pcsx2/pcsx2/x86/ix86-32/iR5900Branch.cpp

866 lines
18 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
// recompiler reworked to add dynamic linking zerofrog(@gmail.com) Jan06
#include "PrecompiledHeader.h"
#include "Common.h"
#include "R5900OpcodeTables.h"
#include "iR5900.h"
namespace Interp = R5900::Interpreter::OpcodeImpl;
namespace R5900 {
namespace Dynarec {
namespace OpcodeImpl
{
/*********************************************************
* Register branch logic *
* Format: OP rs, rt, offset *
*********************************************************/
#ifndef BRANCH_RECOMPILE
REC_SYS(BEQ);
REC_SYS(BEQL);
REC_SYS(BNE);
REC_SYS(BNEL);
REC_SYS(BLTZ);
REC_SYS(BGTZ);
REC_SYS(BLEZ);
REC_SYS(BGEZ);
REC_SYS(BGTZL);
REC_SYS(BLTZL);
REC_SYS_DEL(BLTZAL, 31);
REC_SYS_DEL(BLTZALL, 31);
REC_SYS(BLEZL);
REC_SYS(BGEZL);
REC_SYS_DEL(BGEZAL, 31);
REC_SYS_DEL(BGEZALL, 31);
#else
void recSetBranchEQ(int info, int bne, int process)
{
if( info & PROCESS_EE_XMM ) {
int t0reg;
if( process & PROCESS_CONSTS ) {
if( (g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_) ) {
_deleteGPRtoXMMreg(_Rt_, 1);
xmmregs[EEREC_T].inuse = 0;
t0reg = EEREC_T;
}
else {
t0reg = _allocTempXMMreg(XMMT_INT, -1);
SSE2_MOVQ_XMM_to_XMM(t0reg, EEREC_T);
}
_flushConstReg(_Rs_);
SSE2_PCMPEQD_M128_to_XMM(t0reg, (u32)&cpuRegs.GPR.r[_Rs_].UL[0]);
if( t0reg != EEREC_T ) _freeXMMreg(t0reg);
}
else if( process & PROCESS_CONSTT ) {
if( (g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_) ) {
_deleteGPRtoXMMreg(_Rs_, 1);
xmmregs[EEREC_S].inuse = 0;
t0reg = EEREC_S;
}
else {
t0reg = _allocTempXMMreg(XMMT_INT, -1);
SSE2_MOVQ_XMM_to_XMM(t0reg, EEREC_S);
}
_flushConstReg(_Rt_);
SSE2_PCMPEQD_M128_to_XMM(t0reg, (u32)&cpuRegs.GPR.r[_Rt_].UL[0]);
if( t0reg != EEREC_S ) _freeXMMreg(t0reg);
}
else {
if( (g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_) ) {
_deleteGPRtoXMMreg(_Rs_, 1);
xmmregs[EEREC_S].inuse = 0;
t0reg = EEREC_S;
SSE2_PCMPEQD_XMM_to_XMM(t0reg, EEREC_T);
}
else if( (g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_) ) {
_deleteGPRtoXMMreg(_Rt_, 1);
xmmregs[EEREC_T].inuse = 0;
t0reg = EEREC_T;
SSE2_PCMPEQD_XMM_to_XMM(t0reg, EEREC_S);
}
else {
t0reg = _allocTempXMMreg(XMMT_INT, -1);
SSE2_MOVQ_XMM_to_XMM(t0reg, EEREC_S);
SSE2_PCMPEQD_XMM_to_XMM(t0reg, EEREC_T);
}
if( t0reg != EEREC_S && t0reg != EEREC_T ) _freeXMMreg(t0reg);
}
SSE_MOVMSKPS_XMM_to_R32(EAX, t0reg);
_eeFlushAllUnused();
AND8ItoR(EAX, 3);
CMP8ItoR( EAX, 0x3 );
if( bne ) j32Ptr[ 1 ] = JE32( 0 );
else j32Ptr[ 0 ] = j32Ptr[ 1 ] = JNE32( 0 );
}
else {
_eeFlushAllUnused();
if( bne ) {
if( process & PROCESS_CONSTS ) {
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], g_cpuConstRegs[_Rs_].UL[0] );
j8Ptr[ 0 ] = JNE8( 0 );
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], g_cpuConstRegs[_Rs_].UL[1] );
j32Ptr[ 1 ] = JE32( 0 );
}
else if( process & PROCESS_CONSTT ) {
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ], g_cpuConstRegs[_Rt_].UL[0] );
j8Ptr[ 0 ] = JNE8( 0 );
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ], g_cpuConstRegs[_Rt_].UL[1] );
j32Ptr[ 1 ] = JE32( 0 );
}
else {
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
CMP32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
j8Ptr[ 0 ] = JNE8( 0 );
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ] );
CMP32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] );
j32Ptr[ 1 ] = JE32( 0 );
}
x86SetJ8( j8Ptr[0] );
}
else {
// beq
if( process & PROCESS_CONSTS ) {
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], g_cpuConstRegs[_Rs_].UL[0] );
j32Ptr[ 0 ] = JNE32( 0 );
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], g_cpuConstRegs[_Rs_].UL[1] );
j32Ptr[ 1 ] = JNE32( 0 );
}
else if( process & PROCESS_CONSTT ) {
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ], g_cpuConstRegs[_Rt_].UL[0] );
j32Ptr[ 0 ] = JNE32( 0 );
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ], g_cpuConstRegs[_Rt_].UL[1] );
