pcsx2/plugins/GSdx/GSRasterizer.cpp

962 lines
19 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
// TODO: JIT Draw* (flags: depth, texture, color (+iip), scissor)
#include "StdAfx.h"
#include "GSRasterizer.h"
#include "pthread.h"
// Using a spinning finish on the main (MTGS) thread is apparently a big win still, over trying
// to wait out all the pending m_finished semaphores. It leaves one spinwait in the rasterizer,
// but that's still worlds better than 2-6 spinning threads like before.
#define UseSpinningFinish 1
// Set this to 1 to remove a lot of non-const div/modulus ops from the rasterization process.
// Might likely be a measurable speedup but limits threading to 1, 2, 4, and 8 threads.
// note by rama: Speedup is around 5% on average.
#define UseConstThreadCount 0
#if UseConstThreadCount
// ThreadsConst - const number of threads. User-configured threads (in GSdx panel) must match
// this value if UseConstThreadCount is enabled. [yeah, it's hacky for now]
static const int ThreadsConst = 2;
static const int ThreadMaskConst = ThreadsConst-1;
#endif
GSRasterizer::GSRasterizer(IDrawScanline* ds, int id, int threads)
: m_ds(ds)
, m_id(id)
, m_threads(threads)
{
}
GSRasterizer::~GSRasterizer()
{
delete m_ds;
}
__forceinline bool GSRasterizer::IsOneOfMyScanlines(int scanline) const
{
#if UseConstThreadCount
return (ThreadMaskConst==0) || ((scanline & ThreadMaskConst) == m_id);
#else
return (scanline % m_threads) == m_id;
#endif
}
void GSRasterizer::Draw(const GSRasterizerData* data)
{
m_dsf.ssl = NULL;
m_dsf.ssle = NULL;
m_dsf.ssp = NULL;
m_dsf.sr = NULL;
m_ds->BeginDraw(data, &m_dsf);
const GSVector4i scissor = data->scissor;
const GSVertexSW* vertices = data->vertices;
const int count = data->count;
m_stats.Reset();
int64 start = __rdtsc();
switch(data->primclass)
{
case GS_POINT_CLASS:
m_stats.prims = count;
for(int i = 0; i < count; i++) DrawPoint(&vertices[i], scissor);
break;
case GS_LINE_CLASS:
ASSERT(!(count & 1));
m_stats.prims = count / 2;
for(int i = 0; i < count; i += 2) DrawLine(&vertices[i], scissor);
break;
case GS_TRIANGLE_CLASS:
ASSERT(!(count % 3));
m_stats.prims = count / 3;
for(int i = 0; i < count; i += 3) DrawTriangle(&vertices[i], scissor);
break;
case GS_SPRITE_CLASS:
ASSERT(!(count & 1));
m_stats.prims = count / 2;
for(int i = 0; i < count; i += 2) DrawSprite(&vertices[i], scissor);
break;
default:
__assume(0);
}
m_stats.ticks = __rdtsc() - start;
m_ds->EndDraw(m_stats);
}
void GSRasterizer::GetStats(GSRasterizerStats& stats)
{
stats = m_stats;
}
void GSRasterizer::DrawPoint(const GSVertexSW* v, const GSVector4i& scissor)
{
// TODO: round to closest for point, prestep for line
GSVector4i p(v->p);
if(scissor.left <= p.x && p.x < scissor.right && scissor.top <= p.y && p.y < scissor.bottom)
{
if(IsOneOfMyScanlines(p.y))
{
