pcsx2/pcsx2/PINE.cpp

728 lines
19 KiB
C++

// SPDX-FileCopyrightText: 2002-2024 PCSX2 Dev Team
// SPDX-License-Identifier: GPL-3.0+
#include "BuildVersion.h"
#include "Common.h"
#include "Host.h"
#include "Memory.h"
#include "Elfheader.h"
#include "PINE.h"
#include "VMManager.h"
#include <atomic>
#include <cstdio>
#include <cstdlib>
#include <span>
#include <sys/types.h>
#include <thread>
#include "fmt/format.h"
#if _WIN32
#define read_portable(a, b, c) (recv(a, (char*)b, c, 0))
#define write_portable(a, b, c) (send(a, (const char*)b, c, 0))
#define safe_close_portable(a) \
do \
{ \
if ((a) >= 0) \
{ \
closesocket((a)); \
(a) = INVALID_SOCKET; \
} \
} while (0)
#define bzero(b, len) (memset((b), '\0', (len)), (void)0)
#include "common/RedtapeWindows.h"
#include <WinSock2.h>
#else
#define read_portable(a, b, c) (read(a, b, c))
#define write_portable(a, b, c) (write(a, b, c))
#define safe_close_portable(a) \
do \
{ \
if ((a) >= 0) \
{ \
close((a)); \
(a) = -1; \
} \
} while (0)
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#endif
#define PINE_EMULATOR_NAME "pcsx2"
#ifdef _WIN32
static bool InitializeWinsock()
{
static bool initialized = false;
if (initialized)
return true;
WSADATA wsa = {};
if (WSAStartup(MAKEWORD(2, 2), &wsa) != 0)
return false;
initialized = true;
std::atexit([]() { WSACleanup(); });
return true;
}
#endif
namespace PINEServer
{
std::thread m_thread;
int m_slot;
#ifdef _WIN32
// windows claim to have support for AF_UNIX sockets but that is a blatant lie,
// their SDK won't even run their own examples, so we go on TCP sockets.
static SOCKET m_sock = INVALID_SOCKET;
// the message socket used in thread's accept().
static SOCKET m_msgsock = INVALID_SOCKET;
#else
// absolute path of the socket. Stored in XDG_RUNTIME_DIR, if unset /tmp
static std::string m_socket_name;
static int m_sock = -1;
// the message socket used in thread's accept().
static int m_msgsock = -1;
#endif
// Whether the socket processing thread should stop executing/is stopped.
static std::atomic_bool m_end{true};
/**
* Maximum memory used by an IPC message request.
* Equivalent to 50,000 Write64 requests.
*/
#define MAX_IPC_SIZE 650000
/**
* Maximum memory used by an IPC message reply.
* Equivalent to 50,000 Read64 replies.
*/
#define MAX_IPC_RETURN_SIZE 450000
/**
* IPC return buffer.
* A preallocated buffer used to store all IPC replies.
* to the size of 50.000 MsgWrite64 IPC calls.
*/
static std::vector<u8> m_ret_buffer;
/**
* IPC messages buffer.
* A preallocated buffer used to store all IPC messages.
*/
static std::vector<u8> m_ipc_buffer;
/**
* IPC Command messages opcodes.
* A list of possible operations possible by the IPC.
* Each one of them is what we call an "opcode" and is the first
* byte sent by the IPC to differentiate between commands.
*/
enum IPCCommand : unsigned char
{
MsgRead8 = 0, /**< Read 8 bit value to memory. */
MsgRead16 = 1, /**< Read 16 bit value to memory. */
MsgRead32 = 2, /**< Read 32 bit value to memory. */
MsgRead64 = 3, /**< Read 64 bit value to memory. */
MsgWrite8 = 4, /**< Write 8 bit value to memory. */
MsgWrite16 = 5, /**< Write 16 bit value to memory. */
MsgWrite32 = 6, /**< Write 32 bit value to memory. */
MsgWrite64 = 7, /**< Write 64 bit value to memory. */
MsgVersion = 8, /**< Returns PCSX2 version. */
MsgSaveState = 9, /**< Saves a savestate. */
MsgLoadState = 0xA, /**< Loads a savestate. */
MsgTitle = 0xB, /**< Returns the game title. */
MsgID = 0xC, /**< Returns the game ID. */
MsgUUID = 0xD, /**< Returns the game UUID. */
MsgGameVersion = 0xE, /**< Returns the game verion. */
MsgStatus = 0xF, /**< Returns the emulator status. */
MsgUnimplemented = 0xFF /**< Unimplemented IPC message. */
};
/**
* Emulator status enum.
