feat: 添加JSON文件优化脚本
This commit is contained in:
parent
18bc663f04
commit
27b95ca504
|
@ -0,0 +1,301 @@
|
|||
import { promises as fs } from 'fs';
|
||||
import path from 'path';
|
||||
import { fileURLToPath } from 'url';
|
||||
import { glob } from 'glob';
|
||||
import os from 'os';
|
||||
import { Worker, isMainThread, parentPort, workerData } from 'worker_threads';
|
||||
|
||||
const __filename = fileURLToPath(import.meta.url);
|
||||
const __dirname = path.dirname(__filename);
|
||||
|
||||
const sourceDir = 'public';
|
||||
const SMALL_FILE_THRESHOLD = 5 * 1024; // 5KB
|
||||
|
||||
// 动态计算最佳参数
|
||||
async function calculateOptimalParams() {
|
||||
const totalMemory = os.totalmem();
|
||||
const freeMemory = os.freemem();
|
||||
const cpuCount = os.cpus().length;
|
||||
const cpuUsage = os.loadavg()[0] / cpuCount;
|
||||
|
||||
// 根据系统内存使用情况动态调整内存使用比例
|
||||
const memoryUsageRatio = 1 - (freeMemory / totalMemory);
|
||||
let memoryAllocationRatio;
|
||||
if (memoryUsageRatio < 0.7) {
|
||||
memoryAllocationRatio = 0.4;
|
||||
} else if (memoryUsageRatio < 0.85) {
|
||||
memoryAllocationRatio = 0.3;
|
||||
} else {
|
||||
memoryAllocationRatio = 0.2;
|
||||
}
|
||||
|
||||
// 估算单个文件处理的平均内存占用
|
||||
const estimatedMemoryPerFile = Math.max(
|
||||
256 * 1024, // 最小256KB
|
||||
Math.min(
|
||||
1 * 1024 * 1024, // 最大1MB
|
||||
Math.floor(totalMemory / (1024 * cpuCount))
|
||||
)
|
||||
);
|
||||
|
||||
// 计算批处理大小
|
||||
const memoryForProcessing = totalMemory * memoryAllocationRatio;
|
||||
let batchSize = Math.floor(memoryForProcessing / (estimatedMemoryPerFile * cpuCount));
|
||||
|
||||
// 动态调整批处理大小的上下限
|
||||
const minBatchSize = Math.max(50, Math.floor(200 / cpuCount));
|
||||
const maxBatchSize = Math.min(
|
||||
2000,
|
||||
Math.floor(memoryForProcessing / (256 * 1024))
|
||||
);
|
||||
batchSize = Math.max(minBatchSize, Math.min(maxBatchSize, batchSize));
|
||||
|
||||
// 优化工作线程数量
|
||||
let workerCount;
|
||||
const maxThreads = cpuCount * 2;
|
||||
const systemLoad = os.loadavg()[0] / cpuCount;
|
||||
const memoryConstraint = memoryUsageRatio > 0.85;
|
||||
|
||||
if (memoryConstraint) {
|
||||
workerCount = Math.max(2, Math.min(cpuCount - 1, 4));
|
||||
} else if (systemLoad < 0.5) {
|
||||
workerCount = Math.max(2, Math.min(maxThreads, 6));
|
||||
} else if (systemLoad < 1.0) {
|
||||
workerCount = Math.max(2, Math.min(cpuCount + 2, 6));
|
||||
} else {
|
||||
workerCount = Math.max(2, Math.min(cpuCount, 4));
|
||||
}
|
||||
|
||||
if (batchSize < 100) {
|
||||
workerCount = Math.min(workerCount, 2);
|
||||
} else if (batchSize < 200) {
|
||||
workerCount = Math.min(workerCount, 3);
|
||||
}
|
||||
|
||||
return {
|
||||
batchSize,
|
||||
workerCount,
|
||||
systemInfo: {
|
||||
totalMemory: formatBytes(totalMemory),
|
||||
freeMemory: formatBytes(freeMemory),
|
||||
cpuCount,
|
||||
cpuUsage: (cpuUsage * 100).toFixed(1) + '%',
|
||||
memoryUsage: (memoryUsageRatio * 100).toFixed(1) + '%',
|
||||
memoryAllocationRatio: (memoryAllocationRatio * 100).toFixed(1) + '%',
|
||||
estimatedMemoryPerFile: formatBytes(estimatedMemoryPerFile)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// 格式化字节数
|
||||
function formatBytes(bytes) {
|
||||
const units = ['B', 'KB', 'MB', 'GB'];
|
||||
let size = bytes;
|
||||
let unitIndex = 0;
