pcsx2/pcsx2/SaveState.cpp

1173 lines
33 KiB
C++

// SPDX-FileCopyrightText: 2002-2023 PCSX2 Dev Team
// SPDX-License-Identifier: LGPL-3.0+
#include "Achievements.h"
#include "CDVD/CDVD.h"
#include "COP0.h"
#include "Cache.h"
#include "Config.h"
#include "Counters.h"
#include "DebugTools/Breakpoints.h"
#include "Elfheader.h"
#include "GS.h"
#include "GS/GS.h"
#include "Host.h"
#include "MTGS.h"
#include "MTVU.h"
#include "SIO/Pad/Pad.h"
#include "Patch.h"
#include "R3000A.h"
#include "SIO/Sio0.h"
#include "SIO/Sio2.h"
#include "SIO/Multitap/MultitapProtocol.h"
#include "SPU2/spu2.h"
#include "SaveState.h"
#include "StateWrapper.h"
#include "USB/USB.h"
#include "VMManager.h"
#include "VUmicro.h"
#include "ps2/BiosTools.h"
#include "svnrev.h"
#include "common/Error.h"
#include "common/FileSystem.h"
#include "common/Path.h"
#include "common/ScopedGuard.h"
#include "common/StringUtil.h"
#include "common/ZipHelpers.h"
#include "fmt/core.h"
#include <csetjmp>
#include <png.h>
using namespace R5900;
static tlbs s_tlb_backup[std::size(tlb)];
static void PreLoadPrep()
{
// ensure everything is in sync before we start overwriting stuff.
if (THREAD_VU1)
vu1Thread.WaitVU();
MTGS::WaitGS(false);
// backup current TLBs, since we're going to overwrite them all
std::memcpy(s_tlb_backup, tlb, sizeof(s_tlb_backup));
// clear protected pages, since we don't want to fault loading EE memory
mmap_ResetBlockTracking();
VMManager::Internal::ClearCPUExecutionCaches();
}
static void PostLoadPrep()
{
resetCache();
// WriteCP0Status(cpuRegs.CP0.n.Status.val);
for (int i = 0; i < 48; i++)
{
if (std::memcmp(&s_tlb_backup[i], &tlb[i], sizeof(tlbs)) != 0)
{
UnmapTLB(s_tlb_backup[i], i);
MapTLB(tlb[i], i);
}
}
if (EmuConfig.Gamefixes.GoemonTlbHack) GoemonPreloadTlb();
CBreakPoints::SetSkipFirst(BREAKPOINT_EE, 0);
CBreakPoints::SetSkipFirst(BREAKPOINT_IOP, 0);
UpdateVSyncRate(true);
}
// --------------------------------------------------------------------------------------
// SaveStateBase (implementations)
// --------------------------------------------------------------------------------------
SaveStateBase::SaveStateBase(VmStateBuffer& memblock)
: m_memory(memblock)
, m_version(g_SaveVersion)
{
}
void SaveStateBase::PrepBlock(int size)
{
if (m_error)
return;
const int end = m_idx + size;
if (IsSaving())
{
if (static_cast<u32>(end) >= m_memory.size())
m_memory.resize(static_cast<u32>(end));
}
else
{
if (m_memory.size() < static_cast<u32>(end))
{
Console.Error("(SaveStateBase) Buffer overflow in PrepBlock(), expected %d got %zu", end, m_memory.size());
m_error = true;
}
}
}
bool SaveStateBase::FreezeTag(const char* src)
{
if (m_error)
return false;
char tagspace[32];
pxAssertMsg(std::strlen(src) < (sizeof(tagspace) - 1), "Tag name exceeds the allowed length");
std::memset(tagspace, 0, sizeof(tagspace));
StringUtil::Strlcpy(tagspace, src, sizeof(tagspace));
Freeze(tagspace);
if (std::strcmp(tagspace, src) != 0)
{
Console.Error(fmt::format("Savestate data corruption detected while reading tag: {}", src));
m_error = true;
return false;
}
return true;
}
bool SaveStateBase::FreezeBios()
{
if (!FreezeTag("BIOS"))
return false;
// Check the BIOS, and issue a warning if the bios for this state
// doesn't match the bios currently being used (chances are it'll still
// work fine, but some games are very picky).
