mirror of https://github.com/PCSX2/pcsx2.git
575 lines
17 KiB
C++
575 lines
17 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
///
|
|
/// Beats-per-minute (BPM) detection routine.
|
|
///
|
|
/// The beat detection algorithm works as follows:
|
|
/// - Use function 'inputSamples' to input a chunks of samples to the class for
|
|
/// analysis. It's a good idea to enter a large sound file or stream in smallish
|
|
/// chunks of around few kilosamples in order not to extinguish too much RAM memory.
|
|
/// - Inputted sound data is decimated to approx 500 Hz to reduce calculation burden,
|
|
/// which is basically ok as low (bass) frequencies mostly determine the beat rate.
|
|
/// Simple averaging is used for anti-alias filtering because the resulting signal
|
|
/// quality isn't of that high importance.
|
|
/// - Decimated sound data is enveloped, i.e. the amplitude shape is detected by
|
|
/// taking absolute value that's smoothed by sliding average. Signal levels that
|
|
/// are below a couple of times the general RMS amplitude level are cut away to
|
|
/// leave only notable peaks there.
|
|
/// - Repeating sound patterns (e.g. beats) are detected by calculating short-term
|
|
/// autocorrelation function of the enveloped signal.
|
|
/// - After whole sound data file has been analyzed as above, the bpm level is
|
|
/// detected by function 'getBpm' that finds the highest peak of the autocorrelation
|
|
/// function, calculates it's precise location and converts this reading to bpm's.
|
|
///
|
|
/// Author : Copyright (c) Olli Parviainen
|
|
/// Author e-mail : oparviai 'at' iki.fi
|
|
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
|
///
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// License :
|
|
//
|
|
// SoundTouch audio processing library
|
|
// Copyright (c) Olli Parviainen
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#define _USE_MATH_DEFINES
|
|
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <cfloat>
|
|
#include "FIFOSampleBuffer.h"
|
|
#include "PeakFinder.h"
|
|
#include "BPMDetect.h"
|
|
|
|
using namespace soundtouch;
|
|
|
|
// algorithm input sample block size
|
|
static const int INPUT_BLOCK_SIZE = 2048;
|
|
|
|
// decimated sample block size
|
|
static const int DECIMATED_BLOCK_SIZE = 256;
|
|
|
|
/// Target sample rate after decimation
|
|
static const int TARGET_SRATE = 1000;
|
|
|
|
/// XCorr update sequence size, update in about 200msec chunks
|
|
static const int XCORR_UPDATE_SEQUENCE = (int)(TARGET_SRATE / 5);
|
|
|
|
/// Moving average N size
|
|
static const int MOVING_AVERAGE_N = 15;
|
|
|
|
/// XCorr decay time constant, decay to half in 30 seconds
|
|
/// If it's desired to have the system adapt quicker to beat rate
|
|
/// changes within a continuing music stream, then the
|
|
/// 'xcorr_decay_time_constant' value can be reduced, yet that
|
|
/// can increase possibility of glitches in bpm detection.
|
|
static const double XCORR_DECAY_TIME_CONSTANT = 30.0;
|
|
|
|
/// Data overlap factor for beat detection algorithm
|
|
static const int OVERLAP_FACTOR = 4;
|
|
|
|
static const double TWOPI = (2 * M_PI);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Enable following define to create bpm analysis file:
|
|
|
|
//#define _CREATE_BPM_DEBUG_FILE
|
|
|
|
#ifdef _CREATE_BPM_DEBUG_FILE
|
|
|
|
static void _SaveDebugData(const char *name, const float *data, int minpos, int maxpos, double coeff)
|
|
{
|
|
FILE *fptr = fopen(name, "wt");
|
|
int i;
|
|
|
|
if (fptr)
|
|
{
|
|
printf("\nWriting BPM debug data into file %s\n", name);
|
|
for (i = minpos; i < maxpos; i ++)
