pcsx2/plugins/GSdx/res/tfx.fx

911 lines
17 KiB
HLSL

#ifdef SHADER_MODEL // make safe to include in resource file to enforce dependency
#define FMT_32 0
#define FMT_24 1
#define FMT_16 2
#ifndef VS_BPPZ
#define VS_BPPZ 0
#define VS_TME 1
#define VS_FST 1
#endif
#ifndef GS_IIP
#define GS_IIP 0
#define GS_PRIM 3
#define GS_POINT 0
#define GS_LINE 0
#endif
#ifndef PS_FST
#define PS_FST 0
#define PS_WMS 0
#define PS_WMT 0
#define PS_FMT FMT_32
#define PS_AEM 0
#define PS_TFX 0
#define PS_TCC 1
#define PS_ATST 1
#define PS_FOG 0
#define PS_CLR1 0
#define PS_FBA 0
#define PS_AOUT 0
#define PS_LTF 1
#define PS_SPRITEHACK 0
#define PS_TCOFFSETHACK 0
#define PS_POINT_SAMPLER 0
#define PS_SHUFFLE 0
#define PS_READ_BA 0
#define PS_DFMT 0
#define PS_DEPTH_FMT 0
#define PS_PAL_FMT 0
#define PS_CHANNEL_FETCH 0
#define PS_TALES_OF_ABYSS_HLE 0
#define PS_URBAN_CHAOS_HLE 0
#define PS_SCALE_FACTOR 1
#endif
struct VS_INPUT
{
float2 st : TEXCOORD0;
float4 c : COLOR0;
float q : TEXCOORD1;
uint2 p : POSITION0;
uint z : POSITION1;
uint2 uv : TEXCOORD2;
float4 f : COLOR1;
};
struct VS_OUTPUT
{
float4 p : SV_Position;
float4 t : TEXCOORD0;
float4 ti : TEXCOORD2;
float4 c : COLOR0;
};
struct PS_INPUT
{
float4 p : SV_Position;
float4 t : TEXCOORD0;
float4 ti : TEXCOORD2;
float4 c : COLOR0;
};
struct PS_OUTPUT
{
float4 c0 : SV_Target0;
float4 c1 : SV_Target1;
};
Texture2D<float4> Texture : register(t0);
Texture2D<float4> Palette : register(t1);
Texture2D<float4> RawTexture : register(t4);
SamplerState TextureSampler : register(s0);
SamplerState PaletteSampler : register(s1);
cbuffer cb0
{
float4 VertexScale;
float4 VertexOffset;
float4 Texture_Scale_Offset;
};
cbuffer cb1
{
float3 FogColor;
float AREF;
float4 HalfTexel;
float4 WH;
float4 MinMax;
float2 MinF;
float2 TA;
uint4 MskFix;
int4 ChannelShuffle;
float4 TC_OffsetHack;
};
cbuffer cb2
{
float2 PointSize;
};
float4 sample_c(float2 uv)
{
if (PS_POINT_SAMPLER)
{
// Weird issue with ATI/AMD cards,
// it looks like they add 127/128 of a texel to sampling coordinates
// occasionally causing point sampling to erroneously round up.
// I'm manually adjusting coordinates to the centre of texels here,
// though the centre is just paranoia, the top left corner works fine.
// As of 2018 this issue is still present.