u32 bioscheck = BiosChecksum;
char biosdesc[256];
std::memset(biosdesc, 0, sizeof(biosdesc));
StringUtil::Strlcpy(biosdesc, BiosDescription, sizeof(biosdesc));
Freeze(bioscheck);
Freeze(biosdesc);
if (bioscheck != BiosChecksum)
{
Console.Error("\n Warning: BIOS Version Mismatch, savestate may be unstable!");
Console.Error(
" Current BIOS: %s (crc=0x%08x)\n"
" Savestate BIOS: %s (crc=0x%08x)\n",
BiosDescription.c_str(), BiosChecksum,
biosdesc, bioscheck
);
}
return IsOkay();
}
bool SaveStateBase::FreezeInternals(Error* error)
{
// Print this until the MTVU problem in gifPathFreeze is taken care of (rama)
if (THREAD_VU1)
Console.Warning("MTVU speedhack is enabled, saved states may not be stable");
if (!vmFreeze())
return false;
// Second Block - Various CPU Registers and States
// -----------------------------------------------
if (!FreezeTag("cpuRegs"))
return false;
Freeze(cpuRegs); // cpu regs + COP0
Freeze(psxRegs); // iop regs
Freeze(fpuRegs);
Freeze(tlb); // tlbs
Freeze(AllowParams1); //OSDConfig written (Fast Boot)
Freeze(AllowParams2);
// Third Block - Cycle Timers and Events
// -------------------------------------
if (!FreezeTag("Cycles"))
return false;
Freeze(EEsCycle);
Freeze(EEoCycle);
Freeze(nextDeltaCounter);
Freeze(nextStartCounter);
Freeze(psxNextStartCounter);
Freeze(psxNextDeltaCounter);
// Fourth Block - EE-related systems
// ---------------------------------
if (!FreezeTag("EE-Subsystems"))
return false;
bool okay = rcntFreeze();
okay = okay && memFreeze(error);
okay = okay && gsFreeze();
okay = okay && vuMicroFreeze();
okay = okay && vuJITFreeze();
okay = okay && vif0Freeze();
okay = okay && vif1Freeze();
okay = okay && sifFreeze();
okay = okay && ipuFreeze();
okay = okay && ipuDmaFreeze();
okay = okay && gifFreeze();
okay = okay && gifDmaFreeze();
okay = okay && sprFreeze();
okay = okay && mtvuFreeze();
if (!okay)
return false;
// Fifth Block - iop-related systems
// ---------------------------------
if (!FreezeTag("IOP-Subsystems"))
return false;
FreezeMem(iopMem->Sif, sizeof(iopMem->Sif)); // iop's sif memory (not really needed, but oh well)
okay = okay && psxRcntFreeze();
// TODO: move all the others over to StateWrapper too...
if (!okay)
return false;
{
// This is horrible. We need to move the rest over...
std::optional<StateWrapper::VectorMemoryStream> save_stream;
std::optional<StateWrapper::ReadOnlyMemoryStream> load_stream;
if (IsSaving())
save_stream.emplace();
else
load_stream.emplace(&m_memory[m_idx], static_cast<int>(m_memory.size()) - m_idx);
StateWrapper sw(IsSaving() ? static_cast<StateWrapper::IStream*>(&save_stream.value()) :
static_cast<StateWrapper::IStream*>(&load_stream.value()),
IsSaving() ? StateWrapper::Mode::Write : StateWrapper::Mode::Read, g_SaveVersion);
okay = okay && g_Sio0.DoState(sw);
okay = okay && g_Sio2.DoState(sw);
okay = okay && g_MultitapArr.at(0).DoState(sw);
okay = okay && g_MultitapArr.at(1).DoState(sw);
if (!okay || !sw.IsGood())
return false;
if (IsSaving())
{
FreezeMem(const_cast<u8*>(save_stream->GetBuffer().data()), save_stream->GetPosition());
}
else
{
const int new_idx = m_idx + static_cast<int>(load_stream->GetPosition());
if (static_cast<size_t>(new_idx) >= m_memory.size())
return false;
m_idx = new_idx;
}
}
okay = okay && cdrFreeze();
okay = okay && cdvdFreeze();
// technically this is HLE BIOS territory, but we don't have enough such stuff
// to merit an HLE Bios sub-section... yet.
okay = okay && deci2Freeze();
okay = okay && InputRecordingFreeze();
return okay;
}
// --------------------------------------------------------------------------------------
// memSavingState (implementations)
// --------------------------------------------------------------------------------------
// uncompressed to/from memory state saves implementation
memSavingState::memSavingState(VmStateBuffer& save_to)
: SaveStateBase(save_to)
{
}
// Saving of state data
void memSavingState::FreezeMem(void* data, int size)
{
if (!size) return;
const int new_size = m_idx + size;
if (static_cast<u32>(new_size) > m_memory.size())
m_memory.resize(static_cast<u32>(new_size));
std::memcpy(&m_memory[m_idx], data, size);
m_idx += size;
}
// --------------------------------------------------------------------------------------
// memLoadingState (implementations)
// --------------------------------------------------------------------------------------
memLoadingState::memLoadingState(const VmStateBuffer& load_from)
: SaveStateBase(const_cast<VmStateBuffer&>(load_from))
{
}
// Loading of state data from a memory buffer...