* A list of possible emulator statuses.
*/
enum EmuStatus : uint32_t
{
Running = 0, /**< Game is running */
Paused = 1, /**< Game is paused */
Shutdown = 2 /**< Game is shutdown */
};
/**
* IPC message buffer.
* A list of all needed fields to store an IPC message.
*/
struct IPCBuffer
{
int size; /**< Size of the buffer. */
std::vector<u8> buffer; /**< Buffer. */
};
/**
* IPC result codes.
* A list of possible result codes the IPC can send back.
* Each one of them is what we call an "opcode" or "tag" and is the
* first byte sent by the IPC to differentiate between results.
*/
enum IPCResult : unsigned char
{
IPC_OK = 0, /**< IPC command successfully completed. */
IPC_FAIL = 0xFF /**< IPC command failed to complete. */
};
// Thread used to relay IPC commands.
void MainLoop();
void ClientLoop();
/**
* Internal function, Parses an IPC command.
* buf: buffer containing the IPC command.
* buf_size: size of the buffer announced.
* ret_buffer: buffer that will be used to send the reply.
* return value: IPCBuffer containing a buffer with the result
* of the command and its size.
*/
static IPCBuffer ParseCommand(std::span<u8> buf, std::vector<u8>& ret_buffer, u32 buf_size);
/**
* Formats an IPC buffer
* ret_buffer: return buffer to use.
* size: size of the IPC buffer.
* return value: buffer containing the status code allocated of size
*/
static std::vector<u8>& MakeOkIPC(std::vector<u8>& ret_buffer, uint32_t size);
static std::vector<u8>& MakeFailIPC(std::vector<u8>& ret_buffer, uint32_t size);
/**
* Initializes an open socket for IPC communication.
*/
bool AcceptClient();
/**
* Converts a primitive value to bytes in little endian
* res_vector: the vector to modify
* res: the value to convert
* i: where to insert it into the vector
* NB: implicitely inlined
*/
template <typename T>
static void ToResultVector(std::vector<u8>& res_vector, T res, int i)
{
memcpy(&res_vector[i], (char*)&res, sizeof(T));
}
/**
* Converts bytes in little endian to a primitive value
* span: the span to convert
* i: where to load it from the span
* return value: the converted value
* NB: implicitely inlined
*/
template <typename T>
static T FromSpan(std::span<u8> span, int i)
{
return *(T*)(&span[i]);
}
/**
* Ensures an IPC message isn't too big.
* return value: false if checks failed, true otherwise.
*/
static inline bool SafetyChecks(u32 command_len, int command_size, u32 reply_len, int reply_size = 0, u32 buf_size = MAX_IPC_SIZE - 1)
{
return !((command_len + command_size) > buf_size ||
(reply_len + reply_size) >= MAX_IPC_RETURN_SIZE);
}
} // namespace PINEServer
bool PINEServer::Initialize(int slot)
{
m_end.store(false, std::memory_order_release);
m_slot = slot;
#ifdef _WIN32
if (!InitializeWinsock())
{
Console.WriteLn(Color_Red, "PINE: Cannot initialize winsock! Shutting down...");
Deinitialize();
return false;
}
m_sock = socket(AF_INET, SOCK_STREAM, 0);
if ((m_sock == INVALID_SOCKET) || slot > 65536)
{
Console.WriteLn(Color_Red, "PINE: Cannot open socket! Shutting down...");
Deinitialize();
return false;
}
sockaddr_in server = {};
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl(INADDR_LOOPBACK); // localhost only
server.sin_port = htons(slot);
if (bind(m_sock, (struct sockaddr*)&server, sizeof(server)) == SOCKET_ERROR)
{
Console.WriteLn(Color_Red, "PINE: Error while binding to socket! Shutting down...");
Deinitialize();
return false;
}
#else
char* runtime_dir = nullptr;
#ifdef __APPLE__
runtime_dir = std::getenv("TMPDIR");
#else
runtime_dir = std::getenv("XDG_RUNTIME_DIR");
#endif
// fallback in case macOS or other OSes don't implement the XDG base
// spec
if (runtime_dir == nullptr)
m_socket_name = "/tmp/" PINE_EMULATOR_NAME ".sock";
else
{
m_socket_name = runtime_dir;
m_socket_name += "/" PINE_EMULATOR_NAME ".sock";
}
if (slot != PINE_DEFAULT_SLOT)
m_socket_name += "." + std::to_string(slot);
struct sockaddr_un server;
m_sock = socket(AF_UNIX, SOCK_STREAM, 0);
if (m_sock < 0)
{
Console.WriteLn(Color_Red, "PINE: Cannot open socket! Shutting down...");
Deinitialize();
return false;
}
server.sun_family = AF_UNIX;
StringUtil::Strlcpy(server.sun_path, m_socket_name, sizeof(server.sun_path));
// we unlink the socket so that when releasing this thread the socket gets
// freed even if we didn't close correctly the loop
unlink(m_socket_name.c_str());
if (bind(m_sock, (struct sockaddr*)&server, sizeof(struct sockaddr_un)))
{
Console.WriteLn(Color_Red, "PINE: Error while binding to socket! Shutting down...");
Deinitialize();
return false;
}
#endif
// maximum queue of 4096 commands before refusing, approximated to the
// nearest legal value. We do not use SOMAXCONN as windows have this idea
// that a "reasonable" value is 5, which is not.
