pcsx2/plugins/GSdx_legacy/GSRendererOGL.cpp

1158 lines
34 KiB
C++

/*
* Copyright (C) 2011-2011 Gregory hainaut
* Copyright (C) 2007-2009 Gabest
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSRendererOGL.h"
#include "GSRenderer.h"
GSRendererOGL::GSRendererOGL()
: GSRendererHW(new GSTextureCacheOGL(this))
{
m_accurate_date = theApp.GetConfig("accurate_date", 0);
m_sw_blending = theApp.GetConfig("accurate_blending_unit", 1);
// Hope nothing requires too many draw calls.
m_drawlist.reserve(2048);
UserHacks_TCOffset = theApp.GetConfig("UserHacks_TCOffset", 0);
UserHacks_TCO_x = (UserHacks_TCOffset & 0xFFFF) / -1000.0f;
UserHacks_TCO_y = ((UserHacks_TCOffset >> 16) & 0xFFFF) / -1000.0f;
UserHacks_safe_fbmask = theApp.GetConfig("UserHacks_safe_fbmask", false);
m_prim_overlap = PRIM_OVERLAP_UNKNOW;
m_unsafe_fbmask = false;
if (!theApp.GetConfig("UserHacks", 0)) {
UserHacks_TCOffset = 0;
UserHacks_TCO_x = 0;
UserHacks_TCO_y = 0;
UserHacks_safe_fbmask = false;
}
}
bool GSRendererOGL::CreateDevice(GSDevice* dev)
{
if (!GSRenderer::CreateDevice(dev))
return false;
// No sw blending if not supported (Intel GPU)
if (!GLLoader::found_GL_ARB_texture_barrier) {
fprintf(stderr, "Error GL_ARB_texture_barrier is not supported by your driver. You can't emulate correctly the GS blending unit! Sorry!\n");
m_accurate_date = false;
m_sw_blending = 0;
}
return true;
}
void GSRendererOGL::EmulateGS()
{
if (m_vt.m_primclass != GS_SPRITE_CLASS) return;
// each sprite converted to quad needs twice the space
while(m_vertex.tail * 2 > m_vertex.maxcount)
{
GrowVertexBuffer();
}
// assume vertices are tightly packed and sequentially indexed (it should be the case)
if (m_vertex.next >= 2)
{
size_t count = m_vertex.next;
int i = (int)count * 2 - 4;
GSVertex* s = &m_vertex.buff[count - 2];
GSVertex* q = &m_vertex.buff[count * 2 - 4];
uint32* RESTRICT index = &m_index.buff[count * 3 - 6];
for(; i >= 0; i -= 4, s -= 2, q -= 4, index -= 6)
{
GSVertex v0 = s[0];
GSVertex v1 = s[1];
v0.RGBAQ = v1.RGBAQ;
v0.XYZ.Z = v1.XYZ.Z;
v0.FOG = v1.FOG;
q[0] = v0;
q[3] = v1;
// swap x, s, u
uint16 x = v0.XYZ.X;
v0.XYZ.X = v1.XYZ.X;
v1.XYZ.X = x;
float s = v0.ST.S;
v0.ST.S = v1.ST.S;
v1.ST.S = s;
uint16 u = v0.U;
v0.U = v1.U;
v1.U = u;
q[1] = v0;
q[2] = v1;
index[0] = i + 0;
index[1] = i + 1;
index[2] = i + 2;
index[3] = i + 1;
index[4] = i + 2;
index[5] = i + 3;
}
m_vertex.head = m_vertex.tail = m_vertex.next = count * 2;
m_index.tail = count * 3;
}
}
void GSRendererOGL::SetupIA()
{
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
if (!GLLoader::found_geometry_shader)
EmulateGS();
dev->IASetVertexBuffer(m_vertex.buff, m_vertex.next);
dev->IASetIndexBuffer(m_index.buff, m_index.tail);
GLenum t = 0;
switch(m_vt.m_primclass)
{
case GS_POINT_CLASS:
t = GL_POINTS;
break;
case GS_LINE_CLASS:
t = GL_LINES;
break;
case GS_SPRITE_CLASS:
if (GLLoader::found_geometry_shader)
t = GL_LINES;
else
t = GL_TRIANGLES;
break;
case GS_TRIANGLE_CLASS:
t = GL_TRIANGLES;
break;
default:
__assume(0);
}
dev->IASetPrimitiveTopology(t);
}
bool GSRendererOGL::EmulateTextureShuffleAndFbmask(GSDeviceOGL::PSSelector& ps_sel, GSDeviceOGL::OMColorMaskSelector& om_csel)
{
bool require_barrier = false;
if (m_texture_shuffle) {
ps_sel.shuffle = 1;
ps_sel.dfmt = 0;
const GIFRegXYOFFSET& o = m_context->XYOFFSET;
GSVertex* v = &m_vertex.buff[0];
size_t count = m_vertex.next;
// vertex position is 8 to 16 pixels, therefore it is the 16-31 bits of the colors
int pos = (v[0].XYZ.X - o.OFX) & 0xFF;
bool write_ba = (pos > 112 && pos < 136);
// Read texture is 8 to 16 pixels (same as above)
float tw = (float)(1u << m_context->TEX0.TW);
int tex_pos = (PRIM->FST) ? v[0].U : tw * v[0].ST.S;
tex_pos &= 0xFF;
ps_sel.read_ba = (tex_pos > 112 && tex_pos < 144);
// Convert the vertex info to a 32 bits color format equivalent
if (PRIM->FST) {
GL_INS("First vertex is P: %d => %d T: %d => %d", v[0].XYZ.X, v[1].XYZ.X, v[0].U, v[1].U);
for(size_t i = 0; i < count; i += 2) {
if (write_ba)
v[i].XYZ.X -= 128u;
else
v[i+1].XYZ.X += 128u;
if (ps_sel.read_ba)
v[i].U -= 128u;
else
v[i+1].U += 128u;
// Height is too big (2x).