j32Ptr[ 1 ] = JNE32( 0 );
}
else {
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
CMP32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
j32Ptr[ 0 ] = JNE32( 0 );
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ] );
CMP32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] );
j32Ptr[ 1 ] = JNE32( 0 );
}
}
}
_clearNeededMMXregs();
_clearNeededXMMregs();
}
void recSetBranchL(int ltz)
{
int regs = _checkXMMreg(XMMTYPE_GPRREG, _Rs_, MODE_READ);
if( regs >= 0 ) {
SSE_MOVMSKPS_XMM_to_R32(EAX, regs);
_eeFlushAllUnused();
TEST8ItoR( EAX, 2 );
if( ltz ) j32Ptr[ 0 ] = JZ32( 0 );
else j32Ptr[ 0 ] = JNZ32( 0 );
return;
}
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ], 0 );
if( ltz ) j32Ptr[ 0 ] = JGE32( 0 );
else j32Ptr[ 0 ] = JL32( 0 );
_clearNeededMMXregs();
_clearNeededXMMregs();
}
//// BEQ
void recBEQ_const()
{
u32 branchTo;
if( g_cpuConstRegs[_Rs_].SD[0] == g_cpuConstRegs[_Rt_].SD[0] )
branchTo = ((s32)_Imm_ * 4) + pc;
else
branchTo = pc+4;
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
void recBEQ_process(int info, int process)
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
if ( _Rs_ == _Rt_ )
{
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
else
{
recSetBranchEQ(info, 0, process);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
x86SetJ32( j32Ptr[ 1 ] );
// recopy the next inst
pc -= 4;
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(pc);
}
}
void recBEQ_(int info) { recBEQ_process(info, 0); }
void recBEQ_consts(int info) { recBEQ_process(info, PROCESS_CONSTS); }
void recBEQ_constt(int info) { recBEQ_process(info, PROCESS_CONSTT); }
EERECOMPILE_CODE0(BEQ, XMMINFO_READS|XMMINFO_READT);
//// BNE
void recBNE_const()
{
u32 branchTo;
if( g_cpuConstRegs[_Rs_].SD[0] != g_cpuConstRegs[_Rt_].SD[0] )
branchTo = ((s32)_Imm_ * 4) + pc;
else
branchTo = pc+4;
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
void recBNE_process(int info, int process)
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
if ( _Rs_ == _Rt_ )
{
recompileNextInstruction(1);
SetBranchImm(pc);
return;
}
recSetBranchEQ(info, 1, process);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 1 ] );
// recopy the next inst
pc -= 4;
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(pc);
}
void recBNE_(int info) { recBNE_process(info, 0); }
void recBNE_consts(int info) { recBNE_process(info, PROCESS_CONSTS); }
void recBNE_constt(int info) { recBNE_process(info, PROCESS_CONSTT); }
EERECOMPILE_CODE0(BNE, XMMINFO_READS|XMMINFO_READT);
//// BEQL
void recBEQL_const()
{
if( g_cpuConstRegs[_Rs_].SD[0] == g_cpuConstRegs[_Rt_].SD[0] ) {
u32 branchTo = ((s32)_Imm_ * 4) + pc;
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
else {
SetBranchImm( pc+4 );
}
}
void recBEQL_process(int info, int process)
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
recSetBranchEQ(info, 0, process);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
x86SetJ32( j32Ptr[ 1 ] );
LoadBranchState();
SetBranchImm(pc);
}
void recBEQL_(int info) { recBEQL_process(info, 0); }
void recBEQL_consts(int info) { recBEQL_process(info, PROCESS_CONSTS); }
void recBEQL_constt(int info) { recBEQL_process(info, PROCESS_CONSTT); }
EERECOMPILE_CODE0(BEQL, XMMINFO_READS|XMMINFO_READT);
//// BNEL
void recBNEL_const()
{
if( g_cpuConstRegs[_Rs_].SD[0] != g_cpuConstRegs[_Rt_].SD[0] ) {
u32 branchTo = ((s32)_Imm_ * 4) + pc;
recompileNextInstruction(1);
SetBranchImm(branchTo);
}
else {
SetBranchImm( pc+4 );
}
}
void recBNEL_process(int info, int process)
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
recSetBranchEQ(info, 0, process);
SaveBranchState();
SetBranchImm(pc+4);
x86SetJ32( j32Ptr[ 0 ] );
x86SetJ32( j32Ptr[ 1 ] );
// recopy the next inst
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
}
void recBNEL_(int info) { recBNEL_process(info, 0); }
void recBNEL_consts(int info) { recBNEL_process(info, PROCESS_CONSTS); }