if (listen(m_sock, 4096))
{
Console.WriteLn(Color_Red, "PINE: Cannot listen for connections! Shutting down...");
Deinitialize();
return false;
}
// we allocate once buffers to not have to do mallocs for each IPC
// request, as malloc is expansive when we optimize for µs.
m_ret_buffer.resize(MAX_IPC_RETURN_SIZE);
m_ipc_buffer.resize(MAX_IPC_SIZE);
// we start the thread
m_thread = std::thread(&PINEServer::MainLoop);
return true;
}
bool PINEServer::IsInitialized()
{
return !m_end.load(std::memory_order_acquire);
}
int PINEServer::GetSlot()
{
return m_slot;
}
std::vector<u8>& PINEServer::MakeOkIPC(std::vector<u8>& ret_buffer, uint32_t size = 5)
{
ToResultVector<uint32_t>(ret_buffer, size, 0);
ret_buffer[4] = IPC_OK;
return ret_buffer;
}
std::vector<u8>& PINEServer::MakeFailIPC(std::vector<u8>& ret_buffer, uint32_t size = 5)
{
ToResultVector<uint32_t>(ret_buffer, size, 0);
ret_buffer[4] = IPC_FAIL;
return ret_buffer;
}
bool PINEServer::AcceptClient()
{
m_msgsock = accept(m_sock, 0, 0);
if (m_msgsock >= 0)
{
// Gross C-style cast, but SOCKET is a handle on Windows.
Console.WriteLn("PINE: New client with FD %d connected.", (int)m_msgsock);
return true;
}
// everything else is non recoverable in our scope
// we also mark as recoverable socket errors where it would block a
// non blocking socket, even though our socket is blocking, in case
// we ever have to implement a non blocking socket.
#ifdef _WIN32
const int errno_w = WSAGetLastError();
if (!(errno_w == WSAECONNRESET || errno_w == WSAEINTR || errno_w == WSAEINPROGRESS || errno_w == WSAEMFILE || errno_w == WSAEWOULDBLOCK) && m_sock != INVALID_SOCKET)
Console.Error("PINE: accept() returned error %d", errno_w);
#else
if (!(errno == ECONNABORTED || errno == EINTR || errno == EAGAIN || errno == EWOULDBLOCK) && m_sock >= 0)
Console.Error("PINE: accept() returned error %d", errno);
#endif
return false;
}
void PINEServer::MainLoop()
{
while (!m_end.load(std::memory_order_acquire))
{
if (!AcceptClient())
continue;
ClientLoop();
Console.WriteLn("PINE: Client disconnected.");
safe_close_portable(m_msgsock);
}
}
void PINEServer::ClientLoop()
{
while (!m_end.load(std::memory_order_acquire))
{
// either int or ssize_t depending on the platform, so we have to
// use a bunch of auto
auto receive_length = 0;
auto end_length = 4;
const std::span<u8> ipc_buffer_span(m_ipc_buffer);
// while we haven't received the entire packet, maybe due to
// socket datagram splittage, we continue to read
while (receive_length < end_length)
{
const auto tmp_length = read_portable(m_msgsock, &ipc_buffer_span[receive_length], MAX_IPC_SIZE - receive_length);
// we recreate the socket if an error happens
if (tmp_length <= 0)
return;
receive_length += tmp_length;
// if we got at least the final size then update
if (end_length == 4 && receive_length >= 4)
{
end_length = FromSpan<u32>(ipc_buffer_span, 0);
// we'd like to avoid a client trying to do OOB
if (end_length > MAX_IPC_SIZE || end_length < 4)
{
receive_length = 0;
break;
}
}
}
PINEServer::IPCBuffer res;
// we remove 4 bytes to get the message size out of the IPC command
// size in ParseCommand.