m_dsf.ssp(v, *v);
m_dsf.ssl(p.x + 1, p.x, p.y, *v);
m_stats.pixels++;
}
}
}
void GSRasterizer::DrawLine(const GSVertexSW* v, const GSVector4i& scissor)
{
GSVertexSW dv = v[1] - v[0];
GSVector4 dp = dv.p.abs();
if(m_dsf.ssle)
{
int i = (dp < dp.yxwz()).mask() & 1; // |x| <= |y|
GSVertexSW dscan;
dscan.p = GSVector4::zero();
dscan.t = GSVector4::zero();
dscan.c = GSVector4::zero();
m_dsf.ssp(v, dscan);
DrawEdge(v[0], v[1], dv, scissor, i, 0);
DrawEdge(v[0], v[1], dv, scissor, i, 1);
return;
}
GSVector4i dpi(dp);
if(dpi.y == 0)
{
if(dpi.x > 0)
{
// shortcut for horizontal lines
GSVector4 mask = (v[0].p > v[1].p).xxxx();
GSVertexSW l, dl;
l.p = v[0].p.blend8(v[1].p, mask);
l.t = v[0].t.blend8(v[1].t, mask);
l.c = v[0].c.blend8(v[1].c, mask);
GSVector4 r;
r = v[1].p.blend8(v[0].p, mask);
GSVector4i p(l.p);
if(scissor.top <= p.y && p.y < scissor.bottom)
{
GSVertexSW dscan = dv / dv.p.xxxx();
m_dsf.ssp(v, dscan);
l.p = l.p.upl(r).xyzw(l.p); // r.x => l.y
GSVector4 fscissor(scissor);
DrawTriangleSection(p.y, p.y + 1, l, dl, dscan, fscissor);
}
}
return;
}
int i = dpi.x > dpi.y ? 0 : 1;
GSVertexSW edge = v[0];
GSVertexSW dedge = dv / dp.v[i];
// TODO: prestep + clip with the scissor
int steps = dpi.v[i];
while(steps-- > 0)
{
DrawPoint(&edge, scissor);
edge += dedge;
}
}
static const int s_abc[8][4] =
{
{0, 1, 2, 0}, // c >= b >= a
{1, 0, 2, 0}, // c >= a > b
{0, 0, 0, 0},
{1, 2, 0, 0}, // a > c >= b
{0, 2, 1, 0}, // b > c >= a
{0, 0, 0, 0},
{2, 0, 1, 0}, // b >= a > c
{2, 1, 0, 0}, // a > b > c
};
void GSRasterizer::DrawTriangle(const GSVertexSW* vertices, const GSVector4i& scissor)
{
GSVertexSW v[3];
GSVector4 aabb = vertices[0].p.yyyy(vertices[1].p);
GSVector4 bccb = vertices[1].p.yyyy(vertices[2].p).xzzx();
int i = (aabb > bccb).mask() & 7;
v[0] = vertices[s_abc[i][0]];
v[1] = vertices[s_abc[i][1]];
v[2] = vertices[s_abc[i][2]];
aabb = v[0].p.yyyy(v[1].p);
bccb = v[1].p.yyyy(v[2].p).xzzx();
i = (aabb == bccb).mask() & 7;
if(m_dsf.ssle)
{
DrawTriangleEdge(v, scissor);
}
switch(i)
{
case 0: // a < b < c
DrawTriangleTopBottom(v, scissor);
break;
case 1: // a == b < c
DrawTriangleBottom(v, scissor);
break;
case 4: // a < b == c
DrawTriangleTop(v, scissor);
break;
case 7: // a == b == c
break;
default:
__assume(0);
}
}
void GSRasterizer::DrawTriangleEdge(const GSVertexSW* v, const GSVector4i& scissor)
{
GSVertexSW dv[3];
dv[0] = v[1] - v[0];
dv[1] = v[2] - v[0];
dv[2] = v[2] - v[1];
GSVector4 dx = dv[0].p.upl(dv[1].p).xyxy(dv[2].p);
GSVector4 dy = dv[0].p.upl(dv[1].p).zwyx(dv[2].p);
GSVector4 a = dx.abs() < dy.abs(); // |x| <= |y|
GSVector4 b = dx < GSVector4::zero(); // x < 0
GSVector4 c = dv[1].p * (dv[0].p / dv[1].p).yyyy() < dv[0].p; // longest.p.x < 0
int i = a.mask();
int j = ((a | b) ^ c.xxxx()).mask() ^ 2; // evil
GSVertexSW dscan;
dscan.p = GSVector4::zero();
dscan.t = GSVector4::zero();
dscan.c = GSVector4::zero();
m_dsf.ssp(v, dscan); // TODO: don't call it twice (can't be sure about the second call if the triangle is too small)
DrawEdge(v[0], v[1], dv[0], scissor, i & 1, j & 1);
DrawEdge(v[0], v[2], dv[1], scissor, i & 2, j & 2);
DrawEdge(v[1], v[2], dv[2], scissor, i & 4, j & 4);
}
void GSRasterizer::DrawTriangleTop(GSVertexSW* v, const GSVector4i& scissor)
{
GSVertexSW longest;
longest.p = v[2].p - v[1].p;
int i = longest.p.upl(longest.p == GSVector4::zero()).mask();
if(i & 2) return;
i &= 1;
GSVertexSW& l = v[0];
GSVector4& r = v[0].p;
GSVector4 fscissor(scissor);
GSVector4 tb = l.p.upl(v[2].p).ceil();
GSVector4 tbmax = tb.max(fscissor.yyyy());
GSVector4 tbmin = tb.min(fscissor.wwww());
GSVector4i tbi = GSVector4i(tbmax.zzww(tbmin));
int top = tbi.extract32<0>();
int bottom = tbi.extract32<2>();
if(top >= bottom) return;
longest.t = v[2].t - v[1].t;
longest.c = v[2].c - v[1].c;
GSVertexSW dscan = longest * longest.p.xxxx().rcp();
GSVertexSW vl = v[1 + i] - l;
GSVector4 vr = v[2 - i].p - r;
GSVertexSW dl = vl / vl.p.yyyy();
GSVector4 dr = vr / vr.yyyy();
GSVector4 dy = tbmax.zzzz() - l.p.yyyy();
l.p = l.p.upl(r).xyzw(l.p); // r.x => l.y
dl.p = dl.p.upl(dr).xyzw(dl.p); // dr.x => dl.y
l += dl * dy;
m_dsf.ssp(v, dscan);
DrawTriangleSection(top, bottom, l, dl, dscan, fscissor);
}
void GSRasterizer::DrawTriangleBottom(GSVertexSW* v, const GSVector4i& scissor)
{
GSVertexSW longest;
longest.p = v[1].p - v[0].p;
int i = longest.p.upl(longest.p == GSVector4::zero()).mask();
if(i & 2) return;
i &= 1;
GSVertexSW& l = v[i];
GSVector4& r = v[1 - i].p;
GSVector4 fscissor(scissor);
GSVector4 tb = l.p.upl(v[2].p).ceil();
GSVector4 tbmax = tb.max(fscissor.yyyy());
GSVector4 tbmin = tb.min(fscissor.wwww());
GSVector4i tbi = GSVector4i(tbmax.zzww(tbmin));
int top = tbi.extract32<0>();
int bottom = tbi.extract32<2>();
if(top >= bottom) return;
longest.t = v[1].t - v[0].t;
longest.c = v[1].c - v[0].c;
GSVertexSW dscan = longest * longest.p.xxxx().rcp();
GSVertexSW vl = v[2] - l;
GSVector4 vr = v[2].p - r;
GSVertexSW dl = vl / vl.p.yyyy();
GSVector4 dr = vr / vr.yyyy();
GSVector4 dy = tbmax.zzzz() - l.p.yyyy();
l.p = l.p.upl(r).xyzw(l.p); // r.x => l.y
dl.p = dl.p.upl(dr).xyzw(dl.p); // dr.x => dl.y
l += dl * dy;
m_dsf.ssp(v, dscan);
DrawTriangleSection(top, bottom, l, dl, dscan, fscissor);
}
void GSRasterizer::DrawTriangleTopBottom(GSVertexSW* v, const GSVector4i& scissor)
{
GSVertexSW dv[3];
dv[0] = v[1] - v[0];
dv[1] = v[2] - v[0];
GSVertexSW longest = dv[1] * (dv[0].p / dv[1].p).yyyy() - dv[0];
int i = longest.p.upl(longest.p == GSVector4::zero()).mask();
if(i & 2) return;
i &= 1;
GSVertexSW dscan = longest * longest.p.xxxx().rcp();
m_dsf.ssp(v, dscan);
GSVector4 fscissor(scissor);
GSVector4 tb = v[0].p.upl(v[1].p).zwzw(v[1].p.upl(v[2].p)).ceil();
GSVector4 tbmax = tb.max(fscissor.yyyy());
GSVector4 tbmin = tb.min(fscissor.wwww());
GSVector4i tbi = GSVector4i(tbmax.xzyw(tbmin));
int top = tbi.extract32<0>();
int bottom = tbi.extract32<2>();
GSVertexSW& l = v[0];
GSVector4 r = v[0].p;
GSVertexSW dl = dv[i] / dv[i].p.yyyy();
GSVector4 dr = dv[1 - i].p / dv[1 - i].p.yyyy();
GSVector4 dy = tbmax.xxxx() - l.p.yyyy();
l += dl * dy;
r += dr * dy;
if(top < bottom)
{
DrawTriangleSection(top, bottom, l, dl, r, dr, dscan, fscissor);
}
top = tbi.y;
bottom = tbi.w;
if(top < bottom)
{
if(i == 0)
{
l = v[1];
dv[2] = v[2] - v[1];
dl = dv[2] / dv[2].p.yyyy();
}
else
{
r = v[1].p;
dv[2].p = v[2].p - v[1].p;
dr = dv[2].p / dv[2].p.yyyy();
}
l += dl * (tbmax.zzzz() - l.p.yyyy());
r += dr * (tbmax.zzzz() - r.yyyy());
l.p = l.p.upl(r).xyzw(l.p); // r.x => l.y
dl.p = dl.p.upl(dr).xyzw(dl.p); // dr.x => dl.y
DrawTriangleSection(top, bottom, l, dl, dscan, fscissor);
}
}
void GSRasterizer::DrawTriangleSection(int top, int bottom, GSVertexSW& l, const GSVertexSW& dl, GSVector4& r, const GSVector4& dr, const GSVertexSW& dscan, const GSVector4& fscissor)
{
ASSERT(top < bottom);
while(1)
{
do
{
if(IsOneOfMyScanlines(top))
{
GSVector4 lr = l.p.xyxy(r).ceil();
GSVector4 lrmax = lr.max(fscissor.xxxx());
GSVector4 lrmin = lr.min(fscissor.zzzz());
GSVector4i lri = GSVector4i(lrmax.xxzz(lrmin));
int left = lri.extract32<0>();
int right = lri.extract32<2>();
int pixels = right - left;
if(pixels > 0)
{
m_stats.pixels += pixels;
GSVertexSW scan = l + dscan * (lrmax - l.p).xxxx();
m_dsf.ssl(right, left, top, scan);
}
}
}
while(0);
if(++top >= bottom) break;
l += dl;
r += dr;
}
}
void GSRasterizer::DrawTriangleSection(int top, int bottom, GSVertexSW& l, const GSVertexSW& dl, const GSVertexSW& dscan, const GSVector4& fscissor)
{
ASSERT(top < bottom);
while(1)
{
do
{
if(IsOneOfMyScanlines(top))
{
GSVector4 lr = l.p.ceil();
GSVector4 lrmax = lr.max(fscissor.xxxx());
GSVector4 lrmin = lr.min(fscissor.zzzz());
GSVector4i lri = GSVector4i(lrmax.xxyy(lrmin));
int left = lri.extract32<0>();
int right = lri.extract32<2>();
int pixels = right - left;
if(pixels > 0)
{
m_stats.pixels += pixels;
GSVertexSW scan = l + dscan * (lrmax - l.p).xxxx();
m_dsf.ssl(right, left, top, scan);
}
}
}
while(0);
if(++top >= bottom) break;
l += dl;
}
}
void GSRasterizer::DrawSprite(const GSVertexSW* vertices, const GSVector4i& scissor)
{
GSVertexSW v[2];
GSVector4 mask = (vertices[0].p < vertices[1].p).xyzw(GSVector4::zero());
v[0].p = vertices[1].p.blend8(vertices[0].p, mask);
v[0].t = vertices[1].t.blend8(vertices[0].t, mask);
v[0].c = vertices[1].c;
v[1].p = vertices[0].p.blend8(vertices[1].p, mask);
v[1].t = vertices[0].t.blend8(vertices[1].t, mask);
GSVector4i r(v[0].p.xyxy(v[1].p).ceil());
r = r.rintersect(scissor);
if(r.rempty()) return;
GSVertexSW scan = v[0];
if(m_dsf.sr)
{
if(m_id == 0)
{
(m_ds->*m_dsf.sr)(r, scan);
m_stats.pixels += r.width() * r.height();
}
return;
}
GSVector4 zero = GSVector4::zero();
GSVertexSW dedge, dscan;
dedge.p = zero;
dscan.p = zero;
dedge.c = zero;
dscan.c = zero;
GSVertexSW dv = v[1] - v[0];
dedge.t = (dv.t / dv.p.yyyy()).xyxy(zero).wyww();
dscan.t = (dv.t / dv.p.xxxx()).xyxy(zero).xwww();
if(scan.p.y < (float)r.top) scan.t += dedge.t * ((float)r.top - scan.p.y);
if(scan.p.x < (float)r.left) scan.t += dscan.t * ((float)r.left - scan.p.x);
m_dsf.ssp(v, dscan);
for(; r.top < r.bottom; r.top++, scan.t += dedge.t)
{
if(IsOneOfMyScanlines(r.top))
{
m_dsf.ssl(r.right, r.left, r.top, scan);
m_stats.pixels += r.width();
}
}
}
void GSRasterizer::DrawEdge(const GSVertexSW& v0, const GSVertexSW& v1, const GSVertexSW& dv, const GSVector4i& scissor, int orientation, int side)
{
// orientation:
// - true: |dv.p.y| > |dv.p.x|
// - false |dv.p.x| > |dv.p.y|
// side:
// - true: top/left edge
// - false: bottom/right edge
// TODO: bit slow and too much duplicated code
// TODO: inner pre-step is still missing (hardly noticable)
GSVector4 fscissor(scissor);
GSVector4 lrtb = v0.p.upl(v1.p).ceil();
if(orientation)
{
GSVector4 tbmax = lrtb.max(fscissor.yyyy());
GSVector4 tbmin = lrtb.min(fscissor.wwww());
GSVector4i tbi = GSVector4i(tbmax.zwzw(tbmin));
int top, bottom;
GSVertexSW edge, dedge;
if((dv.p >= GSVector4::zero()).mask() & 2)
{
top = tbi.extract32<0>();
bottom = tbi.extract32<3>();
if(top >= bottom) return;
edge = v0;
dedge = dv / dv.p.yyyy();
edge += dedge * (tbmax.zzzz() - edge.p.yyyy());
}
else
{
top = tbi.extract32<1>();
bottom = tbi.extract32<2>();
if(top >= bottom) return;
edge = v1;
dedge = dv / dv.p.yyyy();
edge += dedge * (tbmax.wwww() - edge.p.yyyy());
}
GSVector4i p = GSVector4i(edge.p.upl(dedge.p) * 0x10000);
int x = p.extract32<0>();
int dx = p.extract32<1>();
if(side)
{
while(1)
{
do
{
int xi = x >> 16;
int xf = x & 0xffff;
if(scissor.left <= xi && xi < scissor.right && IsOneOfMyScanlines(xi))
{
m_stats.pixels++;
edge.t.u32[3] = (0x10000 - xf) & 0xffff;
m_dsf.ssle(xi + 1, xi, top, edge);
edge.t.u32[3] = 0;
}
}
while(0);
if(++top >= bottom) break;
edge += dedge;
x += dx;
}
}
else
{
while(1)
{
do
{
int xi = (x >> 16) + 1;
int xf = x & 0xffff;
if(scissor.left <= xi && xi < scissor.right && IsOneOfMyScanlines(xi))
{
m_stats.pixels++;
edge.t.u32[3] = xf;
m_dsf.ssle(xi + 1, xi, top, edge);
edge.t.u32[3] = 0;
}
}
while(0);
if(++top >= bottom) break;
edge += dedge;
x += dx;
}
}
}
else
{
GSVector4 lrmax = lrtb.max(fscissor.xxxx());
GSVector4 lrmin = lrtb.min(fscissor.zzzz());
GSVector4i lri = GSVector4i(lrmax.xyxy(lrmin));
int left, right;
GSVertexSW edge, dedge;
if((dv.p >= GSVector4::zero()).mask() & 1)
{
left = lri.extract32<0>();
right = lri.extract32<3>();
if(left >= right) return;
edge = v0;
dedge = dv / dv.p.xxxx();
edge += dedge * (lrmax.xxxx() - edge.p.xxxx());
}
else
{
left = lri.extract32<1>();
right = lri.extract32<2>();
if(left >= right) return;
edge = v1;
dedge = dv / dv.p.xxxx();
edge += dedge * (lrmax.yyyy() - edge.p.xxxx());
}
GSVector4i p = GSVector4i(edge.p.upl(dedge.p) * 0x10000);
int y = p.extract32<2>();
int dy = p.extract32<3>();
if(side)
{
while(1)
{
do
{
int yi = y >> 16;
int yf = y & 0xffff;
if(scissor.top <= yi && yi < scissor.bottom && IsOneOfMyScanlines(yi))
{
m_stats.pixels++;
edge.t.u32[3] = (0x10000 - yf) & 0xffff;
m_dsf.ssle(left + 1, left, yi, edge);
edge.t.u32[3] = 0;
}
}
while(0);
if(++left >= right) break;
edge += dedge;
y += dy;
}
}
else
{
while(1)
{
do
{
int yi = (y >> 16) + 1;
int yf = y & 0xffff;
if(scissor.top <= yi && yi < scissor.bottom && IsOneOfMyScanlines(yi))
{
m_stats.pixels++;
edge.t.u32[3] = yf;
m_dsf.ssle(left + 1, left, yi, edge);
edge.t.u32[3] = 0;
}
}
while(0);
if(++left >= right) break;
edge += dedge;
y += dy;
}
}
}
}
//
GSRasterizerMT::GSRasterizerMT(IDrawScanline* ds, int id, int threads, sem_t& finished, volatile long& sync)
: GSRasterizer(ds, id, threads)
, m_finished(finished)
, m_sync(sync)
, m_exit(false)
, m_data(NULL)
{
sem_init(&m_semaphore, false, 0);
sem_init(&m_stopped, false, 0);
CreateThread();
}
GSRasterizerMT::~GSRasterizerMT()
{
m_exit = true;
sem_post(&m_semaphore);
sem_wait(&m_stopped);
sem_destroy(&m_semaphore);
sem_destroy(&m_stopped);
}
void GSRasterizerMT::Draw(const GSRasterizerData* data)
{
m_data = data;
sem_post(&m_semaphore);
}
void GSRasterizerMT::ThreadProc()
{
// _mm_setcsr(MXCSR);
while( true )
{
sem_wait(&m_semaphore);
if(m_exit) break;
__super::Draw(m_data);
if( UseSpinningFinish )
_interlockedbittestandreset( &m_sync, m_id );
else
sem_post(&m_finished);
}
sem_post(&m_stopped);
}
//
GSRasterizerList::GSRasterizerList()
{
m_threadcount = 0;
sem_init(&m_finished, false, 0);
}
GSRasterizerList::~GSRasterizerList()
{
FreeRasterizers();
sem_destroy(&m_finished);
}
void GSRasterizerList::FreeRasterizers()
{
for(unsigned i=0; i<size(); ++i) delete (*this)[i];
clear();
}
void GSRasterizerList::Draw(const GSRasterizerData* data)
{
m_stats.Reset();
int64 start = __rdtsc();
m_sync = m_syncstart;
for(unsigned i=1; i<size(); ++i)
{
(*this)[i]->Draw(data);
}
(*this)[0]->Draw(data);
if( UseSpinningFinish )
{
while(m_sync) _mm_pause();
}
else
{
for(unsigned i=1; i<size(); ++i )
sem_wait(&m_finished);
}
m_stats.ticks = __rdtsc() - start;
for(unsigned i=0; i<size(); ++i)
{
GSRasterizerStats s;
(*this)[i]->GetStats(s);
m_stats.pixels += s.pixels;
m_stats.prims = max(m_stats.prims, s.prims);
}
}
void GSRasterizerList::GetStats(GSRasterizerStats& stats)
{
stats = m_stats;
}
void GSRasterizerList::PrintStats()
{
if(!empty())
{
front()->PrintStats();
}
}