void recBNEL_constt(int info) { recBNEL_process(info, PROCESS_CONSTT); }
EERECOMPILE_CODE0(BNEL, XMMINFO_READS|XMMINFO_READT);
/*********************************************************
* Register branch logic *
* Format: OP rs, offset *
*********************************************************/
////////////////////////////////////////////////////
//void recBLTZAL( void )
//{
// Console.WriteLn("BLTZAL");
// _eeFlushAllUnused();
// MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
// MOV32ItoM( (int)&cpuRegs.pc, pc );
// iFlushCall(FLUSH_EVERYTHING);
// CALLFunc( (int)BLTZAL );
// branch = 2;
//}
////////////////////////////////////////////////////
void recBLTZAL()
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeOnWriteReg(31, 0);
_eeFlushAllUnused();
_deleteEEreg(31, 0);
MOV32ItoM((uptr)&cpuRegs.GPR.r[31].UL[0], pc+4);
MOV32ItoM((uptr)&cpuRegs.GPR.r[31].UL[1], 0);
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] < 0) )
branchTo = pc+4;
recompileNextInstruction(1);
SetBranchImm( branchTo );
return;
}
recSetBranchL(1);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
// recopy the next inst
pc -= 4;
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(pc);
}
////////////////////////////////////////////////////
void recBGEZAL( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeOnWriteReg(31, 0);
_eeFlushAllUnused();
_deleteEEreg(31, 0);
MOV32ItoM((uptr)&cpuRegs.GPR.r[31].UL[0], pc+4);
MOV32ItoM((uptr)&cpuRegs.GPR.r[31].UL[1], 0);
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] >= 0) )
branchTo = pc+4;
recompileNextInstruction(1);
SetBranchImm( branchTo );
return;
}
recSetBranchL(0);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
// recopy the next inst
pc -= 4;
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(pc);
}
////////////////////////////////////////////////////
void recBLTZALL( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeOnWriteReg(31, 0);
_eeFlushAllUnused();
_deleteEEreg(31, 0);
MOV32ItoM((uptr)&cpuRegs.GPR.r[31].UL[0], pc+4);
MOV32ItoM((uptr)&cpuRegs.GPR.r[31].UL[1], 0);
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] < 0) )
SetBranchImm( pc + 4);
else {
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
return;
}
recSetBranchL(1);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
LoadBranchState();
SetBranchImm(pc);
}
////////////////////////////////////////////////////
void recBGEZALL( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeOnWriteReg(31, 0);
_eeFlushAllUnused();
_deleteEEreg(31, 0);
MOV32ItoM((uptr)&cpuRegs.GPR.r[31].UL[0], pc+4);
MOV32ItoM((uptr)&cpuRegs.GPR.r[31].UL[1], 0);
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] >= 0) )
SetBranchImm( pc + 4);
else {
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
return;
}
recSetBranchL(0);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
LoadBranchState();
SetBranchImm(pc);
}
//// BLEZ
void recBLEZ( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeFlushAllUnused();
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] <= 0) )
branchTo = pc+4;
recompileNextInstruction(1);
SetBranchImm( branchTo );
return;
}
_flushEEreg(_Rs_);
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ], 0 );
j8Ptr[ 0 ] = JL8( 0 );
j32Ptr[ 1 ] = JG32( 0 );
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ], 0 );
j32Ptr[ 2 ] = JNZ32( 0 );
x86SetJ8( j8Ptr[ 0 ] );
_clearNeededMMXregs();
_clearNeededXMMregs();
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 1 ] );
x86SetJ32( j32Ptr[ 2 ] );
// recopy the next inst
pc -= 4;
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(pc);
}
//// BGTZ
void recBGTZ( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeFlushAllUnused();
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] > 0) )
branchTo = pc+4;
recompileNextInstruction(1);
SetBranchImm( branchTo );
return;
}
_flushEEreg(_Rs_);
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ], 0 );