// also, if we got a failed command, let's reset the state so we don't
// end up deadlocking by getting out of sync, eg when a client
// disconnects
if (receive_length != 0)
{
res = ParseCommand(ipc_buffer_span.subspan(4), m_ret_buffer, (u32)end_length - 4);
// if we cannot send back our answer restart the socket
if (write_portable(m_msgsock, res.buffer.data(), res.size) < 0)
return;
}
}
}
void PINEServer::Deinitialize()
{
m_end.store(true, std::memory_order_release);
#ifndef _WIN32
if (!m_socket_name.empty())
{
unlink(m_socket_name.c_str());
m_socket_name = {};
}
#endif
// shutdown() is needed, otherwise accept() will still block.
#ifdef _WIN32
if (m_sock != INVALID_SOCKET)
shutdown(m_sock, SD_BOTH);
#else
if (m_sock >= 0)
shutdown(m_sock, SHUT_RDWR);
#endif
safe_close_portable(m_sock);
safe_close_portable(m_msgsock);
if (m_thread.joinable())
m_thread.join();
}
PINEServer::IPCBuffer PINEServer::ParseCommand(std::span<u8> buf, std::vector<u8>& ret_buffer, u32 buf_size)
{
u32 ret_cnt = 5;
u32 buf_cnt = 0;
while (buf_cnt < buf_size)
{
if (!SafetyChecks(buf_cnt, 1, ret_cnt, 0, buf_size)) [[unlikely]]
return IPCBuffer{5, MakeFailIPC(ret_buffer)};
buf_cnt++;
// example IPC messages: MsgRead/Write
// refer to the client doc for more info on the format
// IPC Message event (1 byte)
// | Memory address (4 byte)
// | | argument (VLE)
// | | |
// format: XX YY YY YY YY ZZ ZZ ZZ ZZ
// reply code: 00 = OK, FF = NOT OK
// | return value (VLE)
// | |
// reply: XX ZZ ZZ ZZ ZZ
switch ((IPCCommand)buf[buf_cnt - 1])
{
case MsgRead8:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 4, ret_cnt, 1, buf_size)) [[unlikely]]
goto error;
const u32 a = FromSpan<u32>(buf, buf_cnt);
const u8 res = memRead8(a);
ToResultVector(ret_buffer, res, ret_cnt);
ret_cnt += 1;
buf_cnt += 4;
break;
}
case MsgRead16:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 4, ret_cnt, 2, buf_size)) [[unlikely]]
goto error;
const u32 a = FromSpan<u32>(buf, buf_cnt);
const u16 res = memRead16(a);
ToResultVector(ret_buffer, res, ret_cnt);
ret_cnt += 2;
buf_cnt += 4;
break;
}
case MsgRead32:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 4, ret_cnt, 4, buf_size)) [[unlikely]]
goto error;
const u32 a = FromSpan<u32>(buf, buf_cnt);
const u32 res = memRead32(a);
ToResultVector(ret_buffer, res, ret_cnt);
ret_cnt += 4;
buf_cnt += 4;
break;
}
case MsgRead64:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 4, ret_cnt, 8, buf_size)) [[unlikely]]
goto error;
const u32 a = FromSpan<u32>(buf, buf_cnt);
const u64 res = memRead64(a);
ToResultVector(ret_buffer, res, ret_cnt);
ret_cnt += 8;
buf_cnt += 4;
break;
}
case MsgWrite8:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 1 + 4, ret_cnt, 0, buf_size)) [[unlikely]]
goto error;
const u32 a = FromSpan<u32>(buf, buf_cnt);
memWrite8(a, FromSpan<u8>(buf, buf_cnt + 4));
buf_cnt += 5;
break;
}
case MsgWrite16:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 2 + 4, ret_cnt, 0, buf_size)) [[unlikely]]
goto error;
const u32 a = FromSpan<u32>(buf, buf_cnt);
memWrite16(a, FromSpan<u16>(buf, buf_cnt + 4));
buf_cnt += 6;
break;
}
case MsgWrite32:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 4 + 4, ret_cnt, 0, buf_size)) [[unlikely]]
goto error;
const u32 a = FromSpan<u32>(buf, buf_cnt);