int tex_offset = v[i].V & 0xF;
GSVector4i offset(o.OFY, tex_offset, o.OFY, tex_offset);
GSVector4i tmp(v[i].XYZ.Y, v[i].V, v[i+1].XYZ.Y, v[i+1].V);
tmp = GSVector4i(tmp - offset).srl32(1) + offset;
v[i].XYZ.Y = tmp.x;
v[i].V = tmp.y;
v[i+1].XYZ.Y = tmp.z;
v[i+1].V = tmp.w;
}
} else {
const float offset_8pix = 8.0f / tw;
GL_INS("First vertex is P: %d => %d T: %f => %f (offset %f)", v[0].XYZ.X, v[1].XYZ.X, v[0].ST.S, v[1].ST.S, offset_8pix);
for(size_t i = 0; i < count; i += 2) {
if (write_ba)
v[i].XYZ.X -= 128u;
else
v[i+1].XYZ.X += 128u;
if (ps_sel.read_ba)
v[i].ST.S -= offset_8pix;
else
v[i+1].ST.S += offset_8pix;
// Height is too big (2x).
GSVector4i offset(o.OFY, o.OFY);
GSVector4i tmp(v[i].XYZ.Y, v[i+1].XYZ.Y);
tmp = GSVector4i(tmp - offset).srl32(1) + offset;
//fprintf(stderr, "Before %d, After %d\n", v[i+1].XYZ.Y, tmp.y);
v[i].XYZ.Y = tmp.x;
v[i].ST.T /= 2.0f;
v[i+1].XYZ.Y = tmp.y;
v[i+1].ST.T /= 2.0f;
}
}
// If date is enabled you need to test the green channel instead of the
// alpha channel. Only enable this code in DATE mode to reduce the number
// of shader.
ps_sel.write_rg = !write_ba && m_context->TEST.DATE;
// Please bang my head against the wall!
// 1/ Reduce the frame mask to a 16 bit format
const uint32& m = m_context->FRAME.FBMSK;
uint32 fbmask = ((m >> 3) & 0x1F) | ((m >> 6) & 0x3E0) | ((m >> 9) & 0x7C00) | ((m >> 16) & 0x8000);
// FIXME GSVector will be nice here
uint8 rg_mask = fbmask & 0xFF;
uint8 ba_mask = (fbmask >> 8) & 0xFF;
om_csel.wrgba = 0;
// 2 Select the new mask (Please someone put SSE here)
if (rg_mask != 0xFF) {
if (write_ba) {
GL_INS("Color shuffle %s => B", ps_sel.read_ba ? "B" : "R");
om_csel.wb = 1;
} else {
GL_INS("Color shuffle %s => R", ps_sel.read_ba ? "B" : "R");
om_csel.wr = 1;
}
if (rg_mask)
ps_sel.fbmask = 1;
}
if (ba_mask != 0xFF) {
if (write_ba) {
GL_INS("Color shuffle %s => A", ps_sel.read_ba ? "A" : "G");
om_csel.wa = 1;
} else {
GL_INS("Color shuffle %s => G", ps_sel.read_ba ? "A" : "G");
om_csel.wg = 1;
}
if (ba_mask)
ps_sel.fbmask = 1;
}
if (ps_sel.fbmask && m_sw_blending) {
GL_INS("FBMASK SW emulated fb_mask:%x on tex shuffle", fbmask);
ps_cb.FbMask.r = rg_mask;
ps_cb.FbMask.g = rg_mask;
ps_cb.FbMask.b = ba_mask;
ps_cb.FbMask.a = ba_mask;
require_barrier = true;
} else {
ps_sel.fbmask = 0;
}
} else {
ps_sel.dfmt = GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt;
GSVector4i fbmask_v = GSVector4i::load((int)m_context->FRAME.FBMSK);
int ff_fbmask = fbmask_v.eq8(GSVector4i::xffffffff()).mask();
int zero_fbmask = fbmask_v.eq8(GSVector4i::zero()).mask();
om_csel.wrgba = ~ff_fbmask; // Enable channel if at least 1 bit is 0
ps_sel.fbmask = m_sw_blending && (~ff_fbmask & ~zero_fbmask & 0xF);
if (ps_sel.fbmask) {
ps_cb.FbMask = fbmask_v.u8to32();
// Only alpha is special here, I think we can take a very unsafe shortcut
// Alpha isn't blended on the GS but directly copyied into the RT.
//
// Behavior is clearly undefined however there is a high probability that
// it will work. Masked bit will be constant and normally the same everywhere
// RT/FS output/Cached value.
//
// Just to be sure let's add a new safe hack for unsafe access :)
//
// Here the GL spec quote to emphasize the unexpected behavior.
/*
- If a texel has been written, then in order to safely read the result
a texel fetch must be in a subsequent Draw separated by the command
void TextureBarrier(void);
TextureBarrier() will guarantee that writes have completed and caches
have been invalidated before subsequent Draws are executed.
