURRENT_LOAD_REG = Value; break;
case 0x0470000C: _Reg->RI_SELECT_REG = Value; break;
case 0x04700010: _Reg->RI_REFRESH_REG = Value; break;
case 0x04700014: _Reg->RI_LATENCY_REG = Value; break;
case 0x04700018: _Reg->RI_RERROR_REG = Value; break;
case 0x0470001C: _Reg->RI_WERROR_REG = Value; break;
default:
return FALSE;
}
break;
case 0x04800000:
switch (PAddr) {
case 0x04800000: _Reg->SI_DRAM_ADDR_REG = Value; break;
case 0x04800004:
_Reg->SI_PIF_ADDR_RD64B_REG = Value;
SI_DMA_READ ();
break;
case 0x04800010:
_Reg->SI_PIF_ADDR_WR64B_REG = Value;
SI_DMA_WRITE();
break;
case 0x04800018:
_Reg->MI_INTR_REG &= ~MI_INTR_SI;
_Reg->SI_STATUS_REG &= ~SI_STATUS_INTERRUPT;
_Reg->CheckInterrupts();
break;
default:
return FALSE;
}
break;
case 0x08000000:
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (PAddr != 0x08010000) { return FALSE; }
if (SaveUsing == SaveChip_Auto) { SaveUsing = SaveChip_FlashRam; }
if (SaveUsing != SaveChip_FlashRam) { return TRUE; }
WriteToFlashCommand(Value);
#endif
return FALSE;
break;
case 0x1FC00000:
if (PAddr < 0x1FC007C0) {
return FALSE;
} else if (PAddr < 0x1FC00800) {
_asm {
mov eax,Value
bswap eax
mov Value,eax
}
*(DWORD *)(&m_PifRam[PAddr - 0x1FC007C0]) = Value;
if (PAddr == 0x1FC007FC) {
PifRamWrite();
}
return TRUE;
}
return FALSE;
break;
default:
return FALSE;
break;
}
return TRUE;
}
extern DWORD g_ViRefreshRate;
void CMipsMemoryVM::UpdateHalfLine (void)
{
if (*_NextTimer < 0) {
m_HalfLine = 0;
return;
}
m_HalfLine = (DWORD)(*_NextTimer / g_ViRefreshRate);
m_HalfLine &= ~1;
}
void CMipsMemoryVM::ProtectMemory( DWORD StartVaddr, DWORD EndVaddr )
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (!CTLB::ValidVaddr(StartVaddr) || !CTLB::ValidVaddr(EndVaddr)) { return; }
//Get Physical Addresses passed
DWORD StartPAddr, EndPAddr;
if (!TranslateVaddr(StartVaddr,StartPAddr)) { _Notify->BreakPoint(__FILE__,__LINE__); }
if (!TranslateVaddr(EndVaddr,EndPAddr)) { _Notify->BreakPoint(__FILE__,__LINE__); }
//Get Length of memory being protected
int Length = (EndPAddr + 4) - StartPAddr;
if (Length < 0) { _Notify->BreakPoint(__FILE__,__LINE__); }
//Proect that memory address space
DWORD OldProtect;
void * MemLoc;
if (!VAddrToRealAddr(StartVaddr,MemLoc)) { _Notify->BreakPoint(__FILE__,__LINE__); }
VirtualProtect(MemLoc, Length, PAGE_READONLY, &OldProtect);
#endif
}
void CMipsMemoryVM::UnProtectMemory( DWORD StartVaddr, DWORD EndVaddr )
{
// _Notify->BreakPoint(__FILE__,__LINE__);
WriteTraceF(TraceError,"CMipsMemoryVM::UnProtectMemory: Not implemented startVaddr: %X EndVaddr: %X",StartVaddr,EndVaddr);
#ifdef tofix
if (!CTLB::ValidVaddr(StartVaddr) || !CTLB::ValidVaddr(EndVaddr)) { return; }
//Get Physical Addresses passed
DWORD StartPAddr, EndPAddr;
if (!TranslateVaddr(StartVaddr,StartPAddr)) { _Notify->BreakPoint(__FILE__,__LINE__); }
if (!TranslateVaddr(EndVaddr,EndPAddr)) { _Notify->BreakPoint(__FILE__,__LINE__); }
//Get Length of memory being protected
int Length = (EndPAddr + 4) - StartPAddr;
if (Length < 0) { _Notify->BreakPoint(__FILE__,__LINE__); }
//Proect that memory address space
DWORD OldProtect;
void * MemLoc;
if (!VAddrToRealAddr(StartVaddr,MemLoc)) { _Notify->BreakPoint(__FILE__,__LINE__); }
VirtualProtect(MemLoc, Length, PAGE_READWRITE, &OldProtect);
#endif
}
void CMipsMemoryVM::Compile_LB (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
if (IsConst(Opcode.base)) {
DWORD Address = (cMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 3;
Map_GPR_32bit(Opcode.rt,TRUE,0);
Compile_LB(cMipsRegMapLo(Opcode.rt),Address,TRUE);
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,3);
Map_GPR_32bit(Opcode.rt,TRUE,-1);
MoveSxByteX86regPointerToX86reg(TempReg1, TempReg2,cMipsRegMapLo(Opcode.rt));
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,3);
Map_GPR_32bit(Opcode.rt,TRUE,-1);
MoveSxN64MemToX86regByte(cMipsRegMapLo(Opcode.rt), TempReg1);
}
}
void CMipsMemoryVM::Compile_LBU (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
if (IsConst(Opcode.base)) {
DWORD Address = (cMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 3;
Map_GPR_32bit(Opcode.rt,FALSE,0);
Compile_LB(cMipsRegMapLo(Opcode.rt),Address,FALSE);
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,3);
Map_GPR_32bit(Opcode.rt,FALSE,-1);
MoveZxByteX86regPointerToX86reg(TempReg1, TempReg2,cMipsRegMapLo(Opcode.rt));
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,3);
Map_GPR_32bit(Opcode.rt,FALSE,-1);
MoveZxN64MemToX86regByte(cMipsRegMapLo(Opcode.rt), TempReg1);
}
}