void memLoadingState::FreezeMem( void* data, int size )
{
if (m_error)
{
std::memset(data, 0, size);
return;
}
const u8* const src = &m_memory[m_idx];
m_idx += size;
std::memcpy(data, src, size);
}
static const char* EntryFilename_StateVersion = "PCSX2 Savestate Version.id";
static const char* EntryFilename_Screenshot = "Screenshot.png";
static const char* EntryFilename_InternalStructures = "PCSX2 Internal Structures.dat";
static constexpr u32 STATE_PCSX2_VERSION_SIZE = 32;
struct SysState_Component
{
const char* name;
int (*freeze)(FreezeAction, freezeData*);
};
static int SysState_MTGSFreeze(FreezeAction mode, freezeData* fP)
{
MTGS::FreezeData sstate = { fP, 0 };
MTGS::Freeze(mode, sstate);
return sstate.retval;
}
static constexpr SysState_Component SPU2_{ "SPU2", SPU2freeze };
static constexpr SysState_Component GS{ "GS", SysState_MTGSFreeze };
static bool SysState_ComponentFreezeIn(zip_file_t* zf, SysState_Component comp)
{
if (!zf)
return true;
freezeData fP = { 0, nullptr };
if (comp.freeze(FreezeAction::Size, &fP) != 0)
fP.size = 0;
Console.WriteLn(" Loading %s", comp.name);
std::unique_ptr<u8[]> data;
if (fP.size > 0)
{
data = std::make_unique<u8[]>(fP.size);
fP.data = data.get();
if (zip_fread(zf, data.get(), fP.size) != static_cast<zip_int64_t>(fP.size))
{
Console.Error(fmt::format("* {}: Failed to decompress save data", comp.name));
return false;
}
}
if (comp.freeze(FreezeAction::Load, &fP) != 0)
{
Console.Error(fmt::format("* {}: Failed to load freeze data", comp.name));
return false;
}
return true;
}
static bool SysState_ComponentFreezeOut(SaveStateBase& writer, SysState_Component comp)
{
freezeData fP = {};
if (comp.freeze(FreezeAction::Size, &fP) != 0)
{
Console.Error(fmt::format("* {}: Failed to get freeze size", comp.name));
return false;
}
if (fP.size == 0)
return true;
const int size = fP.size;
writer.PrepBlock(size);
Console.WriteLn(" Saving %s", comp.name);
fP.data = writer.GetBlockPtr();
if (comp.freeze(FreezeAction::Save, &fP) != 0)
{
Console.Error(fmt::format("* {}: Failed to save freeze data", comp.name));
return false;
}
writer.CommitBlock(size);
return true;
}
static bool SysState_ComponentFreezeInNew(zip_file_t* zf, const char* name, bool(*do_state_func)(StateWrapper&))
{
// TODO: We could decompress on the fly here for a little bit more speed.
std::vector<u8> data;
if (zf)
{
std::optional<std::vector<u8>> optdata(ReadBinaryFileInZip(zf));
if (optdata.has_value())
data = std::move(optdata.value());
}
StateWrapper::ReadOnlyMemoryStream stream(data.empty() ? nullptr : data.data(), data.size());
StateWrapper sw(&stream, StateWrapper::Mode::Read, g_SaveVersion);
return do_state_func(sw);
}
static bool SysState_ComponentFreezeOutNew(SaveStateBase& writer, const char* name, u32 reserve, bool (*do_state_func)(StateWrapper&))
{
StateWrapper::VectorMemoryStream stream(reserve);
StateWrapper sw(&stream, StateWrapper::Mode::Write, g_SaveVersion);
if (!do_state_func(sw))
return false;
const int size = static_cast<int>(stream.GetBuffer().size());
if (size > 0)
{
writer.PrepBlock(size);
std::memcpy(writer.GetBlockPtr(), stream.GetBuffer().data(), size);
writer.CommitBlock(size);
}
return true;
}
// --------------------------------------------------------------------------------------
// BaseSavestateEntry
// --------------------------------------------------------------------------------------
class BaseSavestateEntry
{
protected:
BaseSavestateEntry() = default;
public:
virtual ~BaseSavestateEntry() = default;
virtual const char* GetFilename() const = 0;
virtual bool FreezeIn(zip_file_t* zf) const = 0;
virtual bool FreezeOut(SaveStateBase& writer) const = 0;
virtual bool IsRequired() const = 0;
};
class MemorySavestateEntry : public BaseSavestateEntry
{
protected:
MemorySavestateEntry() {}
virtual ~MemorySavestateEntry() = default;
public:
virtual bool FreezeIn(zip_file_t* zf) const;
virtual bool FreezeOut(SaveStateBase& writer) const;
virtual bool IsRequired() const { return true; }
protected:
virtual u8* GetDataPtr() const = 0;
virtual u32 GetDataSize() const = 0;
};
bool MemorySavestateEntry::FreezeIn(zip_file_t* zf) const
{
const u32 expectedSize = GetDataSize();
const s64 bytesRead = zip_fread(zf, GetDataPtr(), expectedSize);
if (bytesRead != static_cast<s64>(expectedSize))
{
Console.WriteLn(Color_Yellow, " '%s' is incomplete (expected 0x%x bytes, loading only 0x%x bytes)",
