451 lines
18 KiB
JavaScript
451 lines
18 KiB
JavaScript
import sharp from 'sharp';
|
||
import { promises as fs } from 'fs';
|
||
import path from 'path';
|
||
import { fileURLToPath } from 'url';
|
||
import { glob } from 'glob';
|
||
import os from 'os';
|
||
import { Worker, isMainThread, parentPort, workerData } from 'worker_threads';
|
||
|
||
const __filename = fileURLToPath(import.meta.url);
|
||
const __dirname = path.dirname(__filename);
|
||
|
||
const sourceDir = 'public';
|
||
const SMALL_FILE_THRESHOLD = 5 * 1024; // 5KB
|
||
|
||
// 动态计算最佳参数
|
||
async function calculateOptimalParams() {
|
||
const totalMemory = os.totalmem();
|
||
const freeMemory = os.freemem();
|
||
const cpuCount = os.cpus().length;
|
||
const cpuUsage = os.loadavg()[0] / cpuCount; // 1分钟平均负载
|
||
|
||
// 根据系统内存使用情况动态调整内存使用比例
|
||
const memoryUsageRatio = 1 - (freeMemory / totalMemory);
|
||
let memoryAllocationRatio;
|
||
if (memoryUsageRatio < 0.7) { // 内存使用率低于70%
|
||
memoryAllocationRatio = 0.4; // 可以使用40%的总内存
|
||
} else if (memoryUsageRatio < 0.85) { // 内存使用率在70%-85%之间
|
||
memoryAllocationRatio = 0.3; // 使用30%的总内存
|
||
} else { // 内存使用率高于85%
|
||
memoryAllocationRatio = 0.2; // 只使用20%的总内存
|
||
}
|
||
|
||
// 估算单个文件处理的平均内存占用(根据文件大小动态调整)
|
||
const estimatedMemoryPerFile = Math.max(
|
||
512 * 1024, // 最小512KB
|
||
Math.min(
|
||
2 * 1024 * 1024, // 最大2MB
|
||
Math.floor(totalMemory / (1024 * cpuCount)) // 根据系统配置动态计算
|
||
)
|
||
);
|
||
|
||
// 计算批处理大小
|
||
const memoryForProcessing = totalMemory * memoryAllocationRatio;
|
||
let batchSize = Math.floor(memoryForProcessing / (estimatedMemoryPerFile * cpuCount));
|
||
|
||
// 动态调整批处理大小的上下限
|
||
const minBatchSize = Math.max(50, Math.floor(200 / cpuCount)); // 确保每个CPU至少处理50个文件
|
||
const maxBatchSize = Math.min(
|
||
2000, // 硬上限
|
||
Math.floor(memoryForProcessing / (512 * 1024)) // 根据分配内存动态计算上限
|
||
);
|
||
batchSize = Math.max(minBatchSize, Math.min(maxBatchSize, batchSize));
|
||
|
||
// 优化工作线程数量计算
|
||
let workerCount;
|
||
const maxThreads = cpuCount * 2; // 最大允许CPU核心数的2倍线程
|
||
const systemLoad = os.loadavg()[0] / cpuCount;
|
||
const memoryConstraint = memoryUsageRatio > 0.85; // 改为85%
|
||
|
||
if (memoryConstraint) {
|
||
// 内存压力大时,限制线程数
|
||
workerCount = Math.max(2, Math.min(cpuCount - 1, 4));
|
||
} else if (systemLoad < 0.5) {
|
||
// 系统负载很低,可以用最大线程数
|
||
workerCount = Math.max(2, Math.min(maxThreads, 6));
|
||
} else if (systemLoad < 1.0) {
|
||
// 系统负载适中,使用较多线程
|
||
workerCount = Math.max(2, Math.min(cpuCount + 2, 6));
|
||
} else {
|
||
// 系统负载较高,但仍有余力
|
||
workerCount = Math.max(2, Math.min(cpuCount, 4));
|
||
}
|
||
|
||
// 根据批处理大小调整线程数
|
||
// 如果批次太小,减少线程数以避免线程切换开销
|
||
if (batchSize < 100) {
|
||
workerCount = Math.min(workerCount, 2);
|
||
} else if (batchSize < 200) {
|
||
workerCount = Math.min(workerCount, 3);
|
||
}
|
||
|
||
// 检测是否在RAM disk上
|
||
const isRamDisk = await checkIfRamDisk(sourceDir);
|
||
|
||
return {
|
||
batchSize,
|
||
workerCount,
|
||
isRamDisk,
|
||
systemInfo: {
|
||
totalMemory: formatBytes(totalMemory),
|
||
freeMemory: formatBytes(freeMemory),
|
||
cpuCount,
|
||
cpuUsage: (cpuUsage * 100).toFixed(1) + '%',
|
||
memoryUsage: (memoryUsageRatio * 100).toFixed(1) + '%',
|
||
memoryAllocationRatio: (memoryAllocationRatio * 100).toFixed(1) + '%',
|
||
estimatedMemoryPerFile: formatBytes(estimatedMemoryPerFile)
|
||
}
|
||
};
|
||
}
|
||
|
||
// 检查目录是否在RAM disk上