void CMipsMemoryVM::Compile_LH (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
if (IsConst(Opcode.base)) {
DWORD Address = (cMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 2;
Map_GPR_32bit(Opcode.rt,TRUE,0);
Compile_LH(cMipsRegMapLo(Opcode.rt),Address,TRUE);
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,2);
Map_GPR_32bit(Opcode.rt,TRUE,-1);
MoveSxHalfX86regPointerToX86reg(TempReg1, TempReg2,cMipsRegMapLo(Opcode.rt));
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,2);
Map_GPR_32bit(Opcode.rt,TRUE,-1);
MoveSxN64MemToX86regHalf(cMipsRegMapLo(Opcode.rt), TempReg1);
}
}
void CMipsMemoryVM::Compile_LHU (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
if (IsConst(Opcode.base)) {
DWORD Address = (cMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 2;
Map_GPR_32bit(Opcode.rt,FALSE,0);
Compile_LH(cMipsRegMapLo(Opcode.rt),Address,FALSE);
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
XorConstToX86Reg(TempReg1,2);
Map_GPR_32bit(Opcode.rt,FALSE,-1);
MoveZxHalfX86regPointerToX86reg(TempReg1, TempReg2,cMipsRegMapLo(Opcode.rt));
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,2);
Map_GPR_32bit(Opcode.rt,TRUE,-1);
MoveZxN64MemToX86regHalf(cMipsRegMapLo(Opcode.rt), TempReg1);
}
}
void CMipsMemoryVM::Compile_LW (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
x86Reg TempReg1, TempReg2;
#ifdef tofix
if (Opcode.base == 29 && SPHack) {
char String[100];
Map_GPR_32bit(Opcode.rt,TRUE,-1);
TempReg1 = Map_MemoryStack(x86_Any,true);
sprintf(String,"%Xh",(short)Opcode.offset);
MoveVariableDispToX86Reg((void *)((DWORD)(short)Opcode.offset),String,cMipsRegLo(Opcode.rt),TempReg1,1);
} else {
#endif
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
Map_GPR_32bit(Opcode.rt,TRUE,-1);
Compile_LW(cMipsRegMapLo(Opcode.rt),Address);
} else {
if (g_UseTlb) {
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base) && Opcode.offset == 0) {
ProtectGPR(Opcode.base);
TempReg1 = cMipsRegMapLo(Opcode.base);
} else {
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
Map_GPR_32bit(Opcode.rt,TRUE,-1);
MoveX86regPointerToX86reg(TempReg1, TempReg2,cMipsRegMapLo(Opcode.rt));
} else {
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
Map_GPR_32bit(Opcode.rt,TRUE,-1);
LeaSourceAndOffset(cMipsRegMapLo(Opcode.rt),cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
Map_GPR_32bit(Opcode.rt,TRUE,Opcode.base);
}
} else {
Map_GPR_32bit(Opcode.rt,TRUE,Opcode.base);
AddConstToX86Reg(cMipsRegMapLo(Opcode.rt),(short)Opcode.immediate);
}
AndConstToX86Reg(cMipsRegMapLo(Opcode.rt),0x1FFFFFFF);
MoveN64MemToX86reg(cMipsRegMapLo(Opcode.rt),cMipsRegMapLo(Opcode.rt));
}
}
#ifdef tofix
}
if (SPHack && Opcode.rt == 29)
{
ResetX86Protection();
_MMU->ResetMemoryStack(m_Section);
}
#endif
}
void CMipsMemoryVM::Compile_LWC1 (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, TempReg3;
char Name[50];
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
m_Section->CompileCop1Test();
if ((Opcode.ft & 1) != 0) {
if (RegInStack(Opcode.ft-1,CRegInfo::FPU_Double) || RegInStack(Opcode.ft-1,CRegInfo::FPU_Qword)) {
UnMap_FPR(Opcode.ft-1,TRUE);
}
}
if (RegInStack(Opcode.ft,CRegInfo::FPU_Double) || RegInStack(Opcode.ft,CRegInfo::FPU_Qword)) {
UnMap_FPR(Opcode.ft,TRUE);
} else {
UnMap_FPR(Opcode.ft,FALSE);
}
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
Compile_LW(TempReg1,Address);
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg1,TempReg2);
return;
}
if (IsMapped(Opcode.base) && Opcode.offset == 0) {
if (g_UseTlb) {
ProtectGPR(Opcode.base);
TempReg1 = cMipsRegMapLo(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
UnProtectGPR(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
if (Opcode.immediate == 0) {
} else if (Opcode.immediate == 1) {
IncX86reg(TempReg1);
} else if (Opcode.immediate == 0xFFFF) {
DecX86reg(TempReg1);
} else {
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
}
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
if (g_UseTlb) {
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
TempReg3 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86regPointerToX86reg(TempReg1, TempReg2,TempReg3);
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
TempReg3 = Map_TempReg(x86_Any,-1,FALSE);
MoveN64MemToX86reg(TempReg3,TempReg1);
}
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg3,TempReg2);
}
void CMipsMemoryVM::Compile_LWL (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, OffsetReg, shift;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
DWORD Offset = Address & 3;