GetFilename(), expectedSize, static_cast<u32>(bytesRead));
}
return true;
}
bool MemorySavestateEntry::FreezeOut(SaveStateBase& writer) const
{
writer.FreezeMem(GetDataPtr(), GetDataSize());
return writer.IsOkay();
}
// --------------------------------------------------------------------------------------
// SavestateEntry_* (EmotionMemory, IopMemory, etc)
// --------------------------------------------------------------------------------------
// Implementation Rationale:
// The address locations of PS2 virtual memory components is fully dynamic, so we need to
// resolve the pointers at the time they are requested (eeMem, iopMem, etc). Thusly, we
// cannot use static struct member initializers -- we need virtual functions that compute
// and resolve the addresses on-demand instead... --air
class SavestateEntry_EmotionMemory final : public MemorySavestateEntry
{
public:
~SavestateEntry_EmotionMemory() override = default;
const char* GetFilename() const override { return "eeMemory.bin"; }
u8* GetDataPtr() const override { return eeMem->Main; }
uint GetDataSize() const override { return Ps2MemSize::ExposedRam; }
virtual bool FreezeIn(zip_file_t* zf) const override
{
return MemorySavestateEntry::FreezeIn(zf);
}
};
class SavestateEntry_IopMemory final : public MemorySavestateEntry
{
public:
~SavestateEntry_IopMemory() override = default;
const char* GetFilename() const override { return "iopMemory.bin"; }
u8* GetDataPtr() const override { return iopMem->Main; }
uint GetDataSize() const override { return sizeof(iopMem->Main); }
};
class SavestateEntry_HwRegs final : public MemorySavestateEntry
{
public:
~SavestateEntry_HwRegs() override = default;
const char* GetFilename() const override { return "eeHwRegs.bin"; }
u8* GetDataPtr() const override { return eeHw; }
uint GetDataSize() const override { return sizeof(eeHw); }
};
class SavestateEntry_IopHwRegs final : public MemorySavestateEntry
{
public:
~SavestateEntry_IopHwRegs() = default;
const char* GetFilename() const override { return "iopHwRegs.bin"; }
u8* GetDataPtr() const override { return iopHw; }
uint GetDataSize() const override { return sizeof(iopHw); }
};
class SavestateEntry_Scratchpad final : public MemorySavestateEntry
{
public:
~SavestateEntry_Scratchpad() = default;
const char* GetFilename() const override { return "Scratchpad.bin"; }
u8* GetDataPtr() const override { return eeMem->Scratch; }
uint GetDataSize() const override { return sizeof(eeMem->Scratch); }
};
class SavestateEntry_VU0mem final : public MemorySavestateEntry
{
public:
~SavestateEntry_VU0mem() = default;
const char* GetFilename() const override { return "vu0Memory.bin"; }
u8* GetDataPtr() const override { return vuRegs[0].Mem; }
uint GetDataSize() const override { return VU0_MEMSIZE; }
};
class SavestateEntry_VU1mem final : public MemorySavestateEntry
{
public:
~SavestateEntry_VU1mem() = default;
const char* GetFilename() const override { return "vu1Memory.bin"; }
u8* GetDataPtr() const override { return vuRegs[1].Mem; }
uint GetDataSize() const override { return VU1_MEMSIZE; }
};
class SavestateEntry_VU0prog final : public MemorySavestateEntry
{
public:
~SavestateEntry_VU0prog() = default;
const char* GetFilename() const override { return "vu0MicroMem.bin"; }
u8* GetDataPtr() const override { return vuRegs[0].Micro; }
uint GetDataSize() const override { return VU0_PROGSIZE; }
};
class SavestateEntry_VU1prog final : public MemorySavestateEntry
{
public:
~SavestateEntry_VU1prog() = default;
const char* GetFilename() const override { return "vu1MicroMem.bin"; }
u8* GetDataPtr() const override { return vuRegs[1].Micro; }
uint GetDataSize() const override { return VU1_PROGSIZE; }
};
class SavestateEntry_SPU2 final : public BaseSavestateEntry
{
public:
~SavestateEntry_SPU2() override = default;
const char* GetFilename() const override { return "SPU2.bin"; }
bool FreezeIn(zip_file_t* zf) const override { return SysState_ComponentFreezeIn(zf, SPU2_); }
bool FreezeOut(SaveStateBase& writer) const override { return SysState_ComponentFreezeOut(writer, SPU2_); }
bool IsRequired() const override { return true; }
};
class SavestateEntry_USB final : public BaseSavestateEntry
{
public:
~SavestateEntry_USB() override = default;
const char* GetFilename() const override { return "USB.bin"; }
bool FreezeIn(zip_file_t* zf) const override { return SysState_ComponentFreezeInNew(zf, "USB", &USB::DoState); }
