pcsx2/pcsx2/x86/iCore.cpp

1100 lines
25 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2009 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "PrecompiledHeader.h"
#include "System.h"
#include "iR5900.h"
#include "Vif.h"
#include "VU.h"
#include "R3000A.h"
u16 g_x86AllocCounter = 0;
u16 g_xmmAllocCounter = 0;
EEINST* g_pCurInstInfo = NULL;
u32 g_cpuRegHasLive1 = 0, g_cpuPrevRegHasLive1 = 0; // set if upper 32 bits are live
u32 g_cpuRegHasSignExt = 0, g_cpuPrevRegHasSignExt = 0; // set if upper 32 bits are the sign extension of the lower integer
// used to make sure regs don't get changed while in recompiler
// use FreezeMMXRegs, FreezeXMMRegs
u32 g_recWriteback = 0;
_xmmregs xmmregs[iREGCNT_XMM], s_saveXMMregs[iREGCNT_XMM];
// X86 caching
_x86regs x86regs[iREGCNT_GPR], s_saveX86regs[iREGCNT_GPR];
#include <vector>
using namespace std;
// XMM Caching
#define VU_VFx_ADDR(x) (uptr)&VU->VF[x].UL[0]
#define VU_ACCx_ADDR (uptr)&VU->ACC.UL[0]
static int s_xmmchecknext = 0;
void _initXMMregs() {
memzero_obj( xmmregs );
g_xmmAllocCounter = 0;
s_xmmchecknext = 0;
}
__forceinline void* _XMMGetAddr(int type, int reg, VURegs *VU)
{
switch (type) {
case XMMTYPE_VFREG:
return (void*)VU_VFx_ADDR(reg);
case XMMTYPE_ACC:
return (void*)VU_ACCx_ADDR;
case XMMTYPE_GPRREG:
if( reg < 32 )
assert( !(g_cpuHasConstReg & (1<<reg)) || (g_cpuFlushedConstReg & (1<<reg)) );
return &cpuRegs.GPR.r[reg].UL[0];
case XMMTYPE_FPREG:
return &fpuRegs.fpr[reg];
case XMMTYPE_FPACC:
return &fpuRegs.ACC.f;
jNO_DEFAULT
}
return NULL;
}
int _getFreeXMMreg()
{
int i, tempi;
u32 bestcount = 0x10000;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[(i+s_xmmchecknext)%iREGCNT_XMM].inuse == 0) {
int ret = (s_xmmchecknext+i)%iREGCNT_XMM;
s_xmmchecknext = (s_xmmchecknext+i+1)%iREGCNT_XMM;
return ret;
}
}
// check for dead regs
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
if (!(EEINST_ISLIVEXMM(xmmregs[i].reg))) {
_freeXMMreg(i);
return i;
}
}
}
// check for future xmm usage
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
if( !(g_pCurInstInfo->regs[xmmregs[i].reg] & EEINST_XMM) ) {
_freeXMMreg(i);
return i;
}
}
}
tempi = -1;
bestcount = 0xffff;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type != XMMTYPE_TEMP) {
if( xmmregs[i].counter < bestcount ) {
tempi = i;
bestcount = xmmregs[i].counter;
}
continue;
}
_freeXMMreg(i);
return i;
}
if( tempi != -1 ) {
_freeXMMreg(tempi);
return tempi;
}
Console::Error("*PCSX2*: XMM Reg Allocation Error in _getFreeXMMreg()!");
return -1;
}
int _allocTempXMMreg(XMMSSEType type, int xmmreg) {
if (xmmreg == -1)
xmmreg = _getFreeXMMreg();
else
_freeXMMreg(xmmreg);
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_TEMP;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
g_xmmtypes[xmmreg] = type;
return xmmreg;
}
int _allocVFtoXMMreg(VURegs *VU, int xmmreg, int vfreg, int mode) {
int i;
int readfromreg = -1;
for (i=0; i<iREGCNT_XMM; i++) {
if ((xmmregs[i].inuse == 0) || (xmmregs[i].type != XMMTYPE_VFREG) ||
