feat: 优化执行效率

This commit is contained in:
lirtual 2024-12-20 16:03:44 +08:00
parent dbf1cb8818
commit 2019aa17da
1 changed files with 313 additions and 111 deletions

View File

@ -4,92 +4,318 @@ import path from 'path';
import { fileURLToPath } from 'url';
import { glob } from 'glob';
import os from 'os';
import { Worker, isMainThread, parentPort, workerData } from 'worker_threads';
const __filename = fileURLToPath(import.meta.url);
const __dirname = path.dirname(__filename);
const sourceDir = 'public/images';
const outputDir = 'dist/images';
// 统计数据
let totalFiles = 0;
let totalOriginalSize = 0;
let totalOptimizedSize = 0;
let successCount = 0;
let failCount = 0;
let startTime = Date.now();
// 文件大小阈值(字节)
const SMALL_FILE_THRESHOLD = 5 * 1024; // 5KB
// 动态计算最佳参数
async function calculateOptimalParams() {
const totalMemory = os.totalmem();
const freeMemory = os.freemem();
const cpuCount = os.cpus().length;
const cpuUsage = os.loadavg()[0] / cpuCount; // 1分钟平均负载
// 根据系统内存使用情况动态调整内存使用比例
const memoryUsageRatio = 1 - (freeMemory / totalMemory);
let memoryAllocationRatio;
if (memoryUsageRatio < 0.7) { // 内存使用率低于70%
memoryAllocationRatio = 0.4; // 可以使用40%的总内存
} else if (memoryUsageRatio < 0.85) { // 内存使用率在70%-85%之间
memoryAllocationRatio = 0.3; // 使用30%的总内存
} else { // 内存使用率高于85%
memoryAllocationRatio = 0.2; // 只使用20%的总内存
}
// 估算单个文件处理的平均内存占用(根据文件大小动态调整)
const estimatedMemoryPerFile = Math.max(
512 * 1024, // 最小512KB
Math.min(
2 * 1024 * 1024, // 最大2MB
Math.floor(totalMemory / (1024 * cpuCount)) // 根据系统配置动态计算
)
);
// 计算批处理大小
const memoryForProcessing = totalMemory * memoryAllocationRatio;
let batchSize = Math.floor(memoryForProcessing / (estimatedMemoryPerFile * cpuCount));
// 动态调整批处理大小的上下限
const minBatchSize = Math.max(50, Math.floor(200 / cpuCount)); // 确保每个CPU至少处理50个文件
const maxBatchSize = Math.min(
2000, // 硬上限
Math.floor(memoryForProcessing / (512 * 1024)) // 根据分配内存动态计算上限
);
batchSize = Math.max(minBatchSize, Math.min(maxBatchSize, batchSize));
// 优化工作线程数量计算
let workerCount;
const maxThreads = cpuCount * 2; // 最大允许CPU核心数的2倍线程
const systemLoad = os.loadavg()[0] / cpuCount;
const memoryConstraint = memoryUsageRatio > 0.85; // 改为85%
if (memoryConstraint) {
// 内存压力大时,限制线程数
workerCount = Math.max(2, Math.min(cpuCount - 1, 4));
} else if (systemLoad < 0.5) {
// 系统负载很低,可以用最大线程数
workerCount = Math.max(2, Math.min(maxThreads, 6));
} else if (systemLoad < 1.0) {
// 系统负载适中,使用较多线程
workerCount = Math.max(2, Math.min(cpuCount + 2, 6));
} else {
// 系统负载较高,但仍有余力
workerCount = Math.max(2, Math.min(cpuCount, 4));
}
// 根据批处理大小调整线程数
// 如果批次太小,减少线程数以避免线程切换开销
if (batchSize < 100) {
workerCount = Math.min(workerCount, 2);
} else if (batchSize < 200) {
workerCount = Math.min(workerCount, 3);
}
// 检测是否在RAM disk上
const isRamDisk = await checkIfRamDisk(outputDir);
return {
batchSize,
workerCount,
isRamDisk,
systemInfo: {
totalMemory: formatBytes(totalMemory),
freeMemory: formatBytes(freeMemory),
cpuCount,
cpuUsage: (cpuUsage * 100).toFixed(1) + '%',
memoryUsage: (memoryUsageRatio * 100).toFixed(1) + '%',
memoryAllocationRatio: (memoryAllocationRatio * 100).toFixed(1) + '%',
estimatedMemoryPerFile: formatBytes(estimatedMemoryPerFile)
}
};
}
// 检查目录是否在RAM disk上
async function checkIfRamDisk(dir) {
try {
if (process.platform === 'darwin') {
// macOS: 检查是否在 /Volumes/RAMDisk
return dir.startsWith('/Volumes/RAMDisk');
} else if (process.platform === 'linux') {
// Linux: 检查是否在 tmpfs
const { stdout } = await import('child_process').then(cp =>
new Promise((resolve) => {
cp.exec(`df -T "${dir}" | grep tmpfs`, (error, stdout) => resolve({ stdout }));