Map_GPR_32bit(Opcode.rt,TRUE,Opcode.rt);
x86Reg Value = Map_TempReg(x86_Any,-1,FALSE);
Compile_LW(Value,(Address & ~3));
AndConstToX86Reg(cMipsRegMapLo(Opcode.rt),LWL_MASK[Offset]);
ShiftLeftSignImmed(Value,(BYTE)LWL_SHIFT[Offset]);
AddX86RegToX86Reg(cMipsRegMapLo(Opcode.rt),Value);
return;
}
shift = Map_TempReg(x86_ECX,-1,FALSE);
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
UnProtectGPR(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
}
OffsetReg = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, OffsetReg);
AndConstToX86Reg(OffsetReg,3);
AndConstToX86Reg(TempReg1,~3);
Map_GPR_32bit(Opcode.rt,TRUE,Opcode.rt);
AndVariableDispToX86Reg((void *)LWL_MASK,"LWL_MASK",cMipsRegMapLo(Opcode.rt),OffsetReg,Multip_x4);
MoveVariableDispToX86Reg((void *)LWL_SHIFT,"LWL_SHIFT",shift,OffsetReg,4);
if (g_UseTlb) {
MoveX86regPointerToX86reg(TempReg1, TempReg2,TempReg1);
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveN64MemToX86reg(TempReg1,TempReg1);
}
ShiftLeftSign(TempReg1);
AddX86RegToX86Reg(cMipsRegMapLo(Opcode.rt),TempReg1);
}
void CMipsMemoryVM::Compile_LWR (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, OffsetReg, shift;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
DWORD Offset = Address & 3;
Map_GPR_32bit(Opcode.rt,TRUE,Opcode.rt);
x86Reg Value = Map_TempReg(x86_Any,-1,FALSE);
Compile_LW(Value,(Address & ~3));
AndConstToX86Reg(cMipsRegMapLo(Opcode.rt),LWR_MASK[Offset]);
ShiftRightUnsignImmed(Value,(BYTE)LWR_SHIFT[Offset]);
AddX86RegToX86Reg(cMipsRegMapLo(Opcode.rt),Value);
return;
}
shift = Map_TempReg(x86_ECX,-1,FALSE);
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
UnProtectGPR(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
}
OffsetReg = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, OffsetReg);
AndConstToX86Reg(OffsetReg,3);
AndConstToX86Reg(TempReg1,~3);
Map_GPR_32bit(Opcode.rt,TRUE,Opcode.rt);
AndVariableDispToX86Reg((void *)LWR_MASK,"LWR_MASK",cMipsRegMapLo(Opcode.rt),OffsetReg,Multip_x4);
MoveVariableDispToX86Reg((void *)LWR_SHIFT,"LWR_SHIFT",shift,OffsetReg,4);
if (g_UseTlb) {
MoveX86regPointerToX86reg(TempReg1, TempReg2,TempReg1);
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveN64MemToX86reg(TempReg1,TempReg1);
}
ShiftRightUnsign(TempReg1);
AddX86RegToX86Reg(cMipsRegMapLo(Opcode.rt),TempReg1);
}
void CMipsMemoryVM::Compile_LWU (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
if (IsConst(Opcode.base)) {
DWORD Address = (cMipsRegLo(Opcode.base) + (short)Opcode.offset);
Map_GPR_32bit(Opcode.rt,FALSE,0);
Compile_LW(cMipsRegLo(Opcode.rt),Address);
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
Map_GPR_32bit(Opcode.rt,FALSE,-1);
MoveZxHalfX86regPointerToX86reg(TempReg1, TempReg2,cMipsRegLo(Opcode.rt));
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
Map_GPR_32bit(Opcode.rt,TRUE,-1);
MoveZxN64MemToX86regHalf(cMipsRegLo(Opcode.rt), TempReg1);
}
#endif
}
void CMipsMemoryVM::Compile_LD (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.rt == 0) return;
x86Reg TempReg1, TempReg2;
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
Map_GPR_64bit(Opcode.rt,-1);
Compile_LW(cMipsRegMapHi(Opcode.rt),Address);
Compile_LW(cMipsRegMapLo(Opcode.rt),Address + 4);
#ifdef tofix
if (SPHack && Opcode.rt == 29) { _MMU->ResetMemoryStack(m_Section); }
#endif
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base) && Opcode.offset == 0) {
if (g_UseTlb) {
ProtectGPR(Opcode.base);
TempReg1 = cMipsRegMapLo(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
Map_GPR_64bit(Opcode.rt,-1);
MoveX86regPointerToX86reg(TempReg1, TempReg2,cMipsRegMapHi(Opcode.rt));
MoveX86regPointerToX86regDisp8(TempReg1, TempReg2,cMipsRegMapLo(Opcode.rt),4);
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
Map_GPR_64bit(Opcode.rt,-1);
MoveN64MemToX86reg(cMipsRegMapHi(Opcode.rt),TempReg1);
MoveN64MemDispToX86reg(cMipsRegMapLo(Opcode.rt),TempReg1,4);
}
#ifdef tofix
if (SPHack && Opcode.rt == 29) {
ResetX86Protection();
_MMU->ResetMemoryStack(m_Section);
}
#endif
}
void CMipsMemoryVM::Compile_LDC1 (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, TempReg3;
char Name[50];
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
m_Section->CompileCop1Test();
UnMap_FPR(Opcode.ft,FALSE);
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
Compile_LW(TempReg1,Address);
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
AddConstToX86Reg(TempReg2,4);
MoveX86regToX86Pointer(TempReg1,TempReg2);
Compile_LW(TempReg1,Address + 4);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg1,TempReg2);