*/
if (!(~ff_fbmask & ~zero_fbmask & 0x7) && !UserHacks_safe_fbmask) {
GL_INS("FBMASK Unsafe SW emulated fb_mask:%x on %d bits format", m_context->FRAME.FBMSK,
(GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt == 2) ? 16 : 32);
m_unsafe_fbmask = true;
require_barrier = false;
} else {
// The safe and accurate path (but slow)
GL_INS("FBMASK SW emulated fb_mask:%x on %d bits format", m_context->FRAME.FBMSK,
(GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt == 2) ? 16 : 32);
require_barrier = true;
}
}
}
return require_barrier;
}
bool GSRendererOGL::EmulateBlending(GSDeviceOGL::PSSelector& ps_sel, bool DATE_GL42)
{
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
const GIFRegALPHA& ALPHA = m_context->ALPHA;
bool require_barrier = false;
bool sw_blending = false;
// No blending so early exit
if (!(PRIM->ABE || PRIM->AA1 && m_vt.m_primclass == GS_LINE_CLASS)) {
#ifdef ENABLE_OGL_DEBUG
if (m_env.PABE.PABE) {
GL_INS("!!! ENV PABE without ABE !!!");
}
#endif
dev->OMSetBlendState();
return false;
}
if (m_env.PABE.PABE)
{
GL_INS("!!! ENV PABE not supported !!!");
if (m_sw_blending >= ACC_BLEND_CCLIP_DALPHA) {
ps_sel.pabe = 1;
require_barrier |= (ALPHA.C == 1);
sw_blending = true;
}
//Breath of Fire Dragon Quarter triggers this in battles. Graphics are fine though.
//ASSERT(0);
}
// Compute the blending equation to detect special case
uint8 blend_index = ((ALPHA.A * 3 + ALPHA.B) * 3 + ALPHA.C) * 3 + ALPHA.D;
int blend_flag = GSDeviceOGL::m_blendMapOGL[blend_index].bogus;
// SW Blend is (nearly) free. Let's use it.
bool impossible_or_free_blend = (blend_flag & (BLEND_NO_BAR|BLEND_A_MAX|BLEND_ACCU))
|| (m_prim_overlap == PRIM_OVERLAP_NO);
// Do the multiplication in shader for blending accumulation: Cs*As + Cd or Cs*Af + Cd
bool accumulation_blend = (blend_flag & BLEND_ACCU);
// Warning no break on purpose
switch (m_sw_blending) {
case ACC_BLEND_ULTRA: sw_blending |= true;
case ACC_BLEND_FULL: if (!m_vt.m_alpha.valid && (ALPHA.C == 0)) GetAlphaMinMax();
sw_blending |= (ALPHA.A != ALPHA.B) &&
((ALPHA.C == 0 && m_vt.m_alpha.max > 128) || (ALPHA.C == 2 && ALPHA.FIX > 128u));
case ACC_BLEND_CCLIP_DALPHA: sw_blending |= (ALPHA.C == 1) || (m_env.COLCLAMP.CLAMP == 0);
// Initial idea was to enable accurate blending for sprite rendering to handle
// correctly post-processing effect. Some games (ZoE) use tons of sprites as particles.
// In order to keep it fast, let's limit it to smaller draw call.
case ACC_BLEND_SPRITE: sw_blending |= m_vt.m_primclass == GS_SPRITE_CLASS && m_drawlist.size() < 100;
case ACC_BLEND_FREE: sw_blending |= (ps_sel.fbmask && !m_unsafe_fbmask) || impossible_or_free_blend; // blending is only free when we use slow fbmask
default: sw_blending |= accumulation_blend;
}
// SW Blending
// GL42 interact very badly with sw blending. GL42 uses the primitiveID to find the primitive
// that write the bad alpha value. Sw blending will force the draw to run primitive by primitive
// (therefore primitiveID will be constant to 1)
sw_blending &= !DATE_GL42;
// Color clip
if (m_env.COLCLAMP.CLAMP == 0) {
if (m_prim_overlap == PRIM_OVERLAP_NO) {
// The fastest algo that requires a single pass
GL_INS("COLCLIP Free mode ENABLED");
ps_sel.colclip = 1;
ASSERT(sw_blending);
accumulation_blend = false; // disable the HDR algo
} else if (accumulation_blend) {
// A fast algo that requires 2 passes
GL_INS("COLCLIP Fast HDR mode ENABLED");
ps_sel.hdr = 1;
} else if (sw_blending) {
// A slow algo that could requires several passes (barely used)
GL_INS("COLCLIP SW ENABLED (blending is %d/%d/%d/%d)", ALPHA.A, ALPHA.B, ALPHA.C, ALPHA.D);
ps_sel.colclip = 1;
} else {
// Speed hack skip previous slow algo
GL_INS("Sorry colclip isn't supported");
}
}
// Seriously don't expect me to support this kind of crazyness.
// No mix of COLCLIP + accumulation_blend + DATE GL42
// Neither fbmask and GL42
ASSERT(!(ps_sel.hdr && DATE_GL42));
ASSERT(!(ps_sel.fbmask && DATE_GL42));
// For stat to optimize accurate option
#if 0
GL_INS("BLEND_INFO: %d/%d/%d/%d. Clamp:%d. Prim:%d number %d (sw %d)",
ALPHA.A, ALPHA.B, ALPHA.C, ALPHA.D, m_env.COLCLAMP.CLAMP, m_vt.m_primclass, m_vertex.next, sw_blending);
#endif
if (sw_blending) {
ps_sel.blend_a = ALPHA.A;
ps_sel.blend_b = ALPHA.B;
ps_sel.blend_c = ALPHA.C;
ps_sel.blend_d = ALPHA.D;
if (accumulation_blend) {
// Keep HW blending to do the addition/subtraction
dev->OMSetBlendState(blend_index);
if (ALPHA.A == 2) {
// The blend unit does a reverse subtraction so it means
// the shader must output a positive value.