})
);
return stdout.includes('tmpfs');
}
} catch (error) {
return false;
}
return false;
}
// 格式化字节数
function formatBytes(bytes) {
const units = ['B', 'KB', 'MB', 'GB'];
let size = bytes;
let unitIndex = 0;
while (size >= 1024 && unitIndex < units.length - 1) {
size /= 1024;
unitIndex++;
}
return `${size.toFixed(2)}${units[unitIndex]}`;
}
// 工作线程逻辑
if (!isMainThread) {
const { files, sourceDir, outputDir, isRamDisk } = workerData;
async function optimizeImage(inputPath) {
const relativePath = path.relative(sourceDir, inputPath);
const outputPath = path.join(outputDir, relativePath);
const outputDirPath = path.dirname(outputPath);
await fs.mkdir(outputDirPath, { recursive: true });
try {
await fs.mkdir(outputDirPath, { recursive: true });
const inputStats = await fs.stat(inputPath);
const isSmallFile = inputStats.size < SMALL_FILE_THRESHOLD;
// 根据文件大小选择不同的压缩策略
let sharpInstance = sharp(inputPath);
// 根据是否在RAM disk上调整缓冲策略
const sharpOptions = {
failOnError: false,
limitInputPixels: false,
sequentialRead: !isRamDisk, // 如果不是RAM disk使用顺序读取
};
let sharpInstance = sharp(inputPath, sharpOptions);
if (isSmallFile) {
// 小文件使用无损压缩策略
await sharpInstance
.png({
compressionLevel: 9,
effort: 10,
palette: false // 不使用调色板模式
palette: true,
colors: 128,
dither: 0.4
})
.toFile(outputPath);
} else {
// 大文件使用有损压缩策略
await sharpInstance
.png({
quality: 80,
quality: 70,
compressionLevel: 9,
palette: true,
colors: 256,
dither: 0.5,
colors: 128,
dither: 0.4,
effort: 10
})
.toFile(outputPath);
}
const outputStats = await fs.stat(outputPath);
const savings = ((inputStats.size - outputStats.size) / inputStats.size * 100).toFixed(2);
// 如果优化后文件更大,使用原始文件
if (outputStats.size > inputStats.size) {
await fs.copyFile(inputPath, outputPath);
console.log(`⚠️ ${relativePath} (使用原始文件)`);
} else {
console.log(`${relativePath}`);
}
// 更新统计数据
totalOriginalSize += inputStats.size;
totalOptimizedSize += Math.min(inputStats.size, outputStats.size);
successCount++;
console.log(` 原始大小: ${(inputStats.size / 1024).toFixed(2)}KB`);
console.log(` 优化大小: ${(Math.min(inputStats.size, outputStats.size) / 1024).toFixed(2)}KB`);
console.log(` 节省: ${((inputStats.size - Math.min(inputStats.size, outputStats.size)) / inputStats.size * 100).toFixed(2)}%\n`);
return {
success: true,
inputSize: inputStats.size,
outputSize: Math.min(inputStats.size, outputStats.size),
path: relativePath
};
} catch (error) {
console.error(`✗ 处理 ${relativePath} 时出错:`, error);
failCount++;
return {
success: false,
path: relativePath,
error: error.message
};
}
}
function printReport() {
Promise.all(files.map(file => optimizeImage(file)))
.then(results => parentPort.postMessage(results));
}
// 主线程逻辑
else {
async function processImages() {
try {
// 计算最佳参数
const optimalParams = await calculateOptimalParams();
console.log('\n========== 系统资源信息 ==========');
console.log(`总内存: ${optimalParams.systemInfo.totalMemory}`);
console.log(`可用内存: ${optimalParams.systemInfo.freeMemory}`);
console.log(`CPU核心数: ${optimalParams.systemInfo.cpuCount}`);
console.log(`CPU使用率: ${optimalParams.systemInfo.cpuUsage}`);
console.log(`内存使用率: ${optimalParams.systemInfo.memoryUsage}`);
console.log(`内存分配比例: ${optimalParams.systemInfo.memoryAllocationRatio}`);
console.log(`估计每个文件内存占用: ${optimalParams.systemInfo.estimatedMemoryPerFile}`);
console.log(`优化批次大小: ${optimalParams.batchSize}`);
console.log(`工作线程数: ${optimalParams.workerCount}`);
console.log(`RAM Disk: ${optimalParams.isRamDisk ? '是' : '否'}`);
console.log('==================================\n');
// 清空输出目录
await fs.rm(outputDir, { recursive: true, force: true });
await fs.mkdir(outputDir, { recursive: true });
// 获取所有PNG文件
const files = await glob(path.join(sourceDir, '**/*.png'));
const totalFiles = files.length;
console.log(`找到 ${files.length} 个PNG文件需要优化\n`);
// 初始化统计数据
let totalOriginalSize = 0;
let totalOptimizedSize = 0;
let successCount = 0;
let failCount = 0;
const startTime = Date.now();
const results = [];
// 将文件分成多个批次
const batches = [];
for (let i = 0; i < files.length; i += optimalParams.batchSize) {
batches.push(files.slice(i, Math.min(i + optimalParams.batchSize, files.length)));
}
let batchIndex = 0;
// 处理每个批次
const processBatch = async () => {
if (batchIndex >= batches.length) return null;
const currentBatch = batches[batchIndex++];
const worker = new Worker(new URL(import.meta.url), {
workerData: {
files: currentBatch,
sourceDir,
outputDir,
isRamDisk: optimalParams.isRamDisk
}
});
return new Promise((resolve, reject) => {
worker.on('message', (batchResults) => {
results.push(...batchResults);
// 更新进度
const progress = Math.round((results.length / totalFiles) * 100);
const elapsedTime = ((Date.now() - startTime) / 1000).toFixed(1);
const estimatedTotal = (elapsedTime / progress * 100).toFixed(1);
process.stdout.write(`\r处理进度: ${progress}% (${results.length}/${totalFiles}) - 已用时间: ${elapsedTime}秒 - 预计总时间: ${estimatedTotal}`);
worker.terminate();
resolve();
});
worker.on('error', (err) => {
worker.terminate();
reject(err);
});
worker.on('exit', (code) => {
if (code !== 0 && !worker.exitCode) {
reject(new Error(`Worker stopped with exit code ${code}`));
}
});
});
};
// 并行处理所有批次
while (batchIndex < batches.length) {
const workerPromises = [];
for (let i = 0; i < optimalParams.workerCount && batchIndex < batches.length; i++) {
workerPromises.push(processBatch());
}
await Promise.all(workerPromises);
}
// 统计结果
for (const result of results) {
if (result.success) {
successCount++;
totalOriginalSize += result.inputSize;
totalOptimizedSize += result.outputSize;
} else {
failCount++;
console.error(`\n✗ 处理 ${result.path} 时出错:`, result.error);
}
}
// 打印报告
const endTime = Date.now();
const duration = ((endTime - startTime) / 1000).toFixed(2);
const totalSavings = ((totalOriginalSize - totalOptimizedSize) / totalOriginalSize * 100).toFixed(2);
console.log('\n========== 优化结果报告 ==========');
console.log('\n\n========== 优化结果报告 ==========');
console.log(`处理总文件数: ${totalFiles}`);
console.log(`成功处理: ${successCount} 个文件`);
console.log(`处理失败: ${failCount} 个文件`);
@ -97,37 +323,13 @@ function printReport() {
console.log(`优化后总大小: ${(totalOptimizedSize / 1024 / 1024).toFixed(2)}MB`);
console.log(`总体积减少: ${totalSavings}%`);
console.log(`处理耗时: ${duration}`);
console.log(`CPU核心数: ${os.cpus().length}`);
console.log(`平均处理速度: ${(totalFiles / duration).toFixed(2)}个/秒`);
console.log('================================\n');
}
async function processImages() {
try {
// 清空输出目录
await fs.rm(outputDir, { recursive: true, force: true });
await fs.mkdir(outputDir, { recursive: true });
// 获取所有PNG文件
const files = await glob(path.join(sourceDir, '**/*.png'));
totalFiles = files.length;
console.log(`找到 ${files.length} 个PNG文件需要优化\n`);
// 使用工作池并行处理图片限制并发数为CPU核心数
const concurrency = os.cpus().length;
const chunks = [];
for (let i = 0; i < files.length; i += concurrency) {
chunks.push(files.slice(i, i + concurrency));
}
for (const chunk of chunks) {
await Promise.all(chunk.map(file => optimizeImage(file)));
}
printReport();
} catch (error) {
console.error('处理过程中发生错误:', error);
}
}
processImages();
}