|
||||
while (size >= 1024 && unitIndex < units.length - 1) {
|
||||
size /= 1024;
|
||||
unitIndex++;
|
||||
}
|
||||
return `${size.toFixed(2)}${units[unitIndex]}`;
|
||||
}
|
||||
|
||||
// 工作线程逻辑
|
||||
if (!isMainThread) {
|
||||
const { files, sourceDir } = workerData;
|
||||
|
||||
async function optimizeJson(inputPath) {
|
||||
const relativePath = path.relative(sourceDir, inputPath);
|
||||
const tempPath = `${inputPath}.temp`;
|
||||
|
||||
try {
|
||||
const inputStats = await fs.stat(inputPath);
|
||||
const isSmallFile = inputStats.size < SMALL_FILE_THRESHOLD;
|
||||
|
||||
// 读取JSON文件
|
||||
const jsonContent = await fs.readFile(inputPath, 'utf8');
|
||||
let jsonData;
|
||||
|
||||
try {
|
||||
jsonData = JSON.parse(jsonContent);
|
||||
} catch (error) {
|
||||
return {
|
||||
success: false,
|
||||
path: relativePath,
|
||||
error: '无效的JSON文件'
|
||||
};
|
||||
}
|
||||
|
||||
// 压缩JSON
|
||||
const optimizedJson = JSON.stringify(jsonData);
|
||||
|
||||
// 写入临时文件
|
||||
await fs.writeFile(tempPath, optimizedJson, 'utf8');
|
||||
|
||||
const outputStats = await fs.stat(tempPath);
|
||||
if (outputStats.size < inputStats.size) {
|
||||
// 如果优化后的文件更小,则替换原文件
|
||||
await fs.rename(tempPath, inputPath);
|
||||
return {
|
||||
success: true,
|
||||
inputSize: inputStats.size,
|
||||
outputSize: outputStats.size,
|
||||
path: relativePath
|
||||
};
|
||||
} else {
|
||||
// 如果优化后的文件更大,则删除临时文件
|
||||
await fs.unlink(tempPath);
|
||||
return {
|
||||
success: true,
|
||||
inputSize: inputStats.size,
|
||||
outputSize: inputStats.size,
|
||||
path: relativePath,
|
||||
skipped: true
|
||||
};
|
||||
}
|
||||
} catch (error) {
|
||||
// 清理临时文件
|
||||
try {
|
||||
await fs.unlink(tempPath);
|
||||
} catch {}
|
||||
|
||||
return {
|
||||
success: false,
|
||||
path: relativePath,
|
||||
error: error.message
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
Promise.all(files.map(file => optimizeJson(file)))
|
||||
.then(results => parentPort.postMessage(results));
|
||||
}
|
||||
|
||||
// 主线程逻辑
|
||||
else {
|
||||
async function processJsonFiles() {
|
||||
try {
|
||||
// 计算最佳参数
|
||||
const optimalParams = await calculateOptimalParams();
|
||||
console.log('\n========== 系统资源信息 ==========');
|
||||
console.log(`总内存: ${optimalParams.systemInfo.totalMemory}`);
|
||||
console.log(`可用内存: ${optimalParams.systemInfo.freeMemory}`);
|
||||
console.log(`CPU核心数: ${optimalParams.systemInfo.cpuCount}`);
|
||||
console.log(`CPU使用率: ${optimalParams.systemInfo.cpuUsage}`);
|
||||
console.log(`内存使用率: ${optimalParams.systemInfo.memoryUsage}`);
|
||||
console.log(`内存分配比例: ${optimalParams.systemInfo.memoryAllocationRatio}`);
|
||||
console.log(`估计每个文件内存占用: ${optimalParams.systemInfo.estimatedMemoryPerFile}`);
|
||||
console.log(`优化批次大小: ${optimalParams.batchSize}`);
|
||||
console.log(`工作线程数: ${optimalParams.workerCount}`);
|
||||
console.log('==================================\n');
|
||||
|
||||
// 获取所有JSON文件
|
||||
const files = await glob(path.join(sourceDir, '**/*.json'));
|
||||
const totalFiles = files.length;
|
||||
|
||||
console.log(`找到 ${files.length} 个JSON文件需要优化\n`);
|
||||
|
||||
// 初始化统计数据
|
||||
let totalOriginalSize = 0;
|
||||
let totalOptimizedSize = 0;
|
||||
let successCount = 0;
|
||||
let failCount = 0;
|
||||