bool FreezeOut(SaveStateBase& writer) const override { return SysState_ComponentFreezeOutNew(writer, "USB", 16 * 1024, &USB::DoState); }
bool IsRequired() const override { return false; }
};
class SavestateEntry_PAD final : public BaseSavestateEntry
{
public:
~SavestateEntry_PAD() override = default;
const char* GetFilename() const override { return "PAD.bin"; }
bool FreezeIn(zip_file_t* zf) const override { return SysState_ComponentFreezeInNew(zf, "PAD", &Pad::Freeze); }
bool FreezeOut(SaveStateBase& writer) const override { return SysState_ComponentFreezeOutNew(writer, "PAD", 16 * 1024, &Pad::Freeze); }
bool IsRequired() const override { return true; }
};
class SavestateEntry_GS final : public BaseSavestateEntry
{
public:
~SavestateEntry_GS() = default;
const char* GetFilename() const { return "GS.bin"; }
bool FreezeIn(zip_file_t* zf) const { return SysState_ComponentFreezeIn(zf, GS); }
bool FreezeOut(SaveStateBase& writer) const { return SysState_ComponentFreezeOut(writer, GS); }
bool IsRequired() const { return true; }
};
class SaveStateEntry_Achievements final : public BaseSavestateEntry
{
~SaveStateEntry_Achievements() override = default;
const char* GetFilename() const override { return "Achievements.bin"; }
bool FreezeIn(zip_file_t* zf) const override
{
if (!Achievements::IsActive())
return true;
std::optional<std::vector<u8>> data;
if (zf)
data = ReadBinaryFileInZip(zf);
if (data.has_value())
Achievements::LoadState(data.value());
else
Achievements::LoadState(std::span<const u8>());
return true;
}
bool FreezeOut(SaveStateBase& writer) const override
{
if (!Achievements::IsActive())
return true;
Achievements::SaveState(writer);
return writer.IsOkay();
}
bool IsRequired() const override { return false; }
};
// (cpuRegs, iopRegs, VPU/GIF/DMAC structures should all remain as part of a larger unified
// block, since they're all PCSX2-dependent and having separate files in the archie for them
// would not be useful).
//
static const std::unique_ptr<BaseSavestateEntry> SavestateEntries[] = {
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_EmotionMemory),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_IopMemory),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_HwRegs),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_IopHwRegs),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_Scratchpad),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_VU0mem),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_VU1mem),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_VU0prog),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_VU1prog),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_SPU2),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_USB),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_PAD),
std::unique_ptr<BaseSavestateEntry>(new SavestateEntry_GS),
std::unique_ptr<BaseSavestateEntry>(new SaveStateEntry_Achievements),
};
std::unique_ptr<ArchiveEntryList> SaveState_DownloadState(Error* error)
{
std::unique_ptr<ArchiveEntryList> destlist = std::make_unique<ArchiveEntryList>();
destlist->GetBuffer().resize(1024 * 1024 * 64);
memSavingState saveme(destlist->GetBuffer());
ArchiveEntry internals(EntryFilename_InternalStructures);
internals.SetDataIndex(saveme.GetCurrentPos());
if (!saveme.FreezeBios())
{
Error::SetString(error, "FreezeBios() failed");
return nullptr;
}
if (!saveme.FreezeInternals(error))
{
if (!error->IsValid())
Error::SetString(error, "FreezeInternals() failed");
return nullptr;
}
internals.SetDataSize(saveme.GetCurrentPos() - internals.GetDataIndex());
destlist->Add(internals);
for (const std::unique_ptr<BaseSavestateEntry>& entry : SavestateEntries)
{
uint startpos = saveme.GetCurrentPos();
if (!entry->FreezeOut(saveme))
{
Error::SetString(error, fmt::format("FreezeOut() failed for {}.", entry->GetFilename()));
destlist.reset();
break;
}
destlist->Add(
ArchiveEntry(entry->GetFilename())
.SetDataIndex(startpos)
.SetDataSize(saveme.GetCurrentPos() - startpos));
}
return destlist;
}
std::unique_ptr<SaveStateScreenshotData> SaveState_SaveScreenshot()
{
static constexpr u32 SCREENSHOT_WIDTH = 640;
static constexpr u32 SCREENSHOT_HEIGHT = 480;
u32 width, height;
std::vector<u32> pixels;
if (!MTGS::SaveMemorySnapshot(SCREENSHOT_WIDTH, SCREENSHOT_HEIGHT, true, false, &width, &height, &pixels))
{
// saving failed for some reason, device lost?