(xmmregs[i].reg != vfreg) || (xmmregs[i].VU != XMM_CONV_VU(VU)))
continue;
if( xmmreg >= 0 ) {
// requested specific reg, so return that instead
if( i != xmmreg ) {
if( xmmregs[i].mode & MODE_READ ) readfromreg = i;
//if( xmmregs[i].mode & MODE_WRITE ) mode |= MODE_WRITE;
mode |= xmmregs[i].mode&MODE_WRITE;
xmmregs[i].inuse = 0;
break;
}
}
xmmregs[i].needed = 1;
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ) ) {
SSE_MOVAPS_M128_to_XMM(i, VU_VFx_ADDR(vfreg));
xmmregs[i].mode |= MODE_READ;
}
g_xmmtypes[i] = XMMT_FPS;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].mode|= mode;
return i;
}
if (xmmreg == -1)
xmmreg = _getFreeXMMreg();
else
_freeXMMreg(xmmreg);
g_xmmtypes[xmmreg] = XMMT_FPS;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_VFREG;
xmmregs[xmmreg].reg = vfreg;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].VU = XMM_CONV_VU(VU);
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
if (mode & MODE_READ) {
if( readfromreg >= 0 ) SSE_MOVAPS_XMM_to_XMM(xmmreg, readfromreg);
else SSE_MOVAPS_M128_to_XMM(xmmreg, VU_VFx_ADDR(xmmregs[xmmreg].reg));
}
return xmmreg;
}
int _checkXMMreg(int type, int reg, int mode)
{
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse && (xmmregs[i].type == (type&0xff)) && (xmmregs[i].reg == reg)) {
if ( !(xmmregs[i].mode & MODE_READ) ) {
if (mode & MODE_READ) {
SSEX_MOVDQA_M128_to_XMM(i, (uptr)_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0));
}
else if (mode & MODE_READHALF) {
if( g_xmmtypes[i] == XMMT_INT )
SSE2_MOVQ_M64_to_XMM(i, (uptr)_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0));
else
SSE_MOVLPS_M64_to_XMM(i, (uptr)_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0));
}
}
xmmregs[i].mode |= mode&~MODE_READHALF;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
return i;
}
}
return -1;
}
int _allocACCtoXMMreg(VURegs *VU, int xmmreg, int mode) {
int i;
int readfromreg = -1;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_ACC) continue;
if (xmmregs[i].VU != XMM_CONV_VU(VU) ) continue;
if( xmmreg >= 0 ) {
// requested specific reg, so return that instead
if( i != xmmreg ) {
if( xmmregs[i].mode & MODE_READ ) readfromreg = i;
//if( xmmregs[i].mode & MODE_WRITE ) mode |= MODE_WRITE;
mode |= xmmregs[i].mode&MODE_WRITE;
xmmregs[i].inuse = 0;
break;
}
}
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ)) {
SSE_MOVAPS_M128_to_XMM(i, VU_ACCx_ADDR);
xmmregs[i].mode |= MODE_READ;
}
g_xmmtypes[i] = XMMT_FPS;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
xmmregs[i].mode|= mode;
return i;
}
if (xmmreg == -1)
xmmreg = _getFreeXMMreg();
else
_freeXMMreg(xmmreg);
g_xmmtypes[xmmreg] = XMMT_FPS;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_ACC;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].VU = XMM_CONV_VU(VU);
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
xmmregs[xmmreg].reg = 0;
if (mode & MODE_READ)
{
if( readfromreg >= 0 )
SSE_MOVAPS_XMM_to_XMM(xmmreg, readfromreg);
else
SSE_MOVAPS_M128_to_XMM(xmmreg, VU_ACCx_ADDR);
}
return xmmreg;
}