|
||
async function checkIfRamDisk(dir) {
|
||
try {
|
||
if (process.platform === 'darwin') {
|
||
// macOS: 检查是否在 /Volumes/RAMDisk
|
||
return dir.startsWith('/Volumes/RAMDisk');
|
||
} else if (process.platform === 'linux') {
|
||
// Linux: 检查是否在 tmpfs
|
||
const { stdout } = await import('child_process').then(cp =>
|
||
new Promise((resolve) => {
|
||
cp.exec(`df -T "${dir}" | grep tmpfs`, (error, stdout) => resolve({ stdout }));
|
||
})
|
||
);
|
||
return stdout.includes('tmpfs');
|
||
}
|
||
} catch (error) {
|
||
return false;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// 格式化字节数
|
||
function formatBytes(bytes) {
|
||
const units = ['B', 'KB', 'MB', 'GB'];
|
||
let size = bytes;
|
||
let unitIndex = 0;
|
||
while (size >= 1024 && unitIndex < units.length - 1) {
|
||
size /= 1024;
|
||
unitIndex++;
|
||
}
|
||
return `${size.toFixed(2)}${units[unitIndex]}`;
|
||
}
|
||
|
||
// 工作线程逻辑
|
||
if (!isMainThread) {
|
||
const { files, sourceDir, isRamDisk } = workerData;
|
||
|
||
async function optimizeImage(inputPath) {
|
||
const relativePath = path.relative(sourceDir, inputPath);
|
||
const tempPath = `${inputPath}.temp`;
|
||
|
||
try {
|
||
const inputStats = await fs.stat(inputPath);
|
||
const isSmallFile = inputStats.size < SMALL_FILE_THRESHOLD;
|
||
|
||
// 根据是否在RAM disk上调整缓冲策略
|
||
const sharpOptions = {
|
||
failOnError: false,
|
||
limitInputPixels: false,
|
||
sequentialRead: !isRamDisk,
|
||
};
|
||
|
||
let sharpInstance = sharp(inputPath, sharpOptions);
|
||
|
||
// 获取图像信息
|
||
const metadata = await sharpInstance.metadata();
|
||
const isTransparent = metadata.hasAlpha;
|
||
const { width, height } = metadata;
|
||
const isLargeImage = width > 1000 || height > 1000;
|
||
|
||
// 智能压缩策略
|
||
if (isSmallFile) {
|
||
// 小文件使用相对保守的压缩
|
||
await sharpInstance
|
||
.png({
|
||
compressionLevel: 9,
|
||
effort: 10,
|
||
palette: true,
|
||
colors: 256,
|
||
quality: 90,
|
||
dither: 0.6
|
||
})
|
||
.toFile(tempPath);
|
||
} else if (isTransparent) {
|
||
// 包含透明通道的图片
|
||
const optimizedPng = sharpInstance.clone()
|
||
.png({
|
||
quality: 75,
|
||
compressionLevel: 9,
|
||
effort: 10,
|
||
palette: true,
|
||
colors: isLargeImage ? 196 : 256,
|
||
dither: 0.8
|
||
});
|
||
|
||
// 对于透明图片也尝试使用带Alpha通道的WebP
|
||
const webpVersion = sharpInstance.clone()
|
||
.webp({
|
||
quality: 80,
|
||
alphaQuality: 85,
|
||
effort: 6,
|
||
lossless: false,
|
||
nearLossless: false,
|
||
smartSubsample: true,
|
||
reductionEffort: 6
|
||
});
|
||
|
||
const [pngBuffer, webpBuffer] = await Promise.all([
|
||
optimizedPng.toBuffer(),
|
||
webpVersion.toBuffer()
|
||
]);
|
||
|
||
// 选择更小的格式
|
||
if (webpBuffer.length < pngBuffer.length && webpBuffer.length < inputStats.size) {
|
||
await fs.writeFile(tempPath, webpBuffer);
|
||
} else {
|
||
await fs.writeFile(tempPath, pngBuffer);
|
||
}
|
||
} else {
|
||
// 不透明图片,使用更激进的压缩
|
||
const optimizedPng = sharpInstance.clone()
|
||
.png({
|
||
quality: 70,
|
||
compressionLevel: 9,
|
||
effort: 10,
|
||
palette: true,
|
||
colors: isLargeImage ? 128 : 196,
|
||
dither: 0.6
|
||
});
|
||
|
||
// 对于不透明图片尝试多种格式
|
||
const webpVersion = sharpInstance.clone()
|
||
.webp({
|
||
quality: 75,
|
||
effort: 6,
|
||
lossless: false,
|
||
nearLossless: false,
|
||
smartSubsample: true,
|
||
reductionEffort: 6
|
||
});
|
||
|
||
// 对于照片类型的图片,也尝试JPEG格式
|
||
const jpegVersion = isLargeImage ?