// Replace 0 - Cs by Cs - 0
ps_sel.blend_a = ALPHA.B;
ps_sel.blend_b = 2;
}
// Remove the addition/substraction from the SW blending
ps_sel.blend_d = 2;
} else {
// Disable HW blending
dev->OMSetBlendState();
}
// Require the fix alpha vlaue
if (ALPHA.C == 2) {
ps_cb.TA_Af.a = (float)ALPHA.FIX / 128.0f;
}
// No need to flush for every primitive
require_barrier |= !(blend_flag & BLEND_NO_BAR) && !accumulation_blend;
} else {
ps_sel.clr1 = !!(blend_flag & BLEND_C_CLR);
if (ps_sel.dfmt == 1 && ALPHA.C == 1) {
// 24 bits doesn't have an alpha channel so use 1.0f fix factor as equivalent
int hacked_blend_index = blend_index + 3; // +3 <=> +1 on C
dev->OMSetBlendState(hacked_blend_index, 128, true);
} else {
dev->OMSetBlendState(blend_index, ALPHA.FIX, (ALPHA.C == 2));
}
}
return require_barrier;
}
GSRendererOGL::PRIM_OVERLAP GSRendererOGL::PrimitiveOverlap()
{
// Either 1 triangle or 1 line or 3 POINTs
// It is bad for the POINTs but low probability that they overlap
if (m_vertex.next < 4)
return PRIM_OVERLAP_NO;
if (m_vt.m_primclass != GS_SPRITE_CLASS)
return PRIM_OVERLAP_UNKNOW; // maybe, maybe not
// Check intersection of sprite primitive only
size_t count = m_vertex.next;
PRIM_OVERLAP overlap = PRIM_OVERLAP_NO;
GSVertex* v = m_vertex.buff;
m_drawlist.clear();
size_t i = 0;
while (i < count) {
// In order to speed up comparison a bounding-box is accumulated. It removes a
// loop so code is much faster (check game virtua fighter). Besides it allow to check
// properly the Y order.
// .x = min(v[i].XYZ.X, v[i+1].XYZ.X)
// .y = min(v[i].XYZ.Y, v[i+1].XYZ.Y)
// .z = max(v[i].XYZ.X, v[i+1].XYZ.X)
// .w = max(v[i].XYZ.Y, v[i+1].XYZ.Y)
GSVector4i all = GSVector4i(v[i].m[1]).upl16(GSVector4i(v[i+1].m[1])).upl16().xzyw();
all = all.xyxy().blend(all.zwzw(), all > all.zwxy());
size_t j = i + 2;
while (j < count) {
GSVector4i sprite = GSVector4i(v[j].m[1]).upl16(GSVector4i(v[j+1].m[1])).upl16().xzyw();
sprite = sprite.xyxy().blend(sprite.zwzw(), sprite > sprite.zwxy());
// Be sure to get vertex in good order, otherwise .r* function doesn't
// work as expected.
ASSERT(sprite.x <= sprite.z);
ASSERT(sprite.y <= sprite.w);
ASSERT(all.x <= all.z);
ASSERT(all.y <= all.w);
if (all.rintersect(sprite).rempty()) {
all = all.runion_ordered(sprite);
} else {
overlap = PRIM_OVERLAP_YES;
break;
}
j += 2;
}
m_drawlist.push_back((j - i) >> 1); // Sprite count
i = j;
}
#if 0
// Old algo: less constraint but O(n^2) instead of O(n) as above
// You have no guarantee on the sprite order, first vertex can be either top-left or bottom-left
// There is a high probability that the draw call will uses same ordering for all vertices.
// In order to keep a small performance impact only the first sprite will be checked
//
// Some safe-guard will be added in the outer-loop to avoid corruption with a limited perf impact
if (v[1].XYZ.Y < v[0].XYZ.Y) {
// First vertex is Top-Left
for(size_t i = 0; i < count; i += 2) {
if (v[i+1].XYZ.Y > v[i].XYZ.Y) {
return PRIM_OVERLAP_UNKNOW;
}
GSVector4i vi(v[i].XYZ.X, v[i+1].XYZ.Y, v[i+1].XYZ.X, v[i].XYZ.Y);
for (size_t j = i+2; j < count; j += 2) {
GSVector4i vj(v[j].XYZ.X, v[j+1].XYZ.Y, v[j+1].XYZ.X, v[j].XYZ.Y);
GSVector4i inter = vi.rintersect(vj);
if (!inter.rempty()) {
return PRIM_OVERLAP_YES;
}
}
}
} else {
// First vertex is Bottom-Left
for(size_t i = 0; i < count; i += 2) {
if (v[i+1].XYZ.Y < v[i].XYZ.Y) {
return PRIM_OVERLAP_UNKNOW;
}
GSVector4i vi(v[i].XYZ.X, v[i].XYZ.Y, v[i+1].XYZ.X, v[i+1].XYZ.Y);
for (size_t j = i+2; j < count; j += 2) {
GSVector4i vj(v[j].XYZ.X, v[j].XYZ.Y, v[j+1].XYZ.X, v[j+1].XYZ.Y);
GSVector4i inter = vi.rintersect(vj);
if (!inter.rempty()) {
return PRIM_OVERLAP_YES;
}
}
}
}
#endif
//fprintf(stderr, "%d: Yes, code can be optimized (draw of %d vertices)\n", s_n, count);
return overlap;
}
GSVector4i GSRendererOGL::ComputeBoundingBox(const GSVector2& rtscale, const GSVector2i& rtsize)
{
GSVector4 scale = GSVector4(rtscale.x, rtscale.y);
GSVector4 offset = GSVector4(-1.0f, 1.0f); // Round value
GSVector4 box = m_vt.m_min.p.xyxy(m_vt.m_max.p) + offset.xxyy();
return GSVector4i(box * scale.xyxy()).rintersect(GSVector4i(0, 0, rtsize.x, rtsize.y));
}
void GSRendererOGL::SendDraw(bool require_barrier)
{
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
if (!require_barrier && m_unsafe_fbmask) {
// Not safe but still worth to take some precautions.