int _allocFPtoXMMreg(int xmmreg, int fpreg, int mode) {
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_FPREG) continue;
if (xmmregs[i].reg != fpreg) continue;
if( !(xmmregs[i].mode & MODE_READ) && (mode & MODE_READ)) {
SSE_MOVSS_M32_to_XMM(i, (uptr)&fpuRegs.fpr[fpreg].f);
xmmregs[i].mode |= MODE_READ;
}
g_xmmtypes[i] = XMMT_FPS;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
xmmregs[i].mode|= mode;
return i;
}
if (xmmreg == -1) xmmreg = _getFreeXMMreg();
g_xmmtypes[xmmreg] = XMMT_FPS;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_FPREG;
xmmregs[xmmreg].reg = fpreg;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
if (mode & MODE_READ)
SSE_MOVSS_M32_to_XMM(xmmreg, (uptr)&fpuRegs.fpr[fpreg].f);
return xmmreg;
}
int _allocGPRtoXMMreg(int xmmreg, int gprreg, int mode)
{
int i;
for (i=0; i<iREGCNT_XMM; i++)
{
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_GPRREG) continue;
if (xmmregs[i].reg != gprreg) continue;
assert( _checkMMXreg(MMX_GPR|gprreg, mode) == -1 );
g_xmmtypes[i] = XMMT_INT;
if (!(xmmregs[i].mode & MODE_READ) && (mode & MODE_READ))
{
if (gprreg == 0 )
{
SSEX_PXOR_XMM_to_XMM(i, i);
}
else
{
//assert( !(g_cpuHasConstReg & (1<<gprreg)) || (g_cpuFlushedConstReg & (1<<gprreg)) );
_flushConstReg(gprreg);
SSEX_MOVDQA_M128_to_XMM(i, (uptr)&cpuRegs.GPR.r[gprreg].UL[0]);
}
xmmregs[i].mode |= MODE_READ;
}
if ((mode & MODE_WRITE) && (gprreg < 32))
{
g_cpuHasConstReg &= ~(1<<gprreg);
//assert( !(g_cpuHasConstReg & (1<<gprreg)) );
}
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
xmmregs[i].mode|= mode;
return i;
}
// currently only gpr regs are const
// fixme - do we really need to execute this both here and in the loop?
if ((mode & MODE_WRITE) && gprreg < 32)
{
//assert( !(g_cpuHasConstReg & (1<<gprreg)) );
g_cpuHasConstReg &= ~(1<<gprreg);
}
if (xmmreg == -1) xmmreg = _getFreeXMMreg();
g_xmmtypes[xmmreg] = XMMT_INT;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_GPRREG;
xmmregs[xmmreg].reg = gprreg;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
if (mode & MODE_READ)
{
if (gprreg == 0 )
{
SSEX_PXOR_XMM_to_XMM(xmmreg, xmmreg);
}
else
{
// DOX86
int mmxreg;
if (mode & MODE_READ) _flushConstReg(gprreg);
mmxreg = _checkMMXreg(MMX_GPR+gprreg, 0);
if (mmxreg >= 0 )
{
// transfer
SetMMXstate();
SSE2_MOVQ2DQ_MM_to_XMM(xmmreg, mmxreg);
SSE2_PUNPCKLQDQ_XMM_to_XMM(xmmreg, xmmreg);
SSE2_PUNPCKHQDQ_M128_to_XMM(xmmreg, (u32)&cpuRegs.GPR.r[gprreg].UL[0]);
if (mmxregs[mmxreg].mode & MODE_WRITE )
{
// instead of setting to write, just flush to mem
if (!(mode & MODE_WRITE))
{
SetMMXstate();
MOVQRtoM((u32)&cpuRegs.GPR.r[gprreg].UL[0], mmxreg);
}
//xmmregs[xmmreg].mode |= MODE_WRITE;
}
// don't flush
mmxregs[mmxreg].inuse = 0;
}
else
SSEX_MOVDQA_M128_to_XMM(xmmreg, (uptr)&cpuRegs.GPR.r[gprreg].UL[0]);
}
}
else
_deleteMMXreg(MMX_GPR+gprreg, 0);
return xmmreg;
}
int _allocFPACCtoXMMreg(int xmmreg, int mode)
{
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_FPACC) continue;
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ)) {