j8Ptr[ 0 ] = JG8( 0 );
j32Ptr[ 1 ] = JL32( 0 );
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ], 0 );
j32Ptr[ 2 ] = JZ32( 0 );
x86SetJ8( j8Ptr[ 0 ] );
_clearNeededMMXregs();
_clearNeededXMMregs();
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 1 ] );
x86SetJ32( j32Ptr[ 2 ] );
// recopy the next inst
pc -= 4;
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(pc);
}
////////////////////////////////////////////////////
void recBLTZ()
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeFlushAllUnused();
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] < 0) )
branchTo = pc+4;
recompileNextInstruction(1);
SetBranchImm( branchTo );
return;
}
recSetBranchL(1);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
// recopy the next inst
pc -= 4;
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(pc);
}
////////////////////////////////////////////////////
void recBGEZ( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeFlushAllUnused();
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] >= 0) )
branchTo = pc+4;
recompileNextInstruction(1);
SetBranchImm( branchTo );
return;
}
recSetBranchL(0);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
// recopy the next inst
pc -= 4;
LoadBranchState();
recompileNextInstruction(1);
SetBranchImm(pc);
}
////////////////////////////////////////////////////
void recBLTZL( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeFlushAllUnused();
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] < 0) )
SetBranchImm( pc + 4);
else {
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
return;
}
recSetBranchL(1);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
LoadBranchState();
SetBranchImm(pc);
}
////////////////////////////////////////////////////
void recBGEZL( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeFlushAllUnused();
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] >= 0) )
SetBranchImm( pc + 4);
else {
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
return;
}
recSetBranchL(0);
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 0 ] );
LoadBranchState();
SetBranchImm(pc);
}
/*********************************************************
* Register branch logic Likely *
* Format: OP rs, offset *
*********************************************************/
////////////////////////////////////////////////////
void recBLEZL( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeFlushAllUnused();
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] <= 0) )
SetBranchImm( pc + 4);
else {
_clearNeededMMXregs();
_clearNeededXMMregs();
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
return;
}
_flushEEreg(_Rs_);
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ], 0 );
j32Ptr[ 0 ] = JL32( 0 );
j32Ptr[ 1 ] = JG32( 0 );
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ], 0 );
j32Ptr[ 2 ] = JNZ32( 0 );
x86SetJ32( j32Ptr[ 0 ] );
_clearNeededMMXregs();
_clearNeededXMMregs();
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 1 ] );
x86SetJ32( j32Ptr[ 2 ] );
LoadBranchState();
SetBranchImm(pc);
}
////////////////////////////////////////////////////
void recBGTZL( void )
{
u32 branchTo = ((s32)_Imm_ * 4) + pc;
_eeFlushAllUnused();
if( GPR_IS_CONST1(_Rs_) ) {
if( !(g_cpuConstRegs[_Rs_].SD[0] > 0) )
SetBranchImm( pc + 4);
else {
_clearNeededMMXregs();
_clearNeededXMMregs();
recompileNextInstruction(1);
SetBranchImm( branchTo );
}
return;
}
_flushEEreg(_Rs_);
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ], 0 );
j32Ptr[ 0 ] = JG32( 0 );
j32Ptr[ 1 ] = JL32( 0 );
CMP32ItoM( (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ], 0 );
j32Ptr[ 2 ] = JZ32( 0 );
x86SetJ32( j32Ptr[ 0 ] );
_clearNeededMMXregs();
_clearNeededXMMregs();
SaveBranchState();
recompileNextInstruction(1);
SetBranchImm(branchTo);
x86SetJ32( j32Ptr[ 1 ] );
x86SetJ32( j32Ptr[ 2 ] );
LoadBranchState();
SetBranchImm(pc);
}
#endif
} } }