return nullptr;
}
std::unique_ptr<SaveStateScreenshotData> data = std::make_unique<SaveStateScreenshotData>();
data->width = width;
data->height = height;
data->pixels = std::move(pixels);
return data;
}
static bool SaveState_CompressScreenshot(SaveStateScreenshotData* data, zip_t* zf)
{
zip_error_t ze = {};
zip_source_t* const zs = zip_source_buffer_create(nullptr, 0, 0, &ze);
if (!zs)
return false;
if (zip_source_begin_write(zs) != 0)
{
zip_source_free(zs);
return false;
}
ScopedGuard zs_free([zs]() { zip_source_free(zs); });
png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
png_infop info_ptr = nullptr;
if (!png_ptr)
return false;
ScopedGuard cleanup([&png_ptr, &info_ptr]() {
if (png_ptr)
png_destroy_write_struct(&png_ptr, info_ptr ? &info_ptr : nullptr);
});
info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
return false;
if (setjmp(png_jmpbuf(png_ptr)))
return false;
png_set_write_fn(png_ptr, zs, [](png_structp png_ptr, png_bytep data_ptr, png_size_t size) {
zip_source_write(static_cast<zip_source_t*>(png_get_io_ptr(png_ptr)), data_ptr, size);
}, [](png_structp png_ptr) {});
png_set_compression_level(png_ptr, 5);
png_set_IHDR(png_ptr, info_ptr, data->width, data->height, 8, PNG_COLOR_TYPE_RGBA,
PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
png_write_info(png_ptr, info_ptr);
for (u32 y = 0; y < data->height; ++y)
{
// ensure the alpha channel is set to opaque
u32* row = &data->pixels[y * data->width];
for (u32 x = 0; x < data->width; x++)
row[x] |= 0xFF000000u;
png_write_row(png_ptr, reinterpret_cast<png_bytep>(row));
}
png_write_end(png_ptr, nullptr);
if (zip_source_commit_write(zs) != 0)
return false;
const s64 file_index = zip_file_add(zf, EntryFilename_Screenshot, zs, 0);
if (file_index < 0)
return false;
// png is already compressed, no point doing it twice
zip_set_file_compression(zf, file_index, ZIP_CM_STORE, 0);
// source is now owned by the zip file for later compression
zs_free.Cancel();
return true;
}
static bool SaveState_ReadScreenshot(zip_t* zf, u32* out_width, u32* out_height, std::vector<u32>* out_pixels)
{
auto zff = zip_fopen_managed(zf, EntryFilename_Screenshot, 0);
if (!zff)
return false;
png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (!png_ptr)
return false;
png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{
png_destroy_read_struct(&png_ptr, nullptr, nullptr);
return false;
}
ScopedGuard cleanup([&png_ptr, &info_ptr]() {
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
});
if (setjmp(png_jmpbuf(png_ptr)))
return false;
png_set_read_fn(png_ptr, zff.get(), [](png_structp png_ptr, png_bytep data_ptr, png_size_t size) {
zip_fread(static_cast<zip_file_t*>(png_get_io_ptr(png_ptr)), data_ptr, size);
});
png_read_info(png_ptr, info_ptr);
png_uint_32 width = 0;
png_uint_32 height = 0;
int bitDepth = 0;
int colorType = -1;
if (png_get_IHDR(png_ptr, info_ptr, &width, &height, &bitDepth, &colorType, nullptr, nullptr, nullptr) != 1 ||
width == 0 || height == 0)
{
return false;
}
const png_uint_32 bytesPerRow = png_get_rowbytes(png_ptr, info_ptr);
std::vector<u8> rowData(bytesPerRow);
*out_width = width;
*out_height = height;
out_pixels->resize(width * height);
for (u32 y = 0; y < height; y++)
{
png_read_row(png_ptr, static_cast<png_bytep>(rowData.data()), nullptr);
const u8* row_ptr = rowData.data();
u32* out_ptr = &out_pixels->at(y * width);
if (colorType == PNG_COLOR_TYPE_RGB)
{
for (u32 x = 0; x < width; x++)
{
u32 pixel = static_cast<u32>(*(row_ptr)++);
pixel |= static_cast<u32>(*(row_ptr)++) << 8;
pixel |= static_cast<u32>(*(row_ptr)++) << 16;
pixel |= static_cast<u32>(*(row_ptr)++) << 24;
*(out_ptr++) = pixel | 0xFF000000u; // make opaque
}
}
else if (colorType == PNG_COLOR_TYPE_RGBA)
{
for (u32 x = 0; x < width; x++)
{
u32 pixel;
std::memcpy(&pixel, row_ptr, sizeof(u32));
row_ptr += sizeof(u32);
*(out_ptr++) = pixel | 0xFF000000u; // make opaque
}
}
}
return true;
}
// --------------------------------------------------------------------------------------
// CompressThread_VmState
// --------------------------------------------------------------------------------------
static bool SaveState_AddToZip(zip_t* zf, ArchiveEntryList* srclist, SaveStateScreenshotData* screenshot)
{
// use zstd compression, it can be 10x+ faster for saving.