ASSERT(GLLoader::found_GL_ARB_texture_barrier);
glTextureBarrier();
dev->DrawIndexedPrimitive();
} else if (!require_barrier) {
dev->DrawIndexedPrimitive();
} else if (m_prim_overlap == PRIM_OVERLAP_NO) {
ASSERT(GLLoader::found_GL_ARB_texture_barrier);
glTextureBarrier();
dev->DrawIndexedPrimitive();
} else if (m_vt.m_primclass == GS_SPRITE_CLASS) {
size_t nb_vertex = (GLLoader::found_geometry_shader) ? 2 : 6;
GL_PUSH("Split the draw (SPRITE)");
#if defined(_DEBUG)
// Check how draw call is split.
map<size_t, size_t> frequency;
for (const auto& it: m_drawlist)
++frequency[it];
string message;
for (const auto& it: frequency)
message += " " + to_string(it.first) + "(" + to_string(it.second) + ")";
GL_PERF("Split single draw (%d sprites) into %zu draws: consecutive draws(frequency):%s",
m_index.tail / nb_vertex, m_drawlist.size(), message.c_str());
#endif
for (size_t count, p = 0, n = 0; n < m_drawlist.size(); p += count, ++n) {
count = m_drawlist[n] * nb_vertex;
glTextureBarrier();
dev->DrawIndexedPrimitive(p, count);
}
GL_POP();
} else {
// FIXME: Investigate: a dynamic check to pack as many primitives as possibles
// I'm nearly sure GSdx already have this kind of code (maybe we can adapt GSDirtyRect)
size_t nb_vertex;
switch (m_vt.m_primclass) {
case GS_TRIANGLE_CLASS: nb_vertex = 3; break;
case GS_POINT_CLASS: nb_vertex = 1; break;
default: nb_vertex = 2; break;
}
GL_PUSH("Split the draw");
GL_PERF("Split single draw in %d draw", m_index.tail/nb_vertex);
for (size_t p = 0; p < m_index.tail; p += nb_vertex) {
glTextureBarrier();
dev->DrawIndexedPrimitive(p, nb_vertex);
}
GL_POP();
}
}
void GSRendererOGL::DrawPrims(GSTexture* rt, GSTexture* ds, GSTextureCache::Source* tex)
{
GSDeviceOGL::VSSelector vs_sel;
GSDeviceOGL::GSSelector gs_sel;
GSDeviceOGL::PSSelector ps_sel;
GSDeviceOGL::PSSamplerSelector ps_ssel;
GSDeviceOGL::OMColorMaskSelector om_csel;
GSDeviceOGL::OMDepthStencilSelector om_dssel;
GL_PUSH("GL Draw from %d in %d (Depth %d)",
tex && tex->m_texture ? tex->m_texture->GetID() : 0,
rt ? rt->GetID() : -1, ds ? ds->GetID() : -1);
GSTexture* hdr_rt = NULL;
const GSVector2i& rtsize = ds ? ds->GetSize() : rt->GetSize();
const GSVector2& rtscale = ds ? ds->GetScale() : rt->GetScale();
bool DATE = m_context->TEST.DATE && m_context->FRAME.PSM != PSM_PSMCT24;
bool DATE_GL42 = false;
bool DATE_GL45 = false;
bool require_barrier = false; // For accurate option
m_unsafe_fbmask = false;
ASSERT(m_dev != NULL);
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
dev->s_n = s_n;
if ((DATE || m_sw_blending) && GLLoader::found_GL_ARB_texture_barrier && (m_vt.m_primclass == GS_SPRITE_CLASS)) {
// Except 2D games, sprites are often use for special post-processing effect
m_prim_overlap = PrimitiveOverlap();
} else {
m_prim_overlap = PRIM_OVERLAP_UNKNOW;
}
#ifdef ENABLE_OGL_DEBUG
if (m_sw_blending && (m_prim_overlap != PRIM_OVERLAP_NO) && (m_context->FRAME.Block() == m_context->TEX0.TBP0) && (m_vertex.next > 2)) {
GL_INS("ERROR: Source and Target are the same!");
}
#endif
require_barrier |= EmulateTextureShuffleAndFbmask(ps_sel, om_csel);
// DATE: selection of the algorithm. Must be done before blending because GL42 is not compatible with blending
if (DATE && GLLoader::found_GL_ARB_texture_barrier) {
if (m_prim_overlap == PRIM_OVERLAP_NO || m_texture_shuffle) {
// It is way too complex to emulate texture shuffle with DATE. So just use
// the slow but accurate algo
require_barrier = true;
DATE_GL45 = true;
DATE = false;
} else if (m_accurate_date && om_csel.wa /* FIXME Check the msb bit of the mask instead + the dfmt*/
&& (!m_context->TEST.ATE || m_context->TEST.ATST == ATST_ALWAYS)) {
// texture barrier will split the draw call into n draw call. It is very efficient for
// few primitive draws. Otherwise it sucks.