memWrite32(a, FromSpan<u32>(buf, buf_cnt + 4));
buf_cnt += 8;
break;
}
case MsgWrite64:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 8 + 4, ret_cnt, 0, buf_size)) [[unlikely]]
goto error;
const u32 a = FromSpan<u32>(buf, buf_cnt);
memWrite64(a, FromSpan<u64>(buf, buf_cnt + 4));
buf_cnt += 12;
break;
}
case MsgVersion:
{
if (!VMManager::HasValidVM())
goto error;
u32 size = strlen(BuildVersion::GitRev) + 7;
if (!SafetyChecks(buf_cnt, 0, ret_cnt, size + 4, buf_size)) [[unlikely]]
goto error;
ToResultVector(ret_buffer, size, ret_cnt);
ret_cnt += 4;
snprintf(reinterpret_cast<char*>(&ret_buffer[ret_cnt]), size, "PCSX2 %s", BuildVersion::GitRev);
ret_cnt += size;
break;
}
case MsgSaveState:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 1, ret_cnt, 0, buf_size)) [[unlikely]]
goto error;
Host::RunOnCPUThread([slot = FromSpan<u8>(buf, buf_cnt)] { VMManager::SaveStateToSlot(slot); });
buf_cnt += 1;
break;
}
case MsgLoadState:
{
if (!VMManager::HasValidVM())
goto error;
if (!SafetyChecks(buf_cnt, 1, ret_cnt, 0, buf_size)) [[unlikely]]
goto error;
Host::RunOnCPUThread([slot = FromSpan<u8>(buf, buf_cnt)] { VMManager::LoadStateFromSlot(slot); });
buf_cnt += 1;
break;
}
case MsgTitle:
{
if (!VMManager::HasValidVM())
goto error;
const std::string gameName = VMManager::GetTitle(false);
const u32 size = gameName.size() + 1;
if (!SafetyChecks(buf_cnt, 0, ret_cnt, size + 4, buf_size)) [[unlikely]]
goto error;
ToResultVector(ret_buffer, size, ret_cnt);
ret_cnt += 4;
memcpy(&ret_buffer[ret_cnt], gameName.c_str(), size);
ret_cnt += size;
break;
}
case MsgID:
{
if (!VMManager::HasValidVM())
goto error;
const std::string gameSerial = VMManager::GetDiscSerial();
const u32 size = gameSerial.size() + 1;
if (!SafetyChecks(buf_cnt, 0, ret_cnt, size + 4, buf_size)) [[unlikely]]
goto error;
ToResultVector(ret_buffer, size, ret_cnt);
ret_cnt += 4;
memcpy(&ret_buffer[ret_cnt], gameSerial.c_str(), size);
ret_cnt += size;
break;
}
case MsgUUID:
{
if (!VMManager::HasValidVM())
goto error;
const std::string crc = fmt::format("{:08x}", VMManager::GetDiscCRC());
const u32 size = crc.size() + 1;
if (!SafetyChecks(buf_cnt, 0, ret_cnt, size + 4, buf_size)) [[unlikely]]
goto error;
ToResultVector(ret_buffer, size, ret_cnt);
ret_cnt += 4;
memcpy(&ret_buffer[ret_cnt], crc.c_str(), size);
ret_cnt += size;
break;
}
case MsgGameVersion:
{
if (!VMManager::HasValidVM())
goto error;
const std::string ElfVersion = VMManager::GetDiscVersion();
const u32 size = ElfVersion.size() + 1;
if (!SafetyChecks(buf_cnt, 0, ret_cnt, size + 4, buf_size)) [[unlikely]]
goto error;
ToResultVector(ret_buffer, size, ret_cnt);
ret_cnt += 4;
memcpy(&ret_buffer[ret_cnt], ElfVersion.c_str(), size);
ret_cnt += size;
break;
}
case MsgStatus:
{
if (!SafetyChecks(buf_cnt, 0, ret_cnt, 4, buf_size)) [[unlikely]]
goto error;
EmuStatus status;
switch (VMManager::GetState())
{
case VMState::Running:
status = EmuStatus::Running;
break;
case VMState::Paused:
status = EmuStatus::Paused;
break;
default:
status = EmuStatus::Shutdown;
break;
}
ToResultVector(ret_buffer, status, ret_cnt);
ret_cnt += 4;
break;
}
default:
{
error:
return IPCBuffer{5, MakeFailIPC(ret_buffer)};
}
}
}
return IPCBuffer{(int)ret_cnt, MakeOkIPC(ret_buffer, ret_cnt)};
}