const u32 compression = EmuConfig.SavestateZstdCompression ? ZIP_CM_ZSTD : ZIP_CM_DEFLATE;
const u32 compression_level = 0;
// version indicator
{
struct VersionIndicator
{
u32 save_version;
char version[STATE_PCSX2_VERSION_SIZE];
};
VersionIndicator* vi = static_cast<VersionIndicator*>(std::malloc(sizeof(VersionIndicator)));
vi->save_version = g_SaveVersion;
#if GIT_TAGGED_COMMIT
StringUtil::Strlcpy(vi->version, GIT_TAG, std::size(vi->version));
#else
StringUtil::Strlcpy(vi->version, "Unknown", std::size(vi->version));
#endif
zip_source_t* const zs = zip_source_buffer(zf, vi, sizeof(*vi), 1);
if (!zs)
{
std::free(vi);
return false;
}
// NOTE: Source should not be freed if successful.
const s64 fi = zip_file_add(zf, EntryFilename_StateVersion, zs, ZIP_FL_ENC_UTF_8);
if (fi < 0)
{
zip_source_free(zs);
return false;
}
zip_set_file_compression(zf, fi, ZIP_CM_STORE, 0);
}
const uint listlen = srclist->GetLength();
for (uint i = 0; i < listlen; ++i)
{
const ArchiveEntry& entry = (*srclist)[i];
if (!entry.GetDataSize())
continue;
zip_source_t* const zs = zip_source_buffer(zf, srclist->GetPtr(entry.GetDataIndex()), entry.GetDataSize(), 0);
if (!zs)
return false;
const s64 fi = zip_file_add(zf, entry.GetFilename().c_str(), zs, ZIP_FL_ENC_UTF_8);
if (fi < 0)
{
zip_source_free(zs);
return false;
}
zip_set_file_compression(zf, fi, compression, compression_level);
}
if (screenshot)
{
if (!SaveState_CompressScreenshot(screenshot, zf))
return false;
}
return true;
}
bool SaveState_ZipToDisk(std::unique_ptr<ArchiveEntryList> srclist, std::unique_ptr<SaveStateScreenshotData> screenshot, const char* filename)
{
zip_error_t ze = {};
zip_source_t* zs = zip_source_file_create(filename, 0, 0, &ze);
zip_t* zf = nullptr;
if (zs && !(zf = zip_open_from_source(zs, ZIP_CREATE | ZIP_TRUNCATE, &ze)))
{
Console.Error("Failed to open zip file '%s' for save state: %s", filename, zip_error_strerror(&ze));
// have to clean up source
zip_source_free(zs);
return false;
}
// discard zip file if we fail saving something
if (!SaveState_AddToZip(zf, srclist.get(), screenshot.get()))
{
Console.Error("Failed to save state to zip file '%s'", filename);
zip_discard(zf);
return false;
}
// force the zip to close, this is the expensive part with libzip.
zip_close(zf);
return true;
}
bool SaveState_ReadScreenshot(const std::string& filename, u32* out_width, u32* out_height, std::vector<u32>* out_pixels)
{
zip_error_t ze = {};
auto zf = zip_open_managed(filename.c_str(), ZIP_RDONLY, &ze);
if (!zf)
{
Console.Error("Failed to open zip file '%s' for save state screenshot: %s", filename.c_str(), zip_error_strerror(&ze));
return false;
}
return SaveState_ReadScreenshot(zf.get(), out_width, out_height, out_pixels);
}
static bool CheckVersion(const std::string& filename, zip_t* zf, Error* error)
{
u32 savever;
auto zff = zip_fopen_managed(zf, EntryFilename_StateVersion, 0);
if (!zff || zip_fread(zff.get(), &savever, sizeof(savever)) != sizeof(savever))
{
Error::SetString(error, "Savestate file does not contain version indicator.");
return false;
}
char version_string[STATE_PCSX2_VERSION_SIZE];
if (zip_fread(zff.get(), version_string, STATE_PCSX2_VERSION_SIZE) == STATE_PCSX2_VERSION_SIZE)
version_string[STATE_PCSX2_VERSION_SIZE - 1] = 0;
else
StringUtil::Strlcpy(version_string, "Unknown", std::size(version_string));
// Major version mismatch. Means we can't load this savestate at all. Support for it
// was removed entirely.