if (m_index.tail < 100) {
require_barrier = true;
DATE_GL45 = true;
DATE = false;
} else {
DATE_GL42 = GLLoader::found_GL_ARB_shader_image_load_store;
}
}
}
// Blend
if (!IsOpaque() && rt) {
require_barrier |= EmulateBlending(ps_sel, DATE_GL42);
} else {
dev->OMSetBlendState(); // No blending please
}
if (ps_sel.dfmt == 1) {
// Disable writing of the alpha channel
om_csel.wa = 0;
}
// DATE (setup part)
if (DATE) {
GSVector4i dRect = ComputeBoundingBox(rtscale, rtsize);
// Reduce the quantity of clean function
glScissor( dRect.x, dRect.y, dRect.width(), dRect.height() );
GLState::scissor = dRect;
// Must be done here to avoid any GL state pertubation (clear function...)
// Create an r32ui image that will containt primitive ID
if (DATE_GL42) {
dev->InitPrimDateTexture(rt);
} else {
GSVector4 src = GSVector4(dRect) / GSVector4(rtsize.x, rtsize.y).xyxy();
GSVector4 dst = src * 2.0f - 1.0f;
GSVertexPT1 vertices[] =
{
{GSVector4(dst.x, dst.y, 0.0f, 0.0f), GSVector2(src.x, src.y)},
{GSVector4(dst.z, dst.y, 0.0f, 0.0f), GSVector2(src.z, src.y)},
{GSVector4(dst.x, dst.w, 0.0f, 0.0f), GSVector2(src.x, src.w)},
{GSVector4(dst.z, dst.w, 0.0f, 0.0f), GSVector2(src.z, src.w)},
};
dev->SetupDATE(rt, ds, vertices, m_context->TEST.DATM);
}
}
//
dev->BeginScene();
// om
if (m_context->TEST.ZTE)
{
om_dssel.ztst = m_context->TEST.ZTST;
om_dssel.zwe = !m_context->ZBUF.ZMSK;
}
else
{
om_dssel.ztst = ZTST_ALWAYS;
}
// vs
vs_sel.wildhack = (UserHacks_WildHack && !isPackedUV_HackFlag) ? 1 : 0;
// The real GS appears to do no masking based on the Z buffer format and writing larger Z values
// than the buffer supports seems to be an error condition on the real GS, causing it to crash.
// We are probably receiving bad coordinates from VU1 in these cases.
if (om_dssel.ztst >= ZTST_ALWAYS && om_dssel.zwe)
{
if (m_context->ZBUF.PSM == PSM_PSMZ24)
{
if (m_vt.m_max.p.z > 0xffffff)
{
ASSERT(m_vt.m_min.p.z > 0xffffff);
// Fixme :Following conditional fixes some dialog frame in Wild Arms 3, but may not be what was intended.
if (m_vt.m_min.p.z > 0xffffff)
{
GL_INS("Bad Z size on 24 bits buffers")
vs_sel.bppz = 1;
om_dssel.ztst = ZTST_ALWAYS;
}
}
}
else if (m_context->ZBUF.PSM == PSM_PSMZ16 || m_context->ZBUF.PSM == PSM_PSMZ16S)
{
if (m_vt.m_max.p.z > 0xffff)
{
ASSERT(m_vt.m_min.p.z > 0xffff); // sfex capcom logo
// Fixme : Same as above, I guess.
if (m_vt.m_min.p.z > 0xffff)
{
GL_INS("Bad Z size on 16 bits buffers")
vs_sel.bppz = 2;
om_dssel.ztst = ZTST_ALWAYS;
}
}
}
}
// FIXME Opengl support half pixel center (as dx10). Code could be easier!!!
float sx = 2.0f * rtscale.x / (rtsize.x << 4);
float sy = 2.0f * rtscale.y / (rtsize.y << 4);
float ox = (float)(int)m_context->XYOFFSET.OFX;
float oy = (float)(int)m_context->XYOFFSET.OFY;
float ox2 = -1.0f / rtsize.x;
float oy2 = -1.0f / rtsize.y;
//This hack subtracts around half a pixel from OFX and OFY. (Cannot do this directly,
//because DX10 and DX9 have a different pixel center.)
//
//The resulting shifted output aligns better with common blending / corona / blurring effects,
//but introduces a few bad pixels on the edges.