return;
}
if (IsMapped(Opcode.base) && Opcode.offset == 0) {
if (g_UseTlb) {
ProtectGPR(Opcode.base);
TempReg1 = cMipsRegMapLo(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
if (Opcode.immediate == 0) {
} else if (Opcode.immediate == 1) {
IncX86reg(TempReg1);
} else if (Opcode.immediate == 0xFFFF) {
DecX86reg(TempReg1);
} else {
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
}
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
if (g_UseTlb) {
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
CompileReadTLBMiss(TempReg1,TempReg2);
TempReg3 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86regPointerToX86reg(TempReg1, TempReg2,TempReg3);
Push(TempReg2);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
AddConstToX86Reg(TempReg2,4);
MoveX86regToX86Pointer(TempReg3,TempReg2);
Pop(TempReg2);
MoveX86regPointerToX86regDisp8(TempReg1, TempReg2,TempReg3,4);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg3,TempReg2);
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
TempReg3 = Map_TempReg(x86_Any,-1,FALSE);
MoveN64MemToX86reg(TempReg3,TempReg1);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
AddConstToX86Reg(TempReg2,4);
MoveX86regToX86Pointer(TempReg3,TempReg2);
MoveN64MemDispToX86reg(TempReg3,TempReg1,4);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg2);
MoveX86regToX86Pointer(TempReg3,TempReg2);
}
}
void CMipsMemoryVM::Compile_LDL (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.base != 0) { UnMap_GPR(Opcode.base,TRUE); }
if (Opcode.rt != 0) { UnMap_GPR(Opcode.rt,TRUE); }
BeforeCallDirect(m_RegWorkingSet);
MoveConstToVariable(Opcode.Hex, &Opcode.Hex, "Opcode.Hex" );
Call_Direct(R4300iOp::LDL, "R4300iOp::LDL");
AfterCallDirect(m_RegWorkingSet);
#endif
}
void CMipsMemoryVM::Compile_LDR (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.base != 0) { UnMap_GPR(Opcode.base,TRUE); }
if (Opcode.rt != 0) { UnMap_GPR(Opcode.rt,TRUE); }
BeforeCallDirect(m_RegWorkingSet);
MoveConstToVariable(Opcode.Hex, &Opcode.Hex, "Opcode.Hex" );
Call_Direct(R4300iOp::LDR, "R4300iOp::LDR");
AfterCallDirect(m_RegWorkingSet);
#endif
}
void CMipsMemoryVM::Compile_SB (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base)) {
DWORD Address = (cMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 3;
if (IsConst(Opcode.rt)) {
Compile_SB_Const((BYTE)cMipsRegLo(Opcode.rt), Address);
} else if (IsMapped(Opcode.rt) && Is8BitReg(cMipsRegMapLo(Opcode.rt))) {
Compile_SB_Register(cMipsRegMapLo(Opcode.rt), Address);
} else {
Compile_SB_Register(Map_TempReg(x86_Any8Bit,Opcode.rt,FALSE), Address);
}
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
UnProtectGPR(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
XorConstToX86Reg(TempReg1,3);
if (IsConst(Opcode.rt)) {
MoveConstByteToX86regPointer((BYTE)cMipsRegLo(Opcode.rt),TempReg1, TempReg2);
} else if (IsMapped(Opcode.rt) && Is8BitReg(cMipsRegMapLo(Opcode.rt))) {
MoveX86regByteToX86regPointer(cMipsRegMapLo(Opcode.rt),TempReg1, TempReg2);
} else {
UnProtectGPR(Opcode.rt);
MoveX86regByteToX86regPointer(Map_TempReg(x86_Any8Bit,Opcode.rt,FALSE),TempReg1, TempReg2);
}
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,3);
if (IsConst(Opcode.rt)) {
MoveConstByteToN64Mem((BYTE)cMipsRegLo(Opcode.rt),TempReg1);
} else if (IsMapped(Opcode.rt) && Is8BitReg(cMipsRegMapLo(Opcode.rt))) {
MoveX86regByteToN64Mem(cMipsRegMapLo(Opcode.rt),TempReg1);
} else {
UnProtectGPR(Opcode.rt);
MoveX86regByteToN64Mem(Map_TempReg(x86_Any8Bit,Opcode.rt,FALSE),TempReg1);
}
}
}
void CMipsMemoryVM::Compile_SH (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base)) {
DWORD Address = (cMipsRegLo(Opcode.base) + (short)Opcode.offset) ^ 2;
if (IsConst(Opcode.rt)) {
Compile_SH_Const((WORD)cMipsRegLo(Opcode.rt), Address);
} else if (IsMapped(Opcode.rt)) {
Compile_SH_Register(cMipsRegMapLo(Opcode.rt), Address);
} else {
Compile_SH_Register(Map_TempReg(x86_Any,Opcode.rt,FALSE), Address);
}
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
UnProtectGPR(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
XorConstToX86Reg(TempReg1,2);
if (IsConst(Opcode.rt)) {
MoveConstHalfToX86regPointer((WORD)cMipsRegLo(Opcode.rt),TempReg1, TempReg2);
} else if (IsMapped(Opcode.rt)) {
MoveX86regHalfToX86regPointer(cMipsRegMapLo(Opcode.rt),TempReg1, TempReg2);
} else {
MoveX86regHalfToX86regPointer(Map_TempReg(x86_Any,Opcode.rt,FALSE),TempReg1, TempReg2);
}
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
XorConstToX86Reg(TempReg1,2);