// check for a "minor" version incompatibility; which happens if the savestate being loaded is a newer version
// than the emulator recognizes. 99% chance that trying to load it will just corrupt emulation or crash.
if (savever > g_SaveVersion || (savever >> 16) != (g_SaveVersion >> 16))
{
Error::SetString(error, fmt::format(TRANSLATE_FS("SaveState","This save state is outdated and is no longer compatible "
"with the current version of PCSX2.\n\n"
"If you have any unsaved progress on this save state, you can download the compatible version (PCSX2 {}) "
"from pcsx2.net, load the save state, and save your progress to the memory card."),
version_string));
return false;
}
return true;
}
static zip_int64_t CheckFileExistsInState(zip_t* zf, const char* name, bool required)
{
zip_int64_t index = zip_name_locate(zf, name, /*ZIP_FL_NOCASE*/ 0);
if (index >= 0)
{
DevCon.WriteLn(Color_Green, " ... found '%s'", name);
return index;
}
if (required)
Console.WriteLn(Color_Red, " ... not found '%s'!", name);
else
DevCon.WriteLn(Color_Red, " ... not found '%s'!", name);
return index;
}
static bool LoadInternalStructuresState(zip_t* zf, s64 index, Error* error)
{
zip_stat_t zst;
if (zip_stat_index(zf, index, 0, &zst) != 0 || zst.size > std::numeric_limits<int>::max())
return false;
// Load all the internal data
auto zff = zip_fopen_index_managed(zf, index, 0);
if (!zff)
return false;
std::vector<u8> buffer(zst.size);
if (zip_fread(zff.get(), buffer.data(), buffer.size()) != static_cast<zip_int64_t>(buffer.size()))
return false;
memLoadingState state(buffer);
if (!state.FreezeBios())
return false;
if (!state.FreezeInternals(error))
return false;
return true;
}
bool SaveState_UnzipFromDisk(const std::string& filename, Error* error)
{
zip_error_t ze = {};
auto zf = zip_open_managed(filename.c_str(), ZIP_RDONLY, &ze);
if (!zf)
{
Console.Error("Failed to open zip file '%s' for save state load: %s", filename.c_str(), zip_error_strerror(&ze));
if (zip_error_code_zip(&ze) == ZIP_ER_NOENT)
Error::SetString(error, "Savestate file does not exist.");
else
Error::SetString(error, fmt::format("Savestate zip error: {}", zip_error_strerror(&ze)));
return false;
}
// look for version and screenshot information in the zip stream:
if (!CheckVersion(filename, zf.get(), error))
return false;
// check that all parts are included
const s64 internal_index = CheckFileExistsInState(zf.get(), EntryFilename_InternalStructures, true);
s64 entryIndices[std::size(SavestateEntries)];
// Log any parts and pieces that are missing, and then generate an exception.
bool allPresent = (internal_index >= 0);
for (u32 i = 0; i < std::size(SavestateEntries); i++)
{
const bool required = SavestateEntries[i]->IsRequired();
entryIndices[i] = CheckFileExistsInState(zf.get(), SavestateEntries[i]->GetFilename(), required);
if (entryIndices[i] < 0 && required)
{
allPresent = false;
break;
}
}
if (!allPresent)
{
Error::SetString(error, "Some required components were not found or are incomplete.");
return false;
}
PreLoadPrep();
if (!LoadInternalStructuresState(zf.get(), internal_index, error))
{
if (!error->IsValid())
Error::SetString(error, "Save state corruption in internal structures.");
VMManager::Reset();
return false;
}
for (u32 i = 0; i < std::size(SavestateEntries); ++i)
{
if (entryIndices[i] < 0)
{
SavestateEntries[i]->FreezeIn(nullptr);
continue;
}
auto zff = zip_fopen_index_managed(zf.get(), entryIndices[i], 0);
if (!zff || !SavestateEntries[i]->FreezeIn(zff.get()))
{
Error::SetString(error, fmt::format("Save state corruption in {}.", SavestateEntries[i]->GetFilename()));
VMManager::Reset();
return false;
}
}
PostLoadPrep();
return true;
}