|
||
sharpInstance.clone()
|
||
.jpeg({
|
||
quality: 82,
|
||
progressive: true,
|
||
mozjpeg: true,
|
||
chromaSubsampling: '4:2:0'
|
||
}) : null;
|
||
|
||
const bufferPromises = [
|
||
optimizedPng.toBuffer(),
|
||
webpVersion.toBuffer()
|
||
];
|
||
|
||
if (jpegVersion) {
|
||
bufferPromises.push(jpegVersion.toBuffer());
|
||
}
|
||
|
||
const buffers = await Promise.all(bufferPromises);
|
||
const [pngBuffer, webpBuffer, jpegBuffer] = buffers;
|
||
|
||
// 选择最小的格式
|
||
let smallestBuffer = pngBuffer;
|
||
let smallestSize = pngBuffer.length;
|
||
|
||
if (webpBuffer.length < smallestSize) {
|
||
smallestBuffer = webpBuffer;
|
||
smallestSize = webpBuffer.length;
|
||
}
|
||
|
||
if (jpegBuffer && jpegBuffer.length < smallestSize) {
|
||
smallestBuffer = jpegBuffer;
|
||
smallestSize = jpegBuffer.length;
|
||
}
|
||
|
||
if (smallestSize < inputStats.size) {
|
||
await fs.writeFile(tempPath, smallestBuffer);
|
||
} else {
|
||
// 如果所有格式都没有达到更好的压缩效果,尝试最后的优化
|
||
await sharpInstance
|
||
.png({
|
||
quality: 65,
|
||
compressionLevel: 9,
|
||
effort: 10,
|
||
palette: true,
|
||
colors: 128,
|
||
dither: 0.5
|
||
})
|
||
.toFile(tempPath);
|
||
}
|
||
}
|
||
|
||
const outputStats = await fs.stat(tempPath);
|
||
if (outputStats.size < inputStats.size) {
|
||
await fs.rename(tempPath, inputPath);
|
||
return {
|
||
success: true,
|
||
inputSize: inputStats.size,
|
||
outputSize: outputStats.size,
|
||
path: relativePath
|
||
};
|
||
} else {
|
||
await fs.unlink(tempPath);
|
||
return {
|
||
success: true,
|
||
inputSize: inputStats.size,
|
||
outputSize: inputStats.size,
|
||
path: relativePath,
|
||
skipped: true
|
||
};
|
||
}
|
||
} catch (error) {
|
||
try {
|
||
await fs.unlink(tempPath);
|
||
} catch {}
|
||
|
||
return {
|
||
success: false,
|
||
path: relativePath,
|
||
error: error.message
|
||
};
|
||
}
|
||
}
|
||
|
||
Promise.all(files.map(file => optimizeImage(file)))
|
||
.then(results => parentPort.postMessage(results));
|
||
}
|
||
|
||
// 主线程逻辑
|
||
else {
|
||
async function processImages() {
|
||
try {
|
||
// 计算最佳参数
|
||
const optimalParams = await calculateOptimalParams();
|
||
console.log('\n========== 系统资源信息 ==========');
|
||
console.log(`总内存: ${optimalParams.systemInfo.totalMemory}`);
|
||
console.log(`可用内存: ${optimalParams.systemInfo.freeMemory}`);
|
||
console.log(`CPU核心数: ${optimalParams.systemInfo.cpuCount}`);
|
||
console.log(`CPU使用率: ${optimalParams.systemInfo.cpuUsage}`);
|
||
console.log(`内存使用率: ${optimalParams.systemInfo.memoryUsage}`);
|
||
console.log(`内存分配比例: ${optimalParams.systemInfo.memoryAllocationRatio}`);
|
||
console.log(`估计每个文件内存占用: ${optimalParams.systemInfo.estimatedMemoryPerFile}`);
|
||
console.log(`优化批次大小: ${optimalParams.batchSize}`);
|
||
console.log(`工作线程数: ${optimalParams.workerCount}`);
|
||
console.log(`RAM Disk: ${optimalParams.isRamDisk ? '是' : '否'}`);
|
||
console.log('==================================\n');
|
||
|
||
// 获取所有PNG文件
|
||
const files = await glob(path.join(sourceDir, '**/*.png'));
|
||
const totalFiles = files.length;
|
||
|
||
console.log(`找到 ${files.length} 个PNG文件需要优化\n`);
|
||
|
||
// 初始化统计数据
|
||
let totalOriginalSize = 0;
|
||