if (rt && rt->LikelyOffset)
{
ox2 *= rt->OffsetHack_modx;
oy2 *= rt->OffsetHack_mody;
}
// Note: DX does y *= -1.0
vs_cb.Vertex_Scale_Offset = GSVector4(sx, sy, ox * sx + ox2 + 1, oy * sy + oy2 + 1);
// END of FIXME
// GS_SPRITE_CLASS are already flat (either by CPU or the GS)
ps_sel.iip = (m_vt.m_primclass == GS_SPRITE_CLASS) ? 1 : PRIM->IIP;
if (DATE_GL45) {
ps_sel.date = 5 + m_context->TEST.DATM;
} else if (DATE) {
if (DATE_GL42)
ps_sel.date = 1 + m_context->TEST.DATM;
else
om_dssel.date = 1;
}
ps_sel.fba = m_context->FBA.FBA;
if (PRIM->FGE)
{
ps_sel.fog = 1;
GSVector4 fc = GSVector4::rgba32(m_env.FOGCOL.u32[0]);
#if _M_SSE >= 0x401
// Blend AREF to avoid to load a random value for alpha (dirty cache)
ps_cb.FogColor_AREF = fc.blend32<8>(ps_cb.FogColor_AREF);
#else
ps_cb.FogColor_AREF = fc;
#endif
}
if (m_context->TEST.ATE)
ps_sel.atst = m_context->TEST.ATST;
else
ps_sel.atst = ATST_ALWAYS;
if (m_context->TEST.ATE && m_context->TEST.ATST > 1)
ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF;
// By default don't use texture
ps_sel.tfx = 4;
bool spritehack = false;
int atst = ps_sel.atst;
if (tex)
{
const GSLocalMemory::psm_t &psm = GSLocalMemory::m_psm[m_context->TEX0.PSM];
const GSLocalMemory::psm_t &cpsm = psm.pal > 0 ? GSLocalMemory::m_psm[m_context->TEX0.CPSM] : psm;
bool bilinear = m_filter == 2 ? m_vt.IsLinear() : m_filter != 0;
bool simple_sample = !tex->m_palette && cpsm.fmt == 0 && m_context->CLAMP.WMS < 2 && m_context->CLAMP.WMT < 2;
// Don't force extra filtering on sprite (it creates various upscaling issue)
bilinear &= !((m_vt.m_primclass == GS_SPRITE_CLASS) && m_userhacks_round_sprite_offset && !m_vt.IsLinear());
ps_sel.wms = m_context->CLAMP.WMS;
ps_sel.wmt = m_context->CLAMP.WMT;
// Performance note:
// 1/ Don't set 0 as it is the default value
// 2/ Only keep aem when it is useful (avoid useless shader permutation)
if (ps_sel.shuffle) {
// Force a 32 bits access (normally shuffle is done on 16 bits)
// ps_sel.tex_fmt = 0; // removed as an optimization
ps_sel.aem = m_env.TEXA.AEM;
ASSERT(tex->m_target);
// Shuffle is a 16 bits format, so aem is always required
GSVector4 ta(m_env.TEXA & GSVector4i::x000000ff());
ta /= 255.0f;
// FIXME rely on compiler for the optimization
ps_cb.TA_Af.x = ta.x;
ps_cb.TA_Af.y = ta.y;
// FIXME: it is likely a bad idea to do the bilinear interpolation here
// bilinear &= m_vt.IsLinear();
} else if (tex->m_target) {
// Use an old target. AEM and index aren't resolved it must be done
// on the GPU
// Select the 32/24/16 bits color (AEM)
ps_sel.tex_fmt = cpsm.fmt;
ps_sel.aem = m_env.TEXA.AEM;
// Don't upload AEM if format is 32 bits
if (cpsm.fmt) {
GSVector4 ta(m_env.TEXA & GSVector4i::x000000ff());
ta /= 255.0f;
// FIXME rely on compiler for the optimization
ps_cb.TA_Af.x = ta.x;
ps_cb.TA_Af.y = ta.y;
}
// Select the index format
if (tex->m_palette) {
// FIXME Potentially improve fmt field in GSLocalMemory
if (m_context->TEX0.PSM == PSM_PSMT4HL)
ps_sel.tex_fmt |= 1 << 2;
else if (m_context->TEX0.PSM == PSM_PSMT4HH)
ps_sel.tex_fmt |= 2 << 2;
else
ps_sel.tex_fmt |= 3 << 2;
// Alpha channel of the RT is reinterpreted as an index. Star
// Ocean 3 uses it to emulate a stencil buffer. It is a very
// bad idea to force bilinear filtering on it.
bilinear &= m_vt.IsLinear();
}
} else if (tex->m_palette) {
// Use a standard 8 bits texture. AEM is already done on the CLUT
// Therefore you only need to set the index
// ps_sel.aem = 0; // removed as an optimization
// Note 4 bits indexes are converted to 8 bits
ps_sel.tex_fmt = 3 << 2;
} else {
// Standard texture. Both index and AEM expansion were already done by the CPU.
// ps_sel.tex_fmt = 0; // removed as an optimization
// ps_sel.aem = 0; // removed as an optimization
}
if (m_context->TEX0.TFX == TFX_MODULATE && m_vt.m_eq.rgba == 0xFFFF && m_vt.m_min.c.eq(GSVector4i(128))) {
// Micro optimization that reduces GPU load (removes 5 instructions on the FS program)
ps_sel.tfx = TFX_DECAL;
} else {
ps_sel.tfx = m_context->TEX0.TFX;
}
ps_sel.tcc = m_context->TEX0.TCC;
ps_sel.ltf = bilinear && !simple_sample;
spritehack = tex->m_spritehack_t;
int w = tex->m_texture->GetWidth();
int h = tex->m_texture->GetHeight();
int tw = (int)(1 << m_context->TEX0.TW);
int th = (int)(1 << m_context->TEX0.TH);
GSVector4 WH(tw, th, w, h);
ps_sel.fst = !!PRIM->FST;
ps_cb.WH = WH;
ps_cb.HalfTexel = GSVector4(-0.5f, 0.5f).xxyy() / WH.zwzw();
if ((m_context->CLAMP.WMS | m_context->CLAMP.WMT) > 1) {
ps_cb.MskFix = GSVector4i(m_context->CLAMP.MINU, m_context->CLAMP.MINV, m_context->CLAMP.MAXU, m_context->CLAMP.MAXV);
ps_cb.MinMax = GSVector4(ps_cb.MskFix) / WH.xyxy();
}
// TC Offset Hack
ps_sel.tcoffsethack = !!UserHacks_TCOffset;
ps_cb.TC_OH_TS = GSVector4(1/16.0f, 1/16.0f, UserHacks_TCO_x, UserHacks_TCO_y) / WH.xyxy();
// Only enable clamping in CLAMP mode. REGION_CLAMP will be done manually in the shader
ps_ssel.tau = (m_context->CLAMP.WMS != CLAMP_CLAMP);
ps_ssel.tav = (m_context->CLAMP.WMT != CLAMP_CLAMP);
ps_ssel.ltf = bilinear && simple_sample;
ps_ssel.aniso = simple_sample;
// Setup Texture ressources
dev->SetupSampler(ps_ssel);
dev->PSSetShaderResources(tex->m_texture, tex->m_palette);
if (spritehack && (ps_sel.atst == 2)) {
ps_sel.atst = 1;
}
} else {
#ifdef ENABLE_OGL_DEBUG
// Unattach texture to avoid noise in debugger
dev->PSSetShaderResources(NULL, NULL);
#endif
}
// Always bind the RT. This way special effect can use it.