if (IsConst(Opcode.rt)) {
MoveConstHalfToN64Mem((WORD)cMipsRegLo(Opcode.rt),TempReg1);
} else if (IsMapped(Opcode.rt)) {
MoveX86regHalfToN64Mem(cMipsRegMapLo(Opcode.rt),TempReg1);
} else {
MoveX86regHalfToN64Mem(Map_TempReg(x86_Any,Opcode.rt,FALSE),TempReg1);
}
}
}
void CMipsMemoryVM::Compile_SW (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
x86Reg TempReg1, TempReg2;
#ifdef tofix
if (Opcode.base == 29 && SPHack) {
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
TempReg1 = Map_MemoryStack(x86_Any,true);
if (IsConst(Opcode.rt)) {
MoveConstToMemoryDisp (cMipsRegLo(Opcode.rt),TempReg1, (DWORD)((short)Opcode.offset));
} else if (IsMapped(Opcode.rt)) {
MoveX86regToMemory(cMipsRegLo(Opcode.rt),TempReg1,(DWORD)((short)Opcode.offset));
} else {
TempReg2 = Map_TempReg(x86_Any,Opcode.rt,FALSE);
MoveX86regToMemory(TempReg2,TempReg1,(DWORD)((short)Opcode.offset));
}
} else {
#endif
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
if (IsConst(Opcode.rt)) {
Compile_SW_Const(cMipsRegLo(Opcode.rt), Address);
} else if (IsMapped(Opcode.rt)) {
Compile_SW_Register(cMipsRegMapLo(Opcode.rt), Address);
} else {
Compile_SW_Register(Map_TempReg(x86_Any,Opcode.rt,FALSE), Address);
}
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
UnProtectGPR(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
if (IsConst(Opcode.rt)) {
MoveConstToX86regPointer(cMipsRegLo(Opcode.rt),TempReg1, TempReg2);
} else if (IsMapped(Opcode.rt)) {
MoveX86regToX86regPointer(cMipsRegMapLo(Opcode.rt),TempReg1, TempReg2);
} else {
MoveX86regToX86regPointer(Map_TempReg(x86_Any,Opcode.rt,FALSE),TempReg1, TempReg2);
}
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
if (IsConst(Opcode.rt)) {
MoveConstToN64Mem(cMipsRegLo(Opcode.rt),TempReg1);
} else if (IsMapped(Opcode.rt)) {
MoveX86regToN64Mem(cMipsRegMapLo(Opcode.rt),TempReg1);
} else {
MoveX86regToN64Mem(Map_TempReg(x86_Any,Opcode.rt,FALSE),TempReg1);
}
}
#ifdef tofix
}
#endif
}
void CMipsMemoryVM::Compile_SWC1 (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, TempReg3;
char Name[50];
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
m_Section->CompileCop1Test();
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
UnMap_FPR(Opcode.ft,TRUE);
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg1);
MoveX86PointerToX86reg(TempReg1,TempReg1);
Compile_SW_Register(TempReg1, Address);
return;
}
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
if (Opcode.immediate == 0) {
} else if (Opcode.immediate == 1) {
IncX86reg(TempReg1);
} else if (Opcode.immediate == 0xFFFF) {
DecX86reg(TempReg1);
} else {
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
UnMap_FPR(Opcode.ft,TRUE);
TempReg3 = Map_TempReg(x86_Any,-1,FALSE);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg3);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToX86regPointer(TempReg3,TempReg1, TempReg2);
} else {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
UnMap_FPR(Opcode.ft,TRUE);
sprintf(Name,"_FPR_S[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_S[Opcode.ft],Name,TempReg2);
MoveX86PointerToX86reg(TempReg2,TempReg2);
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveX86regToN64Mem(TempReg2, TempReg1);
}
}
void CMipsMemoryVM::Compile_SWL (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, Value, shift, OffsetReg;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base)) {
DWORD Address;
Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
DWORD Offset = Address & 3;
Value = Map_TempReg(x86_Any,-1,FALSE);
Compile_LW(Value,(Address & ~3));
AndConstToX86Reg(Value,R4300iOp::SWL_MASK[Offset]);
TempReg1 = Map_TempReg(x86_Any,Opcode.rt,FALSE);
ShiftRightUnsignImmed(TempReg1,(BYTE)SWL_SHIFT[Offset]);
AddX86RegToX86Reg(Value,TempReg1);
Compile_SW_Register(Value, (Address & ~3));
return;
}
shift = Map_TempReg(x86_ECX,-1,FALSE);
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
UnProtectGPR(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
}
OffsetReg = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, OffsetReg);
AndConstToX86Reg(OffsetReg,3);
AndConstToX86Reg(TempReg1,~3);
Value = Map_TempReg(x86_Any,-1,FALSE);
if (g_UseTlb) {
MoveX86regPointerToX86reg(TempReg1, TempReg2,Value);
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveN64MemToX86reg(Value,TempReg1);
}
AndVariableDispToX86Reg((void *)SWL_MASK,"SWL_MASK",Value,OffsetReg,Multip_x4);
if (!IsConst(Opcode.rt) || cMipsRegLo(Opcode.rt) != 0) {
MoveVariableDispToX86Reg((void *)SWL_SHIFT,"SWL_SHIFT",shift,OffsetReg,4);
if (IsConst(Opcode.rt)) {
MoveConstToX86reg(cMipsRegLo(Opcode.rt),OffsetReg);
} else if (IsMapped(Opcode.rt)) {
MoveX86RegToX86Reg(cMipsRegMapLo(Opcode.rt),OffsetReg);
} else {
MoveVariableToX86reg(&_GPR[Opcode.rt].UW[0],CRegName::GPR_Lo[Opcode.rt],OffsetReg);
}
ShiftRightUnsign(OffsetReg);
AddX86RegToX86Reg(Value,OffsetReg);
}
if (g_UseTlb) {
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
MoveX86regToX86regPointer(Value,TempReg1, TempReg2);
} else {
MoveX86regToN64Mem(Value,TempReg1);
}
}
void CMipsMemoryVM::Compile_SWR (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, Value, OffsetReg, shift;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
DWORD Offset = Address & 3;
Value = Map_TempReg(x86_Any,-1,FALSE);
Compile_LW(Value,(Address & ~3));
AndConstToX86Reg(Value,SWR_MASK[Offset]);
TempReg1 = Map_TempReg(x86_Any,Opcode.rt,FALSE);
ShiftLeftSignImmed(TempReg1,(BYTE)SWR_SHIFT[Offset]);
AddX86RegToX86Reg(Value,TempReg1);
Compile_SW_Register(Value, (Address & ~3));
return;
}
shift = Map_TempReg(x86_ECX,-1,FALSE);
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
UnProtectGPR(Opcode.base);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_ReadMap,"m_TLB_ReadMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
}
OffsetReg = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, OffsetReg);
AndConstToX86Reg(OffsetReg,3);
AndConstToX86Reg(TempReg1,~3);
Value = Map_TempReg(x86_Any,-1,FALSE);
if (g_UseTlb) {
MoveX86regPointerToX86reg(TempReg1, TempReg2,Value);
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
MoveN64MemToX86reg(Value,TempReg1);
}
AndVariableDispToX86Reg((void *)SWR_MASK,"SWR_MASK",Value,OffsetReg,Multip_x4);
if (!IsConst(Opcode.rt) || cMipsRegLo(Opcode.rt) != 0) {
MoveVariableDispToX86Reg((void *)SWR_SHIFT,"SWR_SHIFT",shift,OffsetReg,4);
if (IsConst(Opcode.rt)) {
MoveConstToX86reg(cMipsRegLo(Opcode.rt),OffsetReg);
} else if (IsMapped(Opcode.rt)) {
MoveX86RegToX86Reg(cMipsRegMapLo(Opcode.rt),OffsetReg);
} else {
MoveVariableToX86reg(&_GPR[Opcode.rt].UW[0],CRegName::GPR_Lo[Opcode.rt],OffsetReg);
}
ShiftLeftSign(OffsetReg);
AddX86RegToX86Reg(Value,OffsetReg);
}
if (g_UseTlb) {
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
MoveX86regToX86regPointer(Value,TempReg1, TempReg2);
} else {
MoveX86regToN64Mem(Value,TempReg1);
}
}
void CMipsMemoryVM::Compile_SD (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2;
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
if (IsConst(Opcode.rt)) {
if (Is64Bit(Opcode.rt)) {
Compile_SW_Const(MipsRegHi(Opcode.rt), Address);
} else {
Compile_SW_Const((MipsRegLo_S(Opcode.rt) >> 31), Address);
}
Compile_SW_Const(cMipsRegLo(Opcode.rt), Address + 4);
} else if (IsMapped(Opcode.rt)) {
if (Is64Bit(Opcode.rt)) {
Compile_SW_Register(MipsRegMapHi(Opcode.rt), Address);
} else {
Compile_SW_Register(Map_TempReg(x86_Any,Opcode.rt,TRUE), Address);
}
Compile_SW_Register(cMipsRegMapLo(Opcode.rt), Address + 4);
} else {
Compile_SW_Register(TempReg1 = Map_TempReg(x86_Any,Opcode.rt,TRUE), Address);
Compile_SW_Register(Map_TempReg(TempReg1,Opcode.rt,FALSE), Address + 4);
}
return;
}
if (IsMapped(Opcode.rt)) { ProtectGPR(Opcode.rt); }
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
if (IsConst(Opcode.rt)) {
if (Is64Bit(Opcode.rt)) {
MoveConstToX86regPointer(MipsRegHi(Opcode.rt),TempReg1, TempReg2);
} else {
MoveConstToX86regPointer((MipsRegLo_S(Opcode.rt) >> 31),TempReg1, TempReg2);
}
AddConstToX86Reg(TempReg1,4);
MoveConstToX86regPointer(cMipsRegLo(Opcode.rt),TempReg1, TempReg2);
} else if (IsMapped(Opcode.rt)) {
if (Is64Bit(Opcode.rt)) {
MoveX86regToX86regPointer(MipsRegMapHi(Opcode.rt),TempReg1, TempReg2);
} else {
MoveX86regToX86regPointer(Map_TempReg(x86_Any,Opcode.rt,TRUE),TempReg1, TempReg2);
}
AddConstToX86Reg(TempReg1,4);
MoveX86regToX86regPointer(cMipsRegMapLo(Opcode.rt),TempReg1, TempReg2);
} else {
x86Reg Reg = Map_TempReg(x86_Any,Opcode.rt,TRUE);
MoveX86regToX86regPointer(Reg,TempReg1, TempReg2);
AddConstToX86Reg(TempReg1,4);
MoveX86regToX86regPointer(Map_TempReg(Reg,Opcode.rt,FALSE),TempReg1, TempReg2);
}
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
if (IsConst(Opcode.rt)) {
if (Is64Bit(Opcode.rt)) {
MoveConstToN64Mem(MipsRegHi(Opcode.rt),TempReg1);
} else if (IsSigned(Opcode.rt)) {
MoveConstToN64Mem((cMipsRegLo_S(Opcode.rt) >> 31),TempReg1);
} else {
MoveConstToN64Mem(0,TempReg1);
}
MoveConstToN64MemDisp(cMipsRegLo(Opcode.rt),TempReg1,4);
} else if (IsKnown(Opcode.rt) && IsMapped(Opcode.rt)) {
if (Is64Bit(Opcode.rt)) {