|
|
{
|
|
fprintf(fptr, "%d\t%.1lf\t%f\n", i, coeff / (double)i, data[i]);
|
|
}
|
|
fclose(fptr);
|
|
}
|
|
}
|
|
|
|
void _SaveDebugBeatPos(const char *name, const std::vector<BEAT> &beats)
|
|
{
|
|
printf("\nWriting beat detections data into file %s\n", name);
|
|
|
|
FILE *fptr = fopen(name, "wt");
|
|
if (fptr)
|
|
{
|
|
for (uint i = 0; i < beats.size(); i++)
|
|
{
|
|
BEAT b = beats[i];
|
|
fprintf(fptr, "%lf\t%lf\n", b.pos, b.strength);
|
|
}
|
|
fclose(fptr);
|
|
}
|
|
}
|
|
#else
|
|
#define _SaveDebugData(name, a,b,c,d)
|
|
#define _SaveDebugBeatPos(name, b)
|
|
#endif
|
|
|
|
// Hamming window
|
|
void hamming(float *w, int N)
|
|
{
|
|
for (int i = 0; i < N; i++)
|
|
{
|
|
w[i] = (float)(0.54 - 0.46 * cos(TWOPI * i / (N - 1)));
|
|
}
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IIR2_filter - 2nd order IIR filter
|
|
|
|
IIR2_filter::IIR2_filter(const double *lpf_coeffs)
|
|
{
|
|
memcpy(coeffs, lpf_coeffs, 5 * sizeof(double));
|
|
memset(prev, 0, sizeof(prev));
|
|
}
|
|
|
|
|
|
float IIR2_filter::update(float x)
|
|
{
|
|
prev[0] = x;
|
|
double y = x * coeffs[0];
|
|
|
|
for (int i = 4; i >= 1; i--)
|
|
{
|
|
y += coeffs[i] * prev[i];
|
|
prev[i] = prev[i - 1];
|
|
}
|
|
|
|
prev[3] = y;
|
|
return (float)y;
|
|
}
|
|
|
|
|
|
// IIR low-pass filter coefficients, calculated with matlab/octave cheby2(2,40,0.05)
|
|
const double _LPF_coeffs[5] = { 0.00996655391939, -0.01944529148401, 0.00996655391939, 1.96867605796247, -0.96916387431724 };
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
BPMDetect::BPMDetect(int numChannels, int aSampleRate) :
|
|
beat_lpf(_LPF_coeffs)
|
|
{
|
|
beats.reserve(250); // initial reservation to prevent frequent reallocation
|
|
|
|
this->sampleRate = aSampleRate;
|
|
this->channels = numChannels;
|
|
|
|
decimateSum = 0;
|
|
decimateCount = 0;
|
|
|
|
// choose decimation factor so that result is approx. 1000 Hz
|
|
decimateBy = sampleRate / TARGET_SRATE;
|
|
if ((decimateBy <= 0) || (decimateBy * DECIMATED_BLOCK_SIZE < INPUT_BLOCK_SIZE))
|
|
{
|
|
ST_THROW_RT_ERROR("Too small samplerate");
|
|
}
|
|
|
|
// Calculate window length & starting item according to desired min & max bpms
|
|
windowLen = (60 * sampleRate) / (decimateBy * MIN_BPM);
|
|
windowStart = (60 * sampleRate) / (decimateBy * MAX_BPM_RANGE);
|
|
|
|
assert(windowLen > windowStart);
|
|
|
|
// allocate new working objects
|
|
xcorr = new float[windowLen];
|
|
memset(xcorr, 0, windowLen * sizeof(float));
|
|
|
|
pos = 0;
|
|
peakPos = 0;
|
|
peakVal = 0;
|
|
init_scaler = 1;
|
|
beatcorr_ringbuffpos = 0;
|
|
beatcorr_ringbuff = new float[windowLen];
|
|
memset(beatcorr_ringbuff, 0, windowLen * sizeof(float));
|
|
|
|
// allocate processing buffer
|
|
buffer = new FIFOSampleBuffer();
|
|
// we do processing in mono mode
|
|
buffer->setChannels(1);
|
|
buffer->clear();
|
|
|
|
// calculate hamming windows
|
|
hamw = new float[XCORR_UPDATE_SEQUENCE];
|
|
hamming(hamw, XCORR_UPDATE_SEQUENCE);
|
|
hamw2 = new float[XCORR_UPDATE_SEQUENCE / 2];
|
|
hamming(hamw2, XCORR_UPDATE_SEQUENCE / 2);
|
|
}
|
|
|
|
|
|
BPMDetect::~BPMDetect()
|
|
{
|
|
delete[] xcorr;
|
|
delete[] beatcorr_ringbuff;
|
|
delete[] hamw;
|
|
delete[] hamw2;
|
|
delete buffer;
|
|
}
|
|
|
|
|
|
/// convert to mono, low-pass filter & decimate to about 500 Hz.
|
|
/// return number of outputted samples.
|
|
///
|
|
/// Decimation is used to remove the unnecessary frequencies and thus to reduce
|
|
/// the amount of data needed to be processed as calculating autocorrelation
|
|
/// function is a very-very heavy operation.