uv = (trunc(uv * WH.zw) + float2(0.5, 0.5)) / WH.zw;
}
return Texture.Sample(TextureSampler, uv);
}
float4 sample_p(float u)
{
return Palette.Sample(PaletteSampler, u);
}
float4 fetch_raw_color(int2 xy)
{
return RawTexture.Load(int3(xy, 0));
}
int fetch_raw_depth(int2 xy)
{
float4 col = RawTexture.Load(int3(xy, 0));
return (int)(col.r * exp2(32.0f));
}
float4 fetch_c(int2 uv)
{
return Texture.Load(int3(uv, 0));
}
float4 fetch_red(int2 xy)
{
float4 rt;
if ((PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2))
{
int depth = (fetch_raw_depth(xy)) & 0xFF;
rt = (float4)(depth) / 255.0f;
}
else
{
rt = fetch_raw_color(xy);
}
return sample_p(rt.r);
}
float4 fetch_blue(int2 xy)
{
float4 rt;
if ((PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2))
{
int depth = (fetch_raw_depth(xy) >> 16) & 0xFF;
rt = (float4)(depth) / 255.0f;
}
else
{
rt = fetch_raw_color(xy);
}
return sample_p(rt.b);
}
float4 fetch_green(int2 xy)
{
float4 rt = fetch_raw_color(xy);
return sample_p(rt.g);
}
float4 fetch_alpha(int2 xy)
{
float4 rt = fetch_raw_color(xy);
return sample_p(rt.a);
}
float4 fetch_rgb(int2 xy)
{
float4 rt = fetch_raw_color(xy);
float4 c = float4(sample_p(rt.r).r, sample_p(rt.g).g, sample_p(rt.b).b, 1.0);
return c;
}
float4 fetch_gXbY(int2 xy)
{
if ((PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2))
{
int depth = fetch_raw_depth(xy);
int bg = (depth >> (8 + ChannelShuffle.w)) & 0xFF;
return (float4)(bg);
}
else
{
int4 rt = (int4)(fetch_raw_color(xy) * 255.0);
int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z;
int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x;
return (float4)(green | blue) / 255.0;
}
}
#define PS_AEM_FMT (PS_FMT & 3)
int2 clamp_wrap_uv_depth(int2 uv)
{
int4 mask = (int4)MskFix << 4;
if (PS_WMS == PS_WMT)
{
if (PS_WMS == 2)
{
uv = clamp(uv, mask.xy, mask.zw);
}
else if (PS_WMS == 3)
{
uv = (uv & mask.xy) | mask.zw;
}
}
else
{
if (PS_WMS == 2)
{
uv.x = clamp(uv.x, mask.x, mask.z);
}
else if (PS_WMS == 3)
{
uv.x = (uv.x & mask.x) | mask.z;
}
if (PS_WMT == 2)
{
uv.y = clamp(uv.y, mask.y, mask.w);
}
else if (PS_WMT == 3)
{
uv.y = (uv.y & mask.y) | mask.w;
}
}
return uv;
}
float4 sample_depth(float2 st, float2 pos)
{
float2 uv_f = (float2)clamp_wrap_uv_depth(int2(st)) * (float2)PS_SCALE_FACTOR * (float2)(1.0f / 16.0f);
int2 uv = (int2)uv_f;
float4 t = (float4)(0.0f);
if (PS_TALES_OF_ABYSS_HLE == 1)
{
// Warning: UV can't be used in channel effect
int depth = fetch_raw_depth(pos);
// Convert msb based on the palette
t = Palette.Load(int3((depth >> 8) & 0xFF, 0, 0));
}
else if (PS_URBAN_CHAOS_HLE == 1)
{
// Depth buffer is read as a RGB5A1 texture. The game try to extract the green channel.
// So it will do a first channel trick to extract lsb, value is right-shifted.
// Then a new channel trick to extract msb which will shifted to the left.
// OpenGL uses a FLOAT32 format for the depth so it requires a couple of conversion.
// To be faster both steps (msb&lsb) are done in a single pass.
// Warning: UV can't be used in channel effect
int depth = fetch_raw_depth(pos);
// Convert lsb based on the palette
t = Palette.Load(int3(depth & 0xFF, 0, 0));
// Msb is easier
float green = (float)((depth >> 8) & 0xFF) * 36.0f;
green = min(green, 255.0f);
t.g += green / 255.0f;
}
else if (PS_DEPTH_FMT == 1)
{
// Based on ps_main11 of convert
// Convert a FLOAT32 depth texture into a RGBA color texture
const float4 bitSh = float4(exp2(24.0f), exp2(16.0f), exp2(8.0f), exp2(0.0f));
const float4 bitMsk = float4(0.0, 1.0f / 256.0f, 1.0f / 256.0f, 1.0f / 256.0f);
float4 res = frac((float4)fetch_c(uv).r * bitSh);
t = (res - res.xxyz * bitMsk) * 256.0f / 255.0f;
}
else if (PS_DEPTH_FMT == 2)
{
// Based on ps_main12 of convert
// Convert a FLOAT32 (only 16 lsb) depth into a RGB5A1 color texture
const float4 bitSh = float4(exp2(32.0f), exp2(27.0f), exp2(22.0f), exp2(17.0f));
const uint4 bitMsk = uint4(0x1F, 0x1F, 0x1F, 0x1);
uint4 color = (uint4)((float4)fetch_c(uv).r * bitSh) & bitMsk;
t = (float4)color * float4(8.0f, 8.0f, 8.0f, 128.0f);
}
else if (PS_DEPTH_FMT == 3)
{
// Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture
t = fetch_c(uv);
}
if (PS_AEM_FMT == FMT_24)
{
t.a = ((PS_AEM == 0) || any(bool3(t.rgb))) ? 255.0f * TA.x : 0.0f;
}
else if (PS_AEM_FMT == FMT_16)
{
t.a = t.a >= 128.0f ? 255.0f * TA.y : ((PS_AEM == 0) || any(bool3(t.rgb))) ? 255.0f * TA.x : 0.0f;
}
return t;
}
float4 clamp_wrap_uv(float4 uv)
{
if(PS_WMS == PS_WMT)
{
if(PS_WMS == 2)
{
uv = clamp(uv, MinMax.xyxy, MinMax.zwzw);
}
else if(PS_WMS == 3)
{
#if PS_FST == 0
// wrap negative uv coords to avoid an off by one error that shifted
// textures. Fixes Xenosaga's hair issue.
uv = frac(uv);
#endif
uv = (float4)(((uint4)(uv * WH.xyxy) & MskFix.xyxy) | MskFix.zwzw) / WH.xyxy;
}
}
else
{
if(PS_WMS == 2)
{
uv.xz = clamp(uv.xz, MinMax.xx, MinMax.zz);
}
else if(PS_WMS == 3)
{
#if PS_FST == 0
uv.xz = frac(uv.xz);
#endif
uv.xz = (float2)(((uint2)(uv.xz * WH.xx) & MskFix.xx) | MskFix.zz) / WH.xx;
}
if(PS_WMT == 2)
{
uv.yw = clamp(uv.yw, MinMax.yy, MinMax.ww);
}
else if(PS_WMT == 3)
{
#if PS_FST == 0
uv.yw = frac(uv.yw);
#endif
uv.yw = (float2)(((uint2)(uv.yw * WH.yy) & MskFix.yy) | MskFix.ww) / WH.yy;
}
}
return uv;
}
float4x4 sample_4c(float4 uv)
{
float4x4 c;
c[0] = sample_c(uv.xy);
c[1] = sample_c(uv.zy);
c[2] = sample_c(uv.xw);
c[3] = sample_c(uv.zw);
return c;
}
float4 sample_4_index(float4 uv)
{
float4 c;
c.x = sample_c(uv.xy).a;
c.y = sample_c(uv.zy).a;
c.z = sample_c(uv.xw).a;
c.w = sample_c(uv.zw).a;
// Denormalize value
uint4 i = uint4(c * 255.0f + 0.5f);
if (PS_PAL_FMT == 1)
{
// 4HL
c = float4(i & 0xFu) / 255.0f;
}
else if (PS_PAL_FMT == 2)
{
// 4HH
c = float4(i >> 4u) / 255.0f;
}
// Most of texture will hit this code so keep normalized float value
// 8 bits
return c * 255./256 + 0.5/256;
}
float4x4 sample_4p(float4 u)
{
float4x4 c;
c[0] = sample_p(u.x);
c[1] = sample_p(u.y);
c[2] = sample_p(u.z);
c[3] = sample_p(u.w);
return c;
}
float4 sample_color(float2 st)
{
#if PS_TCOFFSETHACK
st += TC_OffsetHack.xy;
#endif
float4 t;
float4x4 c;
float2 dd;
if (PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_WMS < 2 && PS_WMT < 2)
{
c[0] = sample_c(st);
}
else
{
float4 uv;
if(PS_LTF)
{
uv = st.xyxy + HalfTexel;
dd = frac(uv.xy * WH.zw);
if(PS_FST == 0)
{
dd = clamp(dd, (float2)0.0, (float2)0.9999999);
}
}
else
{
uv = st.xyxy;
}
uv = clamp_wrap_uv(uv);
#if PS_PAL_FMT != 0
c = sample_4p(sample_4_index(uv));
#else
c = sample_4c(uv);
#endif
}
[unroll]
for (uint i = 0; i < 4; i++)
{
if(PS_AEM_FMT == FMT_24)
{
c[i].a = !PS_AEM || any(c[i].rgb) ? TA.x : 0;
}
else if(PS_AEM_FMT == FMT_16)
{
c[i].a = c[i].a >= 0.5 ? TA.y : !PS_AEM || any(c[i].rgb) ? TA.x : 0;
}
}
if(PS_LTF)
{
t = lerp(lerp(c[0], c[1], dd.x), lerp(c[2], c[3], dd.x), dd.y);
}
else
{
t = c[0];
}
return t;
}
float4 tfx(float4 t, float4 c)
{
if(PS_TFX == 0)
{
if(PS_TCC)
{
c = c * t * 255.0f / 128;
}
else
{
c.rgb = c.rgb * t.rgb * 255.0f / 128;
}
}
else if(PS_TFX == 1)
{
if(PS_TCC)
{
c = t;
}
else
{
c.rgb = t.rgb;
}
}
else if(PS_TFX == 2)
{
c.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a;
if(PS_TCC)
{
c.a += t.a;
}
}
else if(PS_TFX == 3)
{
c.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a;
if(PS_TCC)
{
c.a = t.a;
}
}
return saturate(c);
}
void atst(float4 c)
{
float a = trunc(c.a * 255 + 0.01);
#if 0
switch(Uber_ATST) {
case 0:
break;
case 1:
if (a > AREF) discard;
break;
case 2:
if (a < AREF) discard;
break;
case 3:
if (abs(a - AREF) > 0.5f) discard;
break;
case 4:
if (abs(a - AREF) < 0.5f) discard;
break;
}
#endif
#if 1
if(PS_ATST == 0)
{
// nothing to do
}
else if(PS_ATST == 1)
{
#if PS_SPRITEHACK == 0
if (a > AREF) discard;
#endif
}
else if(PS_ATST == 2)
{
if (a < AREF) discard;
}
else if(PS_ATST == 3)
{
if (abs(a - AREF) > 0.5f) discard;
}
else if(PS_ATST == 4)
{
if (abs(a - AREF) < 0.5f) discard;
}
#endif
}
float4 fog(float4 c, float f)
{
if(PS_FOG)
{
c.rgb = lerp(FogColor, c.rgb, f);
}
return c;
}
float4 ps_color(PS_INPUT input)
{
#if PS_FST == 0
float2 st = input.t.xy / input.t.w;
float2 st_int = input.ti.zw / input.t.w;
#else
float2 st = input.ti.xy;
float2 st_int = input.ti.zw;
#endif
#if PS_CHANNEL_FETCH == 1
float4 t = fetch_red(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 2
float4 t = fetch_green(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 3
float4 t = fetch_blue(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 4
float4 t = fetch_alpha(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 5
float4 t = fetch_rgb(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 6
float4 t = fetch_gXbY(int2(input.p.xy));
#elif PS_DEPTH_FMT > 0
float4 t = sample_depth(st_int, input.p.xy);
#else
float4 t = sample_color(st);
#endif
float4 c = tfx(t, input.c);
atst(c);
c = fog(c, input.t.z);
if(PS_CLR1) // needed for Cd * (As/Ad/F + 1) blending modes
{
c.rgb = 1;
}
return c;
}
VS_OUTPUT vs_main(VS_INPUT input)
{
if(VS_BPPZ == 1) // 24
{
input.z = input.z & 0xffffff;
}
else if(VS_BPPZ == 2) // 16
{
input.z = input.z & 0xffff;
}
VS_OUTPUT output;
// pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go)
// example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty
// input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel
// example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133
float4 p = float4(input.p, input.z, 0) - float4(0.05f, 0.05f, 0, 0);
output.p = p * VertexScale - VertexOffset;
if(VS_TME)
{
float2 uv = input.uv - Texture_Scale_Offset.zw;
float2 st = input.st - Texture_Scale_Offset.zw;
// Integer nomalized
output.ti.xy = uv * Texture_Scale_Offset.xy;
if (VS_FST)
{
// Integer integral
output.ti.zw = uv;
}
else
{
// float for post-processing in some games
output.ti.zw = st / Texture_Scale_Offset.xy;
}
// Float coords
output.t.xy = st;
output.t.w = input.q;
}
else
{
output.t.xy = 0;
output.t.w = 1.0f;
output.ti = 0;
}
output.c = input.c;
output.t.z = input.f.r;
return output;
}
#if GS_PRIM == 0 && GS_POINT == 0
[maxvertexcount(1)]
void gs_main(point VS_OUTPUT input[1], inout PointStream<VS_OUTPUT> stream)
{
stream.Append(input[0]);
}
#elif GS_PRIM == 0 && GS_POINT == 1
[maxvertexcount(6)]
void gs_main(point VS_OUTPUT input[1], inout TriangleStream<VS_OUTPUT> stream)
{
// Transform a point to a NxN sprite
VS_OUTPUT Point = input[0];
// Get new position
float4 lt_p = input[0].p;
float4 rb_p = input[0].p + float4(PointSize.x, PointSize.y, 0.0f, 0.0f);
float4 lb_p = rb_p;
float4 rt_p = rb_p;
lb_p.x = lt_p.x;
rt_p.y = lt_p.y;
// Triangle 1
Point.p = lt_p;
stream.Append(Point);
Point.p = lb_p;
stream.Append(Point);
Point.p = rt_p;
stream.Append(Point);
// Triangle 2
Point.p = lb_p;
stream.Append(Point);
Point.p = rt_p;
stream.Append(Point);
Point.p = rb_p;
stream.Append(Point);
}
#elif GS_PRIM == 1 && GS_LINE == 0
[maxvertexcount(2)]
void gs_main(line VS_OUTPUT input[2], inout LineStream<VS_OUTPUT> stream)
{
#if GS_IIP == 0
input[0].c = input[1].c;
#endif
stream.Append(input[0]);
stream.Append(input[1]);
}
#elif GS_PRIM == 1 && GS_LINE == 1
[maxvertexcount(6)]
void gs_main(line VS_OUTPUT input[2], inout TriangleStream<VS_OUTPUT> stream)
{
// Transform a line to a thick line-sprite
VS_OUTPUT left = input[0];
VS_OUTPUT right = input[1];
float2 lt_p = input[0].p.xy;
float2 rt_p = input[1].p.xy;
// Potentially there is faster math
float2 line_vector = normalize(rt_p.xy - lt_p.xy);
float2 line_normal = float2(line_vector.y, -line_vector.x);
float2 line_width = (line_normal * PointSize) / 2;
lt_p -= line_width;
rt_p -= line_width;
float2 lb_p = input[0].p.xy + line_width;
float2 rb_p = input[1].p.xy + line_width;
#if GS_IIP == 0
left.c = right.c;
#endif
// Triangle 1
left.p.xy = lt_p;
stream.Append(left);
left.p.xy = lb_p;
stream.Append(left);
right.p.xy = rt_p;
stream.Append(right);
stream.RestartStrip();
// Triangle 2
left.p.xy = lb_p;
stream.Append(left);
right.p.xy = rt_p;
stream.Append(right);
right.p.xy = rb_p;
stream.Append(right);
stream.RestartStrip();
}
#elif GS_PRIM == 2
[maxvertexcount(3)]
void gs_main(triangle VS_OUTPUT input[3], inout TriangleStream<VS_OUTPUT> stream)
{
#if GS_IIP == 0
input[0].c = input[2].c;
input[1].c = input[2].c;
#endif
stream.Append(input[0]);
stream.Append(input[1]);
stream.Append(input[2]);
}
#elif GS_PRIM == 3
[maxvertexcount(4)]
void gs_main(line VS_OUTPUT input[2], inout TriangleStream<VS_OUTPUT> stream)
{
VS_OUTPUT lt = input[0];
VS_OUTPUT rb = input[1];
// flat depth
lt.p.z = rb.p.z;
// flat fog and texture perspective
lt.t.zw = rb.t.zw;
// flat color
lt.c = rb.c;
// Swap texture and position coordinate
VS_OUTPUT lb = rb;
lb.p.x = lt.p.x;
lb.t.x = lt.t.x;
lb.ti.x = lt.ti.x;
lb.ti.z = lt.ti.z;
VS_OUTPUT rt = rb;
rt.p.y = lt.p.y;
rt.t.y = lt.t.y;
rt.ti.y = lt.ti.y;
rt.ti.w = lt.ti.w;
stream.Append(lt);
stream.Append(lb);
stream.Append(rt);
stream.Append(rb);
}
#endif
PS_OUTPUT ps_main(PS_INPUT input)
{
float4 c = ps_color(input);
PS_OUTPUT output;
if (PS_SHUFFLE)
{
uint4 denorm_c = uint4(c * 255.0f + 0.5f);
uint2 denorm_TA = uint2(float2(TA.xy) * 255.0f + 0.5f);
// Mask will take care of the correct destination
if (PS_READ_BA)
c.rb = c.bb;
else
c.rb = c.rr;
if (PS_READ_BA)
{
if (denorm_c.a & 0x80u)
c.ga = (float2)(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u)) / 255.0f);
else
c.ga = (float2)(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u)) / 255.0f);
}
else
{
if (denorm_c.g & 0x80u)
c.ga = (float2)(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u)) / 255.0f);
else
c.ga = (float2)(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u)) / 255.0f);
}
}
output.c1 = c.a * 255.0f / 128.0f; // used for alpha blending
if ((PS_DFMT == FMT_16) || PS_AOUT) // 16 bit output
{
float a = 128.0f / 255; // alpha output will be 0x80
c.a = PS_FBA ? a : step(128.0f / 255.0f, c.a) * a;
}
else if ((PS_DFMT == FMT_32) && PS_FBA)
{
if (c.a < 128.0f / 255.0f) c.a += 128.0f / 255.0f;
}
output.c0 = c;
return output;
}
#endif