let totalOptimizedSize = 0;
|
||
let successCount = 0;
|
||
let failCount = 0;
|
||
let skippedCount = 0;
|
||
const startTime = Date.now();
|
||
|
||
const results = [];
|
||
|
||
// 将文件分成多个批次
|
||
const batches = [];
|
||
for (let i = 0; i < files.length; i += optimalParams.batchSize) {
|
||
batches.push(files.slice(i, Math.min(i + optimalParams.batchSize, files.length)));
|
||
}
|
||
|
||
let batchIndex = 0;
|
||
|
||
// 处理每个批次
|
||
const processBatch = async () => {
|
||
if (batchIndex >= batches.length) return null;
|
||
|
||
const currentBatch = batches[batchIndex++];
|
||
const worker = new Worker(new URL(import.meta.url), {
|
||
workerData: {
|
||
files: currentBatch,
|
||
sourceDir,
|
||
isRamDisk: optimalParams.isRamDisk
|
||
}
|
||
});
|
||
|
||
return new Promise((resolve, reject) => {
|
||
worker.on('message', (batchResults) => {
|
||
results.push(...batchResults);
|
||
|
||
// 更新进度
|
||
const progress = Math.round((results.length / totalFiles) * 100);
|
||
const elapsedTime = ((Date.now() - startTime) / 1000).toFixed(1);
|
||
const estimatedTotal = (elapsedTime / progress * 100).toFixed(1);
|
||
process.stdout.write(`\r处理进度: ${progress}% (${results.length}/${totalFiles}) - 已用时间: ${elapsedTime}秒 - 预计总时间: ${estimatedTotal}秒`);
|
||
|
||
worker.terminate();
|
||
resolve();
|
||
});
|
||
|
||
worker.on('error', (err) => {
|
||
worker.terminate();
|
||
reject(err);
|
||
});
|
||
|
||
worker.on('exit', (code) => {
|
||
if (code !== 0 && !worker.exitCode) {
|
||
reject(new Error(`Worker stopped with exit code ${code}`));
|
||
}
|
||
});
|
||
});
|
||
};
|
||
|
||
// 并行处理所有批次
|
||
while (batchIndex < batches.length) {
|
||
const workerPromises = [];
|
||
for (let i = 0; i < optimalParams.workerCount && batchIndex < batches.length; i++) {
|
||
workerPromises.push(processBatch());
|
||
}
|
||
await Promise.all(workerPromises);
|
||
}
|
||
|
||
// 统计结果
|
||
for (const result of results) {
|
||
if (result.success) {
|
||
successCount++;
|
||
totalOriginalSize += result.inputSize;
|
||
totalOptimizedSize += result.outputSize;
|
||
if (result.skipped) {
|
||
skippedCount++;
|
||
}
|
||
} else {
|
||
failCount++;
|
||
console.error(`\n✗ 处理 ${result.path} 时出错:`, result.error);
|
||
}
|
||
}
|
||
|
||
// 打印报告
|
||
const endTime = Date.now();
|
||
const duration = ((endTime - startTime) / 1000).toFixed(2);
|
||
const totalSavings = ((totalOriginalSize - totalOptimizedSize) / totalOriginalSize * 100).toFixed(2);
|
||
|
||
console.log('\n\n========== 优化结果报告 ==========');
|
||
console.log(`处理总文件数: ${totalFiles}`);
|
||
console.log(`成功处理: ${successCount} 个文件`);
|
||
console.log(`跳过处理: ${skippedCount} 个文件(优化后体积更大)`);
|
||
console.log(`处理失败: ${failCount} 个文件`);
|
||
console.log(`原始总大小: ${(totalOriginalSize / 1024 / 1024).toFixed(2)}MB`);
|
||
console.log(`优化后总大小: ${(totalOptimizedSize / 1024 / 1024).toFixed(2)}MB`);
|
||
console.log(`总体积减少: ${totalSavings}%`);
|
||
console.log(`处理耗时: ${duration}秒`);
|
||
console.log(`平均处理速度: ${(totalFiles / duration).toFixed(2)}个/秒`);
|
||
console.log('================================\n');
|
||
|
||
} catch (error) {
|
||
console.error('处理过程中发生错误:', error);
|
||
}
|
||
}
|
||
|
||
processImages();
|
||
}
|