MoveX86regToN64Mem(MipsRegMapHi(Opcode.rt),TempReg1);
} else if (IsSigned(Opcode.rt)) {
MoveX86regToN64Mem(Map_TempReg(x86_Any,Opcode.rt,TRUE), TempReg1);
} else {
MoveConstToN64Mem(0,TempReg1);
}
MoveX86regToN64MemDisp(cMipsRegMapLo(Opcode.rt),TempReg1, 4);
} else {
x86Reg Reg;
MoveX86regToN64Mem(Reg = Map_TempReg(x86_Any,Opcode.rt,TRUE), TempReg1);
MoveX86regToN64MemDisp(Map_TempReg(Reg,Opcode.rt,FALSE), TempReg1,4);
}
}
}
void CMipsMemoryVM::Compile_SDC1 (void)
{
OPCODE & Opcode = CRecompilerOps::m_Opcode;
x86Reg TempReg1, TempReg2, TempReg3;
char Name[50];
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
m_Section->CompileCop1Test();
if (IsConst(Opcode.base)) {
DWORD Address = cMipsRegLo(Opcode.base) + (short)Opcode.offset;
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg1);
AddConstToX86Reg(TempReg1,4);
MoveX86PointerToX86reg(TempReg1,TempReg1);
Compile_SW_Register(TempReg1, Address);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg(&_FPR_D[Opcode.ft],Name,TempReg1);
MoveX86PointerToX86reg(TempReg1,TempReg1);
Compile_SW_Register(TempReg1, Address + 4);
return;
}
if (IsMapped(Opcode.base)) {
ProtectGPR(Opcode.base);
if (Opcode.offset != 0) {
TempReg1 = Map_TempReg(x86_Any,-1,FALSE);
LeaSourceAndOffset(TempReg1,cMipsRegMapLo(Opcode.base),(short)Opcode.offset);
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
}
} else {
TempReg1 = Map_TempReg(x86_Any,Opcode.base,FALSE);
if (Opcode.immediate == 0) {
} else if (Opcode.immediate == 1) {
IncX86reg(TempReg1);
} else if (Opcode.immediate == 0xFFFF) {
DecX86reg(TempReg1);
} else {
AddConstToX86Reg(TempReg1,(short)Opcode.immediate);
}
}
if (g_UseTlb) {
TempReg2 = Map_TempReg(x86_Any,-1,FALSE);
MoveX86RegToX86Reg(TempReg1, TempReg2);
ShiftRightUnsignImmed(TempReg2,12);
MoveVariableDispToX86Reg(m_TLB_WriteMap,"m_TLB_WriteMap",TempReg2,TempReg2,4);
//For tlb miss
//0041C522 85 C0 test eax,eax
//0041C524 75 01 jne 0041C527
TempReg3 = Map_TempReg(x86_Any,-1,FALSE);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg3);
AddConstToX86Reg(TempReg3,4);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToX86regPointer(TempReg3,TempReg1, TempReg2);
AddConstToX86Reg(TempReg1,4);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg3);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToX86regPointer(TempReg3,TempReg1, TempReg2);
} else {
AndConstToX86Reg(TempReg1,0x1FFFFFFF);
TempReg3 = Map_TempReg(x86_Any,-1,FALSE);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg3);
AddConstToX86Reg(TempReg3,4);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToN64Mem(TempReg3, TempReg1);
sprintf(Name,"_FPR_D[%d]",Opcode.ft);
MoveVariableToX86reg((BYTE *)&_FPR_D[Opcode.ft],Name,TempReg3);
MoveX86PointerToX86reg(TempReg3,TempReg3);
MoveX86regToN64MemDisp(TempReg3, TempReg1,4);
}
}
void CMipsMemoryVM::Compile_SDL (void) {
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.base != 0) { UnMap_GPR(Opcode.base,TRUE); }
if (Opcode.rt != 0) { UnMap_GPR(Opcode.rt,TRUE); }
BeforeCallDirect(m_RegWorkingSet);
MoveConstToVariable(Opcode.Hex, &Opcode.Hex, "Opcode.Hex" );
Call_Direct(R4300iOp::SDL, "R4300iOp::SDL");
AfterCallDirect(m_RegWorkingSet);
#endif
}
void CMipsMemoryVM::Compile_SDR (void) {
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
CPU_Message(" %X %s",m_CompilePC,R4300iOpcodeName(Opcode.Hex,m_CompilePC));
if (Opcode.base != 0) { UnMap_GPR(Opcode.base,TRUE); }
if (Opcode.rt != 0) { UnMap_GPR(Opcode.rt,TRUE); }
BeforeCallDirect(m_RegWorkingSet);
MoveConstToVariable(Opcode.Hex, &Opcode.Hex, "Opcode.Hex" );
Call_Direct(R4300iOp::SDR, "R4300iOp::SDR");
AfterCallDirect(m_RegWorkingSet);
#endif
}
LPCTSTR CMipsMemoryVM::LabelName ( DWORD Address ) const
{
//StringMap::iterator theIterator = m_LabelList.find(Address);
//if (theIterator != m_LabelList.end()) {
// return (*theIterator).second;
//}
sprintf(m_strLabelName,"0x%08X",Address);
return m_strLabelName;
}
void CMipsMemoryVM::TLB_Mapped( DWORD VAddr, DWORD Len, DWORD PAddr, bool bReadOnly )
{
for (DWORD count = VAddr, VEnd = VAddr + Len; count < VEnd; count += 0x1000) {
DWORD Index = count >> 12;
m_TLB_ReadMap[Index] = ((DWORD)m_RDRAM + (count - VAddr + PAddr)) - count;
if (!bReadOnly)
{
m_TLB_WriteMap[Index] = ((DWORD)m_RDRAM + (count - VAddr + PAddr)) - count;
}
}
}
void CMipsMemoryVM::TLB_Unmaped( DWORD Vaddr, DWORD Len )
{
for (DWORD count = Vaddr, End = Vaddr + Len; count < End; count += 0x1000)
{
DWORD Index = count >> 12;
m_TLB_ReadMap[Index] = NULL;
m_TLB_WriteMap[Index] = NULL;
}