let skippedCount = 0;
|
||||
const startTime = Date.now();
|
||||
|
||||
const results = [];
|
||||
|
||||
// 将文件分成多个批次
|
||||
const batches = [];
|
||||
for (let i = 0; i < files.length; i += optimalParams.batchSize) {
|
||||
batches.push(files.slice(i, Math.min(i + optimalParams.batchSize, files.length)));
|
||||
}
|
||||
|
||||
let batchIndex = 0;
|
||||
|
||||
// 处理每个批次
|
||||
const processBatch = async () => {
|
||||
if (batchIndex >= batches.length) return null;
|
||||
|
||||
const currentBatch = batches[batchIndex++];
|
||||
const worker = new Worker(new URL(import.meta.url), {
|
||||
workerData: {
|
||||
files: currentBatch,
|
||||
sourceDir
|
||||
}
|
||||
});
|
||||
|
||||
return new Promise((resolve, reject) => {
|
||||
worker.on('message', (batchResults) => {
|
||||
results.push(...batchResults);
|
||||
|
||||
// 更新进度
|
||||
const progress = Math.round((results.length / totalFiles) * 100);
|
||||
const elapsedTime = ((Date.now() - startTime) / 1000).toFixed(1);
|
||||
const estimatedTotal = (elapsedTime / progress * 100).toFixed(1);
|
||||
process.stdout.write(`\r处理进度: ${progress}% (${results.length}/${totalFiles}) - 已用时间: ${elapsedTime}秒 - 预计总时间: ${estimatedTotal}秒`);
|
||||
|
||||
worker.terminate();
|
||||
resolve();
|
||||
});
|
||||
|
||||
worker.on('error', (err) => {
|
||||
worker.terminate();
|
||||
reject(err);
|
||||
});
|
||||
|
||||
worker.on('exit', (code) => {
|
||||
if (code !== 0 && !worker.exitCode) {
|
||||
reject(new Error(`Worker stopped with exit code ${code}`));
|
||||
}
|
||||
});
|
||||
});
|
||||
};
|
||||
|
||||
// 并行处理所有批次
|
||||
while (batchIndex < batches.length) {
|
||||
const workerPromises = [];
|
||||
for (let i = 0; i < optimalParams.workerCount && batchIndex < batches.length; i++) {
|
||||
workerPromises.push(processBatch());
|
||||
}
|
||||
await Promise.all(workerPromises);
|
||||
}
|
||||
|
||||
// 统计结果
|
||||
for (const result of results) {
|
||||
if (result.success) {
|
||||
successCount++;
|
||||
totalOriginalSize += result.inputSize;
|
||||
totalOptimizedSize += result.outputSize;
|
||||
if (result.skipped) {
|
||||
skippedCount++;
|
||||
}
|
||||
} else {
|
||||
failCount++;
|
||||
console.error(`\n✗ 处理 ${result.path} 时出错:`, result.error);
|
||||
}
|
||||
}
|
||||
|
||||
// 打印报告
|
||||
const endTime = Date.now();
|
||||
const duration = ((endTime - startTime) / 1000).toFixed(2);
|
||||
const totalSavings = ((totalOriginalSize - totalOptimizedSize) / totalOriginalSize * 100).toFixed(2);
|
||||
|
||||
console.log('\n\n========== 优化结果报告 ==========');
|
||||
console.log(`处理总文件数: ${totalFiles}`);
|
||||
console.log(`成功处理: ${successCount} 个文件`);
|
||||
console.log(`跳过处理: ${skippedCount} 个文件(优化后体积更大)`);
|
||||
console.log(`处理失败: ${failCount} 个文件`);
|
||||
console.log(`原始总大小: ${(totalOriginalSize / 1024 / 1024).toFixed(2)}MB`);
|
||||
console.log(`优化后总大小: ${(totalOptimizedSize / 1024 / 1024).toFixed(2)}MB`);
|
||||
console.log(`总体积减少: ${totalSavings}%`);
|
||||
console.log(`处理耗时: ${duration}秒`);
|
||||
console.log(`平均处理速度: ${(totalFiles / duration).toFixed(2)}个/秒`);
|
||||
console.log('================================\n');
|
||||
|
||||
} catch (error) {
|
||||
console.error('处理过程中发生错误:', error);
|
||||
}
|
||||
}
|
||||
|
||||
processJsonFiles();
|
||||
}
|
Loading…
Reference in New Issue