pcsx2/pcsx2/R3000A.h

212 lines
6.0 KiB
C

// SPDX-FileCopyrightText: 2002-2023 PCSX2 Dev Team
// SPDX-License-Identifier: LGPL-3.0+
#pragma once
#include "common/Pcsx2Defs.h"
union GPRRegs {
struct {
u32 r0, at, v0, v1, a0, a1, a2, a3,
t0, t1, t2, t3, t4, t5, t6, t7,
s0, s1, s2, s3, s4, s5, s6, s7,
t8, t9, k0, k1, gp, sp, s8, ra, hi, lo; // hi needs to be at index 32! don't change
} n;
u32 r[34]; /* Lo, Hi in r[33] and r[32] */
};
union CP0Regs {
struct {
u32 Index, Random, EntryLo0, EntryLo1,
Context, PageMask, Wired, Reserved0,
BadVAddr, Count, EntryHi, Compare,
Status, Cause, EPC, PRid,
Config, LLAddr, WatchLO, WatchHI,
XContext, Reserved1, Reserved2, Reserved3,
Reserved4, Reserved5, ECC, CacheErr,
TagLo, TagHi, ErrorEPC, Reserved6;
} n;
u32 r[32];
};
struct SVector2D {
short x, y;
};
struct SVector2Dz {
short z, pad;
};
struct SVector3D {
short x, y, z, pad;
};
struct LVector3D {
short x, y, z, pad;
};
struct CBGR {
unsigned char r, g, b, c;
};
struct SMatrix3D {
short m11, m12, m13, m21, m22, m23, m31, m32, m33, pad;
};
union CP2Data {
struct {
SVector3D v0, v1, v2;
CBGR rgb;
s32 otz;
s32 ir0, ir1, ir2, ir3;
SVector2D sxy0, sxy1, sxy2, sxyp;
SVector2Dz sz0, sz1, sz2, sz3;
CBGR rgb0, rgb1, rgb2;
s32 reserved;
s32 mac0, mac1, mac2, mac3;
u32 irgb, orgb;
s32 lzcs, lzcr;
} n;
u32 r[32];
};
union CP2Ctrl {
struct {
SMatrix3D rMatrix;
s32 trX, trY, trZ;
SMatrix3D lMatrix;
s32 rbk, gbk, bbk;
SMatrix3D cMatrix;
s32 rfc, gfc, bfc;
s32 ofx, ofy;
s32 h;
s32 dqa, dqb;
s32 zsf3, zsf4;
s32 flag;
} n;
u32 r[32];
};
struct psxRegisters {
GPRRegs GPR; /* General Purpose Registers */
CP0Regs CP0; /* Coprocessor0 Registers */
CP2Data CP2D; /* Cop2 data registers */
CP2Ctrl CP2C; /* Cop2 control registers */
u32 pc; /* Program counter */
u32 code; /* The instruction */
u32 cycle;
u32 interrupt;
u32 pcWriteback;
// Controls when branch tests are performed.
u32 iopNextEventCycle;
// This value is used when the IOP execution is broken to return control to the EE.
// (which happens when the IOP throws EE-bound interrupts). It holds the value of
// iopCycleEE (which is set to zero to facilitate the code break), so that the unrun
// cycles can be accounted for later.
s32 iopBreak;
// Tracks current number of cycles IOP can run in EE cycles. When it dips below zero,
// control is returned to the EE.
s32 iopCycleEE;
u32 sCycle[32]; // start cycle for signaled ints
s32 eCycle[32]; // cycle delta for signaled ints (sCycle + eCycle == branch cycle)
//u32 _msflag[32];
//u32 _smflag[32];
};
alignas(16) extern psxRegisters psxRegs;
#ifndef _PC_
#define _i32(x) (s32)x //R3000A
#define _u32(x) (u32)x //R3000A
#define _i16(x) (s16)x // Not used
#define _u16(x) (u16)x // Not used
#define _i8(x) (s8)x // Not used
#define _u8(x) (u8)x //R3000A - once
/**** R3000A Instruction Macros ****/
#define _PC_ psxRegs.pc // The next PC to be executed
#define _Funct_ ((psxRegs.code ) & 0x3F) // The funct part of the instruction register
#define _Rd_ ((psxRegs.code >> 11) & 0x1F) // The rd part of the instruction register
#define _Rt_ ((psxRegs.code >> 16) & 0x1F) // The rt part of the instruction register
#define _Rs_ ((psxRegs.code >> 21) & 0x1F) // The rs part of the instruction register
#define _Sa_ ((psxRegs.code >> 6) & 0x1F) // The sa part of the instruction register
#define _Im_ ((u16)psxRegs.code) // The immediate part of the instruction register
#define _InstrucTarget_ (psxRegs.code & 0x03ffffff) // The target part of the instruction register
#define _Imm_ ((short)psxRegs.code) // sign-extended immediate
#define _ImmU_ (psxRegs.code&0xffff) // zero-extended immediate
#define _rRs_ psxRegs.GPR.r[_Rs_] // Rs register
#define _rRt_ psxRegs.GPR.r[_Rt_] // Rt register
#define _rRd_ psxRegs.GPR.r[_Rd_] // Rd register
#define _rSa_ psxRegs.GPR.r[_Sa_] // Sa register
#define _rFs_ psxRegs.CP0.r[_Rd_] // Fs register
#define _c2dRs_ psxRegs.CP2D.r[_Rs_] // Rs cop2 data register
#define _c2dRt_ psxRegs.CP2D.r[_Rt_] // Rt cop2 data register
#define _c2dRd_ psxRegs.CP2D.r[_Rd_] // Rd cop2 data register
#define _c2dSa_ psxRegs.CP2D.r[_Sa_] // Sa cop2 data register
#define _rHi_ psxRegs.GPR.n.hi // The HI register
#define _rLo_ psxRegs.GPR.n.lo // The LO register
#define _JumpTarget_ ((_InstrucTarget_ << 2) + (_PC_ & 0xf0000000)) // Calculates the target during a jump instruction
#define _BranchTarget_ (((s32)(s16)_Imm_ * 4) + _PC_) // Calculates the target during a branch instruction
#define _SetLink(x) psxRegs.GPR.r[x] = _PC_ + 4; // Sets the return address in the link register
extern s32 EEsCycle;
extern u32 EEoCycle;
#endif
extern s32 psxNextCounter;
extern u32 psxNextsCounter;
extern bool iopEventAction;
extern bool iopEventTestIsActive;
// Branching status used when throwing exceptions.
extern bool iopIsDelaySlot;
// --------------------------------------------------------------------------------------
// R3000Acpu
// --------------------------------------------------------------------------------------
struct R3000Acpu {
void (*Reserve)();
void (*Reset)();
s32 (*ExecuteBlock)( s32 eeCycles ); // executes the given number of EE cycles.
void (*Clear)(u32 Addr, u32 Size);
void (*Shutdown)();
};
extern R3000Acpu *psxCpu;
extern R3000Acpu psxInt;
extern R3000Acpu psxRec;
extern void psxReset();
extern void psxException(u32 code, u32 step);
extern void iopEventTest();
int psxIsBreakpointNeeded(u32 addr);
int psxIsMemcheckNeeded(u32 pc);
// Subsets
extern void (*psxBSC[64])();
extern void (*psxSPC[64])();
extern void (*psxREG[32])();
extern void (*psxCP0[32])();
extern void (*psxCP2[64])();
extern void (*psxCP2BSC[32])();
extern void psxBiosReset();
extern bool psxBiosCall();