}
void CMipsMemoryVM::RdramChanged ( CMipsMemoryVM * _this )
{
if (_this->m_AllocatedRdramSize == _Settings->LoadDword(Game_RDRamSize))
{
return;
}
if (_this->m_AllocatedRdramSize == 0x400000) {
if (VirtualAlloc(_this->m_RDRAM + 0x400000, 0x400000, MEM_COMMIT, PAGE_READWRITE)==NULL)
{
WriteTrace(TraceError,"CMipsMemoryVM::RdramChanged: failed to allocate extended memory");
_Notify->FatalError(GS(MSG_MEM_ALLOC_ERROR));
}
_this->m_AllocatedRdramSize = 0x800000;
} else {
VirtualFree(_this->m_RDRAM + 0x400000, 0x400000,MEM_DECOMMIT);
_this->m_AllocatedRdramSize = 0x400000;
}
}
void CMipsMemoryVM::ChangeSpStatus (void)
{
if ( ( RegModValue & SP_CLR_HALT ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_HALT; }
if ( ( RegModValue & SP_SET_HALT ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_HALT; }
if ( ( RegModValue & SP_CLR_BROKE ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_BROKE; }
if ( ( RegModValue & SP_CLR_INTR ) != 0) {
_Reg->MI_INTR_REG &= ~MI_INTR_SP;
_Reg->CheckInterrupts();
}
#ifndef EXTERNAL_RELEASE
if ( ( RegModValue & SP_SET_INTR ) != 0) { DisplayError("SP_SET_INTR"); }
#endif
if ( ( RegModValue & SP_CLR_SSTEP ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SSTEP; }
if ( ( RegModValue & SP_SET_SSTEP ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SSTEP; }
if ( ( RegModValue & SP_CLR_INTR_BREAK ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_INTR_BREAK; }
if ( ( RegModValue & SP_SET_INTR_BREAK ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_INTR_BREAK; }
if ( ( RegModValue & SP_CLR_SIG0 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG0; }
if ( ( RegModValue & SP_SET_SIG0 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG0; }
if ( ( RegModValue & SP_CLR_SIG1 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG1; }
if ( ( RegModValue & SP_SET_SIG1 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG1; }
if ( ( RegModValue & SP_CLR_SIG2 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG2; }
if ( ( RegModValue & SP_SET_SIG2 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG2; }
if ( ( RegModValue & SP_CLR_SIG3 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG3; }
if ( ( RegModValue & SP_SET_SIG3 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG3; }
if ( ( RegModValue & SP_CLR_SIG4 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG4; }
if ( ( RegModValue & SP_SET_SIG4 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG4; }
if ( ( RegModValue & SP_CLR_SIG5 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG5; }
if ( ( RegModValue & SP_SET_SIG5 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG5; }
if ( ( RegModValue & SP_CLR_SIG6 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG6; }
if ( ( RegModValue & SP_SET_SIG6 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG6; }
if ( ( RegModValue & SP_CLR_SIG7 ) != 0) { _Reg->SP_STATUS_REG &= ~SP_STATUS_SIG7; }
if ( ( RegModValue & SP_SET_SIG7 ) != 0) { _Reg->SP_STATUS_REG |= SP_STATUS_SIG7; }
if ( ( RegModValue & SP_SET_SIG0 ) != 0 && g_AudioSignal)
{
_Reg->MI_INTR_REG |= MI_INTR_SP;
_Reg->CheckInterrupts();
}
//if (*( DWORD *)(DMEM + 0xFC0) == 1) {
// ChangeTimer(RspTimer,0x40000);
//} else {
RunRsp();
//}
}
void CMipsMemoryVM::ChangeMiIntrMask (void) {
if ( ( RegModValue & MI_INTR_MASK_CLR_SP ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SP; }
if ( ( RegModValue & MI_INTR_MASK_SET_SP ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SP; }
if ( ( RegModValue & MI_INTR_MASK_CLR_SI ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SI; }
if ( ( RegModValue & MI_INTR_MASK_SET_SI ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SI; }
if ( ( RegModValue & MI_INTR_MASK_CLR_AI ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_AI; }
if ( ( RegModValue & MI_INTR_MASK_SET_AI ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_AI; }
if ( ( RegModValue & MI_INTR_MASK_CLR_VI ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_VI; }
if ( ( RegModValue & MI_INTR_MASK_SET_VI ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_VI; }
if ( ( RegModValue & MI_INTR_MASK_CLR_PI ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_PI; }
if ( ( RegModValue & MI_INTR_MASK_SET_PI ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_PI; }
if ( ( RegModValue & MI_INTR_MASK_CLR_DP ) != 0 ) { _Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_DP; }
if ( ( RegModValue & MI_INTR_MASK_SET_DP ) != 0 ) { _Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_DP; }
}