SSE_MOVSS_M32_to_XMM(i, (uptr)&fpuRegs.ACC.f);
xmmregs[i].mode |= MODE_READ;
}
g_xmmtypes[i] = XMMT_FPS;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
xmmregs[i].mode|= mode;
return i;
}
if (xmmreg == -1) {
xmmreg = _getFreeXMMreg();
}
g_xmmtypes[xmmreg] = XMMT_FPS;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_FPACC;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].reg = 0;
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
if (mode & MODE_READ) {
SSE_MOVSS_M32_to_XMM(xmmreg, (uptr)&fpuRegs.ACC.f);
}
return xmmreg;
}
void _addNeededVFtoXMMreg(int vfreg) {
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_VFREG) continue;
if (xmmregs[i].reg != vfreg) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
}
}
void _addNeededGPRtoXMMreg(int gprreg)
{
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_GPRREG) continue;
if (xmmregs[i].reg != gprreg) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
break;
}
}
void _addNeededACCtoXMMreg() {
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_ACC) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
break;
}
}
void _addNeededFPtoXMMreg(int fpreg) {
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_FPREG) continue;
if (xmmregs[i].reg != fpreg) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
break;
}
}
void _addNeededFPACCtoXMMreg() {
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_FPACC) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
break;
}
}
void _clearNeededXMMregs() {
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if( xmmregs[i].needed ) {
// setup read to any just written regs
if( xmmregs[i].inuse && (xmmregs[i].mode&MODE_WRITE) )
xmmregs[i].mode |= MODE_READ;
xmmregs[i].needed = 0;
}
if( xmmregs[i].inuse ) {
assert( xmmregs[i].type != XMMTYPE_TEMP );
}
}
}
void _deleteVFtoXMMreg(int reg, int vu, int flush)
{
int i;
VURegs *VU = vu ? &VU1 : &VU0;
for (i=0; i<iREGCNT_XMM; i++)
{
if (xmmregs[i].inuse && (xmmregs[i].type == XMMTYPE_VFREG) &&
(xmmregs[i].reg == reg) && (xmmregs[i].VU == vu))
{
switch(flush) {
case 0:
_freeXMMreg(i);
break;
case 1:
case 2:
if( xmmregs[i].mode & MODE_WRITE )
{
assert( reg != 0 );
if( xmmregs[i].mode & MODE_VUXYZ )
{
if( xmmregs[i].mode & MODE_VUZ )
{
// xyz, don't destroy w
int t0reg;
for (t0reg = 0; t0reg < iREGCNT_XMM; ++t0reg)
{
if (!xmmregs[t0reg].inuse )
break;
}
if (t0reg < iREGCNT_XMM )
{
SSE_MOVHLPS_XMM_to_XMM(t0reg, i);
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[i].reg), i);
SSE_MOVSS_XMM_to_M32(VU_VFx_ADDR(xmmregs[i].reg)+8, t0reg);
}
else
{
// no free reg
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[i].reg), i);
SSE_SHUFPS_XMM_to_XMM(i, i, 0xc6);
SSE_MOVSS_XMM_to_M32(VU_VFx_ADDR(xmmregs[i].reg)+8, i);
SSE_SHUFPS_XMM_to_XMM(i, i, 0xc6);
}
}
else
{
// xy
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[i].reg), i);
}
}
else SSE_MOVAPS_XMM_to_M128(VU_VFx_ADDR(xmmregs[i].reg), i);
// get rid of MODE_WRITE since don't want to flush again
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
if (flush == 2) xmmregs[i].inuse = 0;
break;
}
return;
}
}
}
void _deleteACCtoXMMreg(int vu, int flush)
{
int i;
VURegs *VU = vu ? &VU1 : &VU0;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse && (xmmregs[i].type == XMMTYPE_ACC) && (xmmregs[i].VU == vu)) {
switch(flush) {
case 0:
_freeXMMreg(i);
break;
case 1:
case 2:
if( xmmregs[i].mode & MODE_WRITE ) {
if( xmmregs[i].mode & MODE_VUXYZ ) {
if( xmmregs[i].mode & MODE_VUZ ) {
// xyz, don't destroy w
int t0reg;
for(t0reg = 0; t0reg < iREGCNT_XMM; ++t0reg ) {
if( !xmmregs[t0reg].inuse ) break;
}
if( t0reg < iREGCNT_XMM ) {
SSE_MOVHLPS_XMM_to_XMM(t0reg, i);
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, i);
SSE_MOVSS_XMM_to_M32(VU_ACCx_ADDR+8, t0reg);
}
else {
// no free reg
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, i);
SSE_SHUFPS_XMM_to_XMM(i, i, 0xc6);
//SSE_MOVHLPS_XMM_to_XMM(i, i);
SSE_MOVSS_XMM_to_M32(VU_ACCx_ADDR+8, i);
SSE_SHUFPS_XMM_to_XMM(i, i, 0xc6);
}
}
else {
// xy
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, i);
}
}
else SSE_MOVAPS_XMM_to_M128(VU_ACCx_ADDR, i);
// get rid of MODE_WRITE since don't want to flush again
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
if( flush == 2 )
xmmregs[i].inuse = 0;
break;
}
return;
}
}
}
// when flush is 1 or 2, only commits the reg to mem (still leave its xmm entry)
void _deleteGPRtoXMMreg(int reg, int flush)
{
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_GPRREG && xmmregs[i].reg == reg ) {
switch(flush) {
case 0:
_freeXMMreg(i);
break;
case 1:
case 2:
if( xmmregs[i].mode & MODE_WRITE ) {
assert( reg != 0 );
//assert( g_xmmtypes[i] == XMMT_INT );
SSEX_MOVDQA_XMM_to_M128((uptr)&cpuRegs.GPR.r[reg].UL[0], i);
// get rid of MODE_WRITE since don't want to flush again
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
if( flush == 2 )
xmmregs[i].inuse = 0;
break;
}
return;
}
}
}
void _deleteFPtoXMMreg(int reg, int flush)
{
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_FPREG && xmmregs[i].reg == reg ) {
switch(flush) {
case 0:
_freeXMMreg(i);
return;
case 1:
if (xmmregs[i].mode & MODE_WRITE) {
SSE_MOVSS_XMM_to_M32((uptr)&fpuRegs.fpr[reg].UL, i);
// get rid of MODE_WRITE since don't want to flush again
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
return;
case 2:
xmmregs[i].inuse = 0;
return;
}
}
}
}
void _freeXMMreg(int xmmreg)
{
assert( xmmreg < iREGCNT_XMM );
if (!xmmregs[xmmreg].inuse) return;
if (xmmregs[xmmreg].mode & MODE_WRITE) {
switch (xmmregs[xmmreg].type) {
case XMMTYPE_VFREG:
{
const VURegs *VU = xmmregs[xmmreg].VU ? &VU1 : &VU0;
if( xmmregs[xmmreg].mode & MODE_VUXYZ )
{
if( xmmregs[xmmreg].mode & MODE_VUZ )
{
// don't destroy w
int t0reg;
for(t0reg = 0; t0reg < iREGCNT_XMM; ++t0reg ) {
if( !xmmregs[t0reg].inuse ) break;
}
if( t0reg < iREGCNT_XMM )
{
SSE_MOVHLPS_XMM_to_XMM(t0reg, xmmreg);
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[xmmreg].reg), xmmreg);
SSE_MOVSS_XMM_to_M32(VU_VFx_ADDR(xmmregs[xmmreg].reg)+8, t0reg);
}
else
{
// no free reg
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[xmmreg].reg), xmmreg);
SSE_SHUFPS_XMM_to_XMM(xmmreg, xmmreg, 0xc6);
//SSE_MOVHLPS_XMM_to_XMM(xmmreg, xmmreg);
SSE_MOVSS_XMM_to_M32(VU_VFx_ADDR(xmmregs[xmmreg].reg)+8, xmmreg);
SSE_SHUFPS_XMM_to_XMM(xmmreg, xmmreg, 0xc6);
}
}
else
{
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[xmmreg].reg), xmmreg);
}
}
else
{
SSE_MOVAPS_XMM_to_M128(VU_VFx_ADDR(xmmregs[xmmreg].reg), xmmreg);
}
}
break;
case XMMTYPE_ACC:
{
const VURegs *VU = xmmregs[xmmreg].VU ? &VU1 : &VU0;
if( xmmregs[xmmreg].mode & MODE_VUXYZ )
{
if( xmmregs[xmmreg].mode & MODE_VUZ )
{
// don't destroy w
int t0reg;
for(t0reg = 0; t0reg < iREGCNT_XMM; ++t0reg ) {
if( !xmmregs[t0reg].inuse ) break;
}
if( t0reg < iREGCNT_XMM )
{
SSE_MOVHLPS_XMM_to_XMM(t0reg, xmmreg);
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, xmmreg);
SSE_MOVSS_XMM_to_M32(VU_ACCx_ADDR+8, t0reg);
}
else
{
// no free reg
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, xmmreg);
SSE_SHUFPS_XMM_to_XMM(xmmreg, xmmreg, 0xc6);
//SSE_MOVHLPS_XMM_to_XMM(xmmreg, xmmreg);
SSE_MOVSS_XMM_to_M32(VU_ACCx_ADDR+8, xmmreg);
SSE_SHUFPS_XMM_to_XMM(xmmreg, xmmreg, 0xc6);
}
}
else
{
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, xmmreg);
}
}
else
{
SSE_MOVAPS_XMM_to_M128(VU_ACCx_ADDR, xmmreg);
}
}
break;
case XMMTYPE_GPRREG:
assert( xmmregs[xmmreg].reg != 0 );
//assert( g_xmmtypes[xmmreg] == XMMT_INT );
SSEX_MOVDQA_XMM_to_M128((uptr)&cpuRegs.GPR.r[xmmregs[xmmreg].reg].UL[0], xmmreg);
break;
case XMMTYPE_FPREG:
SSE_MOVSS_XMM_to_M32((uptr)&fpuRegs.fpr[xmmregs[xmmreg].reg], xmmreg);
break;
case XMMTYPE_FPACC:
SSE_MOVSS_XMM_to_M32((uptr)&fpuRegs.ACC.f, xmmreg);
break;
default:
break;
}
}
xmmregs[xmmreg].mode &= ~(MODE_WRITE|MODE_VUXYZ);
xmmregs[xmmreg].inuse = 0;
}
int _getNumXMMwrite()
{
int num = 0, i;
for (i=0; i<iREGCNT_XMM; i++) {
if( xmmregs[i].inuse && (xmmregs[i].mode&MODE_WRITE) ) ++num;
}
return num;
}
u8 _hasFreeXMMreg()
{
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (!xmmregs[i].inuse) return 1;
}
// check for dead regs
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
if( !EEINST_ISLIVEXMM(xmmregs[i].reg) ) {
return 1;
}
}
}
// check for dead regs
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
if( !(g_pCurInstInfo->regs[xmmregs[i].reg]&EEINST_USED) ) {
return 1;
}
}
}
return 0;
}
void _moveXMMreg(int xmmreg)
{
int i;
if( !xmmregs[xmmreg].inuse ) return;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse) continue;
break;
}
if( i == iREGCNT_XMM ) {
_freeXMMreg(xmmreg);
return;
}
// move
xmmregs[i] = xmmregs[xmmreg];
xmmregs[xmmreg].inuse = 0;
SSEX_MOVDQA_XMM_to_XMM(i, xmmreg);
}
void _flushXMMregs()
{
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
assert( xmmregs[i].type != XMMTYPE_TEMP );
assert( xmmregs[i].mode & (MODE_READ|MODE_WRITE) );
_freeXMMreg(i);
xmmregs[i].inuse = 1;
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
}
void _freeXMMregs()
{
int i;
for (i=0; i<iREGCNT_XMM; i++) {
if (xmmregs[i].inuse == 0) continue;
assert( xmmregs[i].type != XMMTYPE_TEMP );
//assert( xmmregs[i].mode & (MODE_READ|MODE_WRITE) );
_freeXMMreg(i);
}
}
PCSX2_ALIGNED16(u32 s_zeros[4]) = {0};
int _signExtendXMMtoM(u32 to, x86SSERegType from, int candestroy)
{
int t0reg;
g_xmmtypes[from] = XMMT_INT;
if( candestroy ) {
if( g_xmmtypes[from] == XMMT_FPS ) SSE_MOVSS_XMM_to_M32(to, from);
else SSE2_MOVD_XMM_to_M32(to, from);
SSE2_PSRAD_I8_to_XMM(from, 31);
SSE2_MOVD_XMM_to_M32(to+4, from);
return 1;
}
else {
// can't destroy and type is int
assert( g_xmmtypes[from] == XMMT_INT );
if( _hasFreeXMMreg() ) {
xmmregs[from].needed = 1;
t0reg = _allocTempXMMreg(XMMT_INT, -1);
SSEX_MOVDQA_XMM_to_XMM(t0reg, from);
SSE2_PSRAD_I8_to_XMM(from, 31);
SSE2_MOVD_XMM_to_M32(to, t0reg);
SSE2_MOVD_XMM_to_M32(to+4, from);
// swap xmm regs.. don't ask
xmmregs[t0reg] = xmmregs[from];
xmmregs[from].inuse = 0;
}
else {
SSE2_MOVD_XMM_to_M32(to+4, from);
SSE2_MOVD_XMM_to_M32(to, from);
SAR32ItoM(to+4, 31);
}
return 0;
}
assert(0);
}
int _allocCheckGPRtoXMM(EEINST* pinst, int gprreg, int mode)
{
if( pinst->regs[gprreg] & EEINST_XMM ) return _allocGPRtoXMMreg(-1, gprreg, mode);
return _checkXMMreg(XMMTYPE_GPRREG, gprreg, mode);
}
int _allocCheckFPUtoXMM(EEINST* pinst, int fpureg, int mode)
{
if( pinst->fpuregs[fpureg] & EEINST_XMM ) return _allocFPtoXMMreg(-1, fpureg, mode);
return _checkXMMreg(XMMTYPE_FPREG, fpureg, mode);
}
int _allocCheckGPRtoX86(EEINST* pinst, int gprreg, int mode)
{
if( pinst->regs[gprreg] & EEINST_USED )
return _allocX86reg(-1, X86TYPE_GPR, gprreg, mode);
return _checkX86reg(X86TYPE_GPR, gprreg, mode);
}
void _recClearInst(EEINST* pinst)
{
memzero_obj( *pinst );
memset8_obj<EEINST_LIVE0|EEINST_LIVE1|EEINST_LIVE2>( pinst->regs );
memset8_obj<EEINST_LIVE0>( pinst->fpuregs );
}
// returns nonzero value if reg has been written between [startpc, endpc-4]
u32 _recIsRegWritten(EEINST* pinst, int size, u8 xmmtype, u8 reg)
{
u32 i, inst = 1;
while(size-- > 0) {
for(i = 0; i < ArraySize(pinst->writeType); ++i) {
if ((pinst->writeType[i] == xmmtype) && (pinst->writeReg[i] == reg))
return inst;
}
++inst;
pinst++;
}
return 0;
}
u32 _recIsRegUsed(EEINST* pinst, int size, u8 xmmtype, u8 reg)
{
u32 i, inst = 1;
while(size-- > 0) {
for(i = 0; i < ArraySize(pinst->writeType); ++i) {
if( pinst->writeType[i] == xmmtype && pinst->writeReg[i] == reg )
return inst;
}
for(i = 0; i < ArraySize(pinst->readType); ++i) {
if( pinst->readType[i] == xmmtype && pinst->readReg[i] == reg )
return inst;
}
++inst;
pinst++;
}
return 0;
}
void _recFillRegister(EEINST& pinst, int type, int reg, int write)
{
u32 i = 0;
if (write ) {
for(i = 0; i < ArraySize(pinst.writeType); ++i) {
if( pinst.writeType[i] == XMMTYPE_TEMP ) {
pinst.writeType[i] = type;
pinst.writeReg[i] = reg;
return;
}
}
assert(0);
}
else {
for(i = 0; i < ArraySize(pinst.readType); ++i) {
if( pinst.readType[i] == XMMTYPE_TEMP ) {
pinst.readType[i] = type;
pinst.readReg[i] = reg;
return;
}
}
assert(0);
}
}
void SetMMXstate() {
x86FpuState = MMX_STATE;
}