|
|
///
|
|
/// Anti-alias filtering is done simply by averaging the samples. This is really a
|
|
/// poor-man's anti-alias filtering, but it's not so critical in this kind of application
|
|
/// (it'd also be difficult to design a high-quality filter with steep cut-off at very
|
|
/// narrow band)
|
|
int BPMDetect::decimate(SAMPLETYPE *dest, const SAMPLETYPE *src, int numsamples)
|
|
{
|
|
int count, outcount;
|
|
LONG_SAMPLETYPE out;
|
|
|
|
assert(channels > 0);
|
|
assert(decimateBy > 0);
|
|
outcount = 0;
|
|
for (count = 0; count < numsamples; count ++)
|
|
{
|
|
int j;
|
|
|
|
// convert to mono and accumulate
|
|
for (j = 0; j < channels; j ++)
|
|
{
|
|
decimateSum += src[j];
|
|
}
|
|
src += j;
|
|
|
|
decimateCount ++;
|
|
if (decimateCount >= decimateBy)
|
|
{
|
|
// Store every Nth sample only
|
|
out = (LONG_SAMPLETYPE)(decimateSum / (decimateBy * channels));
|
|
decimateSum = 0;
|
|
decimateCount = 0;
|
|
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
|
// check ranges for sure (shouldn't actually be necessary)
|
|
if (out > 32767)
|
|
{
|
|
out = 32767;
|
|
}
|
|
else if (out < -32768)
|
|
{
|
|
out = -32768;
|
|
}
|
|
#endif // SOUNDTOUCH_INTEGER_SAMPLES
|
|
dest[outcount] = (SAMPLETYPE)out;
|
|
outcount ++;
|
|
}
|
|
}
|
|
return outcount;
|
|
}
|
|
|
|
|
|
// Calculates autocorrelation function of the sample history buffer
|
|
void BPMDetect::updateXCorr(int process_samples)
|
|
{
|
|
int offs;
|
|
SAMPLETYPE *pBuffer;
|
|
|
|
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
|
|
assert(process_samples == XCORR_UPDATE_SEQUENCE);
|
|
|
|
pBuffer = buffer->ptrBegin();
|
|
|
|
// calculate decay factor for xcorr filtering
|
|
float xcorr_decay = (float)pow(0.5, 1.0 / (XCORR_DECAY_TIME_CONSTANT * TARGET_SRATE / process_samples));
|
|
|
|
// prescale pbuffer
|
|
float tmp[XCORR_UPDATE_SEQUENCE];
|
|
for (int i = 0; i < process_samples; i++)
|
|
{
|
|
tmp[i] = hamw[i] * hamw[i] * pBuffer[i];
|
|
}
|
|
|
|
#pragma omp parallel for
|
|
for (offs = windowStart; offs < windowLen; offs ++)
|
|
{
|
|
double sum;
|
|
int i;
|
|
|
|
sum = 0;
|
|
for (i = 0; i < process_samples; i ++)
|
|
{
|
|
sum += tmp[i] * pBuffer[i + offs]; // scaling the sub-result shouldn't be necessary
|
|
}
|
|
xcorr[offs] *= xcorr_decay; // decay 'xcorr' here with suitable time constant.
|
|
|
|
xcorr[offs] += (float)fabs(sum);
|
|
}
|
|
}
|
|
|
|
|
|
// Detect individual beat positions
|
|
void BPMDetect::updateBeatPos(int process_samples)
|
|
{
|
|
SAMPLETYPE *pBuffer;
|
|
|
|
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
|
|
|
|
pBuffer = buffer->ptrBegin();
|
|
assert(process_samples == XCORR_UPDATE_SEQUENCE / 2);
|
|
|
|
// static double thr = 0.0003;
|
|
double posScale = (double)this->decimateBy / (double)this->sampleRate;
|
|
int resetDur = (int)(0.12 / posScale + 0.5);
|
|
double corrScale = 1.0 / (double)(windowLen - windowStart);
|
|
|
|
// prescale pbuffer
|
|
float tmp[XCORR_UPDATE_SEQUENCE / 2];
|
|
for (int i = 0; i < process_samples; i++)
|
|
{
|
|
tmp[i] = hamw2[i] * hamw2[i] * pBuffer[i];
|
|
}
|
|
|
|
#pragma omp parallel for
|
|
for (int offs = windowStart; offs < windowLen; offs++)
|
|
{
|
|
double sum = 0;
|
|
for (int i = 0; i < process_samples; i++)
|
|
{
|
|
sum += tmp[i] * pBuffer[offs + i];
|
|
}
|
|
beatcorr_ringbuff[(beatcorr_ringbuffpos + offs) % windowLen] += (float)((sum > 0) ? sum : 0); // accumulate only positive correlations
|
|
}
|
|
|
|
int skipstep = XCORR_UPDATE_SEQUENCE / OVