feat: 优化执行效率
This commit is contained in:
parent
dbf1cb8818
commit
2019aa17da
|
@ -4,92 +4,318 @@ import path from 'path';
|
|||
import { fileURLToPath } from 'url';
|
||||
import { glob } from 'glob';
|
||||
import os from 'os';
|
||||
import { Worker, isMainThread, parentPort, workerData } from 'worker_threads';
|
||||
|
||||
const __filename = fileURLToPath(import.meta.url);
|
||||
const __dirname = path.dirname(__filename);
|
||||
|
||||
const sourceDir = 'public/images';
|
||||
const outputDir = 'dist/images';
|
||||
|
||||
// 统计数据
|
||||
let totalFiles = 0;
|
||||
let totalOriginalSize = 0;
|
||||
let totalOptimizedSize = 0;
|
||||
let successCount = 0;
|
||||
let failCount = 0;
|
||||
let startTime = Date.now();
|
||||
|
||||
// 文件大小阈值(字节)
|
||||
const SMALL_FILE_THRESHOLD = 5 * 1024; // 5KB
|
||||
|
||||
// 动态计算最佳参数
|
||||
async function calculateOptimalParams() {
|
||||
const totalMemory = os.totalmem();
|
||||
const freeMemory = os.freemem();
|
||||
const cpuCount = os.cpus().length;
|
||||
const cpuUsage = os.loadavg()[0] / cpuCount; // 1分钟平均负载
|
||||
|
||||
// 根据系统内存使用情况动态调整内存使用比例
|
||||
const memoryUsageRatio = 1 - (freeMemory / totalMemory);
|
||||
let memoryAllocationRatio;
|
||||
if (memoryUsageRatio < 0.7) { // 内存使用率低于70%
|
||||
memoryAllocationRatio = 0.4; // 可以使用40%的总内存
|
||||
} else if (memoryUsageRatio < 0.85) { // 内存使用率在70%-85%之间
|
||||
memoryAllocationRatio = 0.3; // 使用30%的总内存
|
||||
} else { // 内存使用率高于85%
|
||||
memoryAllocationRatio = 0.2; // 只使用20%的总内存
|
||||
}
|
||||
|
||||
// 估算单个文件处理的平均内存占用(根据文件大小动态调整)
|
||||
const estimatedMemoryPerFile = Math.max(
|
||||
512 * 1024, // 最小512KB
|
||||
Math.min(
|
||||
2 * 1024 * 1024, // 最大2MB
|
||||
Math.floor(totalMemory / (1024 * cpuCount)) // 根据系统配置动态计算
|
||||
)
|
||||
);
|
||||
|
||||
// 计算批处理大小
|
||||
const memoryForProcessing = totalMemory * memoryAllocationRatio;
|
||||
let batchSize = Math.floor(memoryForProcessing / (estimatedMemoryPerFile * cpuCount));
|
||||
|
||||
// 动态调整批处理大小的上下限
|
||||
const minBatchSize = Math.max(50, Math.floor(200 / cpuCount)); // 确保每个CPU至少处理50个文件
|
||||
const maxBatchSize = Math.min(
|
||||
2000, // 硬上限
|
||||
Math.floor(memoryForProcessing / (512 * 1024)) // 根据分配内存动态计算上限
|
||||
);
|
||||
batchSize = Math.max(minBatchSize, Math.min(maxBatchSize, batchSize));
|
||||
|
||||
// 优化工作线程数量计算
|
||||
let workerCount;
|
||||
const maxThreads = cpuCount * 2; // 最大允许CPU核心数的2倍线程
|
||||
const systemLoad = os.loadavg()[0] / cpuCount;
|
||||
const memoryConstraint = memoryUsageRatio > 0.85; // 改为85%
|
||||
|
||||
if (memoryConstraint) {
|
||||
// 内存压力大时,限制线程数
|
||||
workerCount = Math.max(2, Math.min(cpuCount - 1, 4));
|
||||
} else if (systemLoad < 0.5) {
|
||||
// 系统负载很低,可以用最大线程数
|
||||
workerCount = Math.max(2, Math.min(maxThreads, 6));
|
||||
} else if (systemLoad < 1.0) {
|
||||
// 系统负载适中,使用较多线程
|
||||
workerCount = Math.max(2, Math.min(cpuCount + 2, 6));
|
||||
} else {
|
||||
// 系统负载较高,但仍有余力
|
||||
workerCount = Math.max(2, Math.min(cpuCount, 4));
|
||||
}
|
||||
|
||||
// 根据批处理大小调整线程数
|
||||
// 如果批次太小,减少线程数以避免线程切换开销
|
||||
if (batchSize < 100) {
|
||||
workerCount = Math.min(workerCount, 2);
|
||||
} else if (batchSize < 200) {
|
||||
workerCount = Math.min(workerCount, 3);
|
||||
}
|
||||
|
||||
// 检测是否在RAM disk上
|
||||
const isRamDisk = await checkIfRamDisk(outputDir);
|
||||
|
||||
return {
|
||||
batchSize,
|
||||
workerCount,
|
||||
isRamDisk,
|
||||
systemInfo: {
|
||||
totalMemory: formatBytes(totalMemory),
|
||||
freeMemory: formatBytes(freeMemory),
|
||||
cpuCount,
|
||||
cpuUsage: (cpuUsage * 100).toFixed(1) + '%',
|
||||
memoryUsage: (memoryUsageRatio * 100).toFixed(1) + '%',
|
||||
memoryAllocationRatio: (memoryAllocationRatio * 100).toFixed(1) + '%',
|
||||
estimatedMemoryPerFile: formatBytes(estimatedMemoryPerFile)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// 检查目录是否在RAM disk上
|
||||
async function checkIfRamDisk(dir) {
|
||||
try {
|
||||
if (process.platform === 'darwin') {
|
||||
// macOS: 检查是否在 /Volumes/RAMDisk
|
||||
return dir.startsWith('/Volumes/RAMDisk');
|
||||
} else if (process.platform === 'linux') {
|
||||
// Linux: 检查是否在 tmpfs
|
||||
const { stdout } = await import('child_process').then(cp =>
|
||||
new Promise((resolve) => {
|
||||
cp.exec(`df -T "${dir}" | grep tmpfs`, (error, stdout) => resolve({ stdout }));
|
||||
})
|
||||
);
|
||||
return stdout.includes('tmpfs');
|
||||
}
|
||||
} catch (error) {
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// 格式化字节数
|
||||
function formatBytes(bytes) {
|
||||
const units = ['B', 'KB', 'MB', 'GB'];
|
||||
let size = bytes;
|
||||
let unitIndex = 0;
|
||||
while (size >= 1024 && unitIndex < units.length - 1) {
|
||||
size /= 1024;
|
||||
unitIndex++;
|
||||
}
|
||||
return `${size.toFixed(2)}${units[unitIndex]}`;
|
||||
}
|
||||
|
||||
// 工作线程逻辑
|
||||
if (!isMainThread) {
|
||||
const { files, sourceDir, outputDir, isRamDisk } = workerData;
|
||||
|
||||
async function optimizeImage(inputPath) {
|
||||
const relativePath = path.relative(sourceDir, inputPath);
|
||||
const outputPath = path.join(outputDir, relativePath);
|
||||
const outputDirPath = path.dirname(outputPath);
|
||||
|
||||
await fs.mkdir(outputDirPath, { recursive: true });
|
||||
|
||||
try {
|
||||
await fs.mkdir(outputDirPath, { recursive: true });
|
||||
const inputStats = await fs.stat(inputPath);
|
||||
const isSmallFile = inputStats.size < SMALL_FILE_THRESHOLD;
|
||||
|
||||
// 根据文件大小选择不同的压缩策略
|
||||
let sharpInstance = sharp(inputPath);
|
||||
// 根据是否在RAM disk上调整缓冲策略
|
||||
const sharpOptions = {
|
||||
failOnError: false,
|
||||
limitInputPixels: false,
|
||||
sequentialRead: !isRamDisk, // 如果不是RAM disk,使用顺序读取
|
||||
};
|
||||
|
||||
let sharpInstance = sharp(inputPath, sharpOptions);
|
||||
|
||||
if (isSmallFile) {
|
||||
// 小文件使用无损压缩策略
|
||||
await sharpInstance
|
||||
.png({
|
||||
compressionLevel: 9,
|
||||
effort: 10,
|
||||
palette: false // 不使用调色板模式
|
||||
palette: true,
|
||||
colors: 128,
|
||||
dither: 0.4
|
||||
})
|
||||
.toFile(outputPath);
|
||||
} else {
|
||||
// 大文件使用有损压缩策略
|
||||
await sharpInstance
|
||||
.png({
|
||||
quality: 80,
|
||||
quality: 70,
|
||||
compressionLevel: 9,
|
||||
palette: true,
|
||||
colors: 256,
|
||||
dither: 0.5,
|
||||
colors: 128,
|
||||
dither: 0.4,
|
||||
effort: 10
|
||||
})
|
||||
.toFile(outputPath);
|
||||
}
|
||||
|
||||
const outputStats = await fs.stat(outputPath);
|
||||
const savings = ((inputStats.size - outputStats.size) / inputStats.size * 100).toFixed(2);
|
||||
|
||||
// 如果优化后文件更大,使用原始文件
|
||||
if (outputStats.size > inputStats.size) {
|
||||
await fs.copyFile(inputPath, outputPath);
|
||||
console.log(`⚠️ ${relativePath} (使用原始文件)`);
|
||||
} else {
|
||||
console.log(`✓ ${relativePath}`);
|
||||
}
|
||||
|
||||
// 更新统计数据
|
||||
totalOriginalSize += inputStats.size;
|
||||
totalOptimizedSize += Math.min(inputStats.size, outputStats.size);
|
||||
successCount++;
|
||||
|
||||
console.log(` 原始大小: ${(inputStats.size / 1024).toFixed(2)}KB`);
|
||||
console.log(` 优化大小: ${(Math.min(inputStats.size, outputStats.size) / 1024).toFixed(2)}KB`);
|
||||
console.log(` 节省: ${((inputStats.size - Math.min(inputStats.size, outputStats.size)) / inputStats.size * 100).toFixed(2)}%\n`);
|
||||
return {
|
||||
success: true,
|
||||
inputSize: inputStats.size,
|
||||
outputSize: Math.min(inputStats.size, outputStats.size),
|
||||
path: relativePath
|
||||
};
|
||||
} catch (error) {
|
||||
console.error(`✗ 处理 ${relativePath} 时出错:`, error);
|
||||
failCount++;
|
||||
return {
|
||||
success: false,
|
||||
path: relativePath,
|
||||
error: error.message
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
function printReport() {
|
||||
Promise.all(files.map(file => optimizeImage(file)))
|
||||
.then(results => parentPort.postMessage(results));
|
||||
}
|
||||
|
||||
// 主线程逻辑
|
||||
else {
|
||||
async function processImages() {
|
||||
try {
|
||||
// 计算最佳参数
|
||||
const optimalParams = await calculateOptimalParams();
|
||||
console.log('\n========== 系统资源信息 ==========');
|
||||
console.log(`总内存: ${optimalParams.systemInfo.totalMemory}`);
|
||||
console.log(`可用内存: ${optimalParams.systemInfo.freeMemory}`);
|
||||
console.log(`CPU核心数: ${optimalParams.systemInfo.cpuCount}`);
|
||||
console.log(`CPU使用率: ${optimalParams.systemInfo.cpuUsage}`);
|
||||
console.log(`内存使用率: ${optimalParams.systemInfo.memoryUsage}`);
|
||||
console.log(`内存分配比例: ${optimalParams.systemInfo.memoryAllocationRatio}`);
|
||||
console.log(`估计每个文件内存占用: ${optimalParams.systemInfo.estimatedMemoryPerFile}`);
|
||||
console.log(`优化批次大小: ${optimalParams.batchSize}`);
|
||||
console.log(`工作线程数: ${optimalParams.workerCount}`);
|
||||
console.log(`RAM Disk: ${optimalParams.isRamDisk ? '是' : '否'}`);
|
||||
console.log('==================================\n');
|
||||
|
||||
// 清空输出目录
|
||||
await fs.rm(outputDir, { recursive: true, force: true });
|
||||
await fs.mkdir(outputDir, { recursive: true });
|
||||
|
||||
// 获取所有PNG文件
|
||||
const files = await glob(path.join(sourceDir, '**/*.png'));
|
||||
const totalFiles = files.length;
|
||||
|
||||
console.log(`找到 ${files.length} 个PNG文件需要优化\n`);
|
||||
|
||||
// 初始化统计数据
|
||||
let totalOriginalSize = 0;
|
||||
let totalOptimizedSize = 0;
|
||||
let successCount = 0;
|
||||
let failCount = 0;
|
||||
const startTime = Date.now();
|
||||
|
||||
const results = [];
|
||||
|
||||
// 将文件分成多个批次
|
||||
const batches = [];
|
||||
for (let i = 0; i < files.length; i += optimalParams.batchSize) {
|
||||
batches.push(files.slice(i, Math.min(i + optimalParams.batchSize, files.length)));
|
||||
}
|
||||
|
||||
let batchIndex = 0;
|
||||
|
||||
// 处理每个批次
|
||||
const processBatch = async () => {
|
||||
if (batchIndex >= batches.length) return null;
|
||||
|
||||
const currentBatch = batches[batchIndex++];
|
||||
const worker = new Worker(new URL(import.meta.url), {
|
||||
workerData: {
|
||||
files: currentBatch,
|
||||
sourceDir,
|
||||
outputDir,
|
||||
isRamDisk: optimalParams.isRamDisk
|
||||
}
|
||||
});
|
||||
|
||||
return new Promise((resolve, reject) => {
|
||||
worker.on('message', (batchResults) => {
|
||||
results.push(...batchResults);
|
||||
|
||||
// 更新进度
|
||||
const progress = Math.round((results.length / totalFiles) * 100);
|
||||
const elapsedTime = ((Date.now() - startTime) / 1000).toFixed(1);
|
||||
const estimatedTotal = (elapsedTime / progress * 100).toFixed(1);
|
||||
process.stdout.write(`\r处理进度: ${progress}% (${results.length}/${totalFiles}) - 已用时间: ${elapsedTime}秒 - 预计总时间: ${estimatedTotal}秒`);
|
||||
|
||||
worker.terminate();
|
||||
resolve();
|
||||
});
|
||||
|
||||
worker.on('error', (err) => {
|
||||
worker.terminate();
|
||||
reject(err);
|
||||
});
|
||||
|
||||
worker.on('exit', (code) => {
|
||||
if (code !== 0 && !worker.exitCode) {
|
||||
reject(new Error(`Worker stopped with exit code ${code}`));
|
||||
}
|
||||
});
|
||||
});
|
||||
};
|
||||
|
||||
// 并行处理所有批次
|
||||
while (batchIndex < batches.length) {
|
||||
const workerPromises = [];
|
||||
for (let i = 0; i < optimalParams.workerCount && batchIndex < batches.length; i++) {
|
||||
workerPromises.push(processBatch());
|
||||
}
|
||||
await Promise.all(workerPromises);
|
||||
}
|
||||
|
||||
// 统计结果
|
||||
for (const result of results) {
|
||||
if (result.success) {
|
||||
successCount++;
|
||||
totalOriginalSize += result.inputSize;
|
||||
totalOptimizedSize += result.outputSize;
|
||||
} else {
|
||||
failCount++;
|
||||
console.error(`\n✗ 处理 ${result.path} 时出错:`, result.error);
|
||||
}
|
||||
}
|
||||
|
||||
// 打印报告
|
||||
const endTime = Date.now();
|
||||
const duration = ((endTime - startTime) / 1000).toFixed(2);
|
||||
const totalSavings = ((totalOriginalSize - totalOptimizedSize) / totalOriginalSize * 100).toFixed(2);
|
||||
|
||||
console.log('\n========== 优化结果报告 ==========');
|
||||
console.log('\n\n========== 优化结果报告 ==========');
|
||||
console.log(`处理总文件数: ${totalFiles}`);
|
||||
console.log(`成功处理: ${successCount} 个文件`);
|
||||
console.log(`处理失败: ${failCount} 个文件`);
|
||||
|
@ -97,37 +323,13 @@ function printReport() {
|
|||
console.log(`优化后总大小: ${(totalOptimizedSize / 1024 / 1024).toFixed(2)}MB`);
|
||||
console.log(`总体积减少: ${totalSavings}%`);
|
||||
console.log(`处理耗时: ${duration}秒`);
|
||||
console.log(`CPU核心数: ${os.cpus().length}`);
|
||||
console.log(`平均处理速度: ${(totalFiles / duration).toFixed(2)}个/秒`);
|
||||
console.log('================================\n');
|
||||
}
|
||||
|
||||
async function processImages() {
|
||||
try {
|
||||
// 清空输出目录
|
||||
await fs.rm(outputDir, { recursive: true, force: true });
|
||||
await fs.mkdir(outputDir, { recursive: true });
|
||||
|
||||
// 获取所有PNG文件
|
||||
const files = await glob(path.join(sourceDir, '**/*.png'));
|
||||
totalFiles = files.length;
|
||||
|
||||
console.log(`找到 ${files.length} 个PNG文件需要优化\n`);
|
||||
|
||||
// 使用工作池并行处理图片,限制并发数为CPU核心数
|
||||
const concurrency = os.cpus().length;
|
||||
const chunks = [];
|
||||
for (let i = 0; i < files.length; i += concurrency) {
|
||||
chunks.push(files.slice(i, i + concurrency));
|
||||
}
|
||||
|
||||
for (const chunk of chunks) {
|
||||
await Promise.all(chunk.map(file => optimizeImage(file)));
|
||||
}
|
||||
|
||||
printReport();
|
||||
} catch (error) {
|
||||
console.error('处理过程中发生错误:', error);
|
||||
}
|
||||
}
|
||||
|
||||
processImages();
|
||||
}
|
Loading…
Reference in New Issue