dev->PSSetShaderResource(3, rt);
// GS
#if 0
if (m_vt.m_primclass == GS_POINT_CLASS) {
// Upscaling point will create aliasing because point has a size of 0 pixels.
// This code tries to replace point with sprite. So a point in 4x will be replaced by
// a 4x4 sprite.
gs_sel.point = 1;
// FIXME this formula is potentially wrong
GSVector4 point_size = GSVector4(rtscale.x / rtsize.x, rtscale.y / rtsize.y) * 2.0f;
vs_cb.TextureScale = vs_cb.TextureScale.xyxy(point_size);
}
#endif
gs_sel.sprite = m_vt.m_primclass == GS_SPRITE_CLASS;
dev->SetupVS(vs_sel);
dev->SetupGS(gs_sel);
dev->SetupPS(ps_sel);
// rs
GSVector4i scissor = GSVector4i(GSVector4(rtscale).xyxy() * m_context->scissor.in).rintersect(GSVector4i(rtsize).zwxy());
GL_PUSH("IA");
SetupIA();
GL_POP();
dev->OMSetColorMaskState(om_csel);
dev->SetupOM(om_dssel);
dev->SetupCB(&vs_cb, &ps_cb);
if (DATE_GL42) {
GL_PUSH("Date GL42");
// It could be good idea to use stencil in the same time.
// Early stencil test will reduce the number of atomic-load operation
// Create an r32i image that will contain primitive ID
// Note: do it at the beginning because the clean will dirty the FBO state
//dev->InitPrimDateTexture(rtsize.x, rtsize.y);
// I don't know how much is it legal to mount rt as Texture/RT. No write is done.
// In doubt let's detach RT.
dev->OMSetRenderTargets(NULL, ds, &scissor);
// Don't write anything on the color buffer
// Neither in the depth buffer
glDepthMask(false);
// Compute primitiveID max that pass the date test
SendDraw(false);
// Ask PS to discard shader above the primitiveID max
glDepthMask(GLState::depth_mask);
ps_sel.date = 3;
dev->SetupPS(ps_sel);
// Be sure that first pass is finished !
dev->Barrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
GL_POP();
}
if (ps_sel.hdr) {
hdr_rt = dev->CreateTexture(rtsize.x, rtsize.y, GL_RGBA32F);
dev->CopyRectConv(rt, hdr_rt, ComputeBoundingBox(rtscale, rtsize), false);
dev->OMSetRenderTargets(hdr_rt, ds, &scissor);
} else {
dev->OMSetRenderTargets(rt, ds, &scissor);
}
if (m_context->TEST.DoFirstPass())
{
SendDraw(require_barrier);
}
if (m_context->TEST.DoSecondPass())
{
ASSERT(!m_env.PABE.PABE);
static const uint32 iatst[] = {1, 0, 5, 6, 7, 2, 3, 4};
ps_sel.atst = iatst[atst];
if (spritehack && (ps_sel.atst == 2)) {
ps_sel.atst = 1;
}
dev->SetupPS(ps_sel);
bool z = om_dssel.zwe;
bool r = om_csel.wr;
bool g = om_csel.wg;
bool b = om_csel.wb;
bool a = om_csel.wa;
switch(m_context->TEST.AFAIL)
{
case AFAIL_KEEP: z = r = g = b = a = false; break; // none
case AFAIL_FB_ONLY: z = false; break; // rgba
case AFAIL_ZB_ONLY: r = g = b = a = false; break; // z
case AFAIL_RGB_ONLY: z = a = false; break; // rgb
default: __assume(0);
}
if (z || r || g || b || a)
{
om_dssel.zwe = z;
om_csel.wr = r;
om_csel.wg = g;
om_csel.wb = b;
om_csel.wa = a;
dev->OMSetColorMaskState(om_csel);
dev->SetupOM(om_dssel);
SendDraw(require_barrier);
}
}
if (DATE_GL42) {
dev->RecycleDateTexture();
}
dev->EndScene();
// Warning: EndScene must be called before StretchRect otherwise
// vertices will be overwritten. Trust me you don't want to do that.
if (hdr_rt) {
GSVector4 dRect(ComputeBoundingBox(rtscale, rtsize));
GSVector4 sRect = dRect / GSVector4(rtsize.x, rtsize.y).xyxy();
dev->StretchRect(hdr_rt, sRect, rt, dRect, ShaderConvert_MOD_256, false);
dev->Recycle(hdr_rt);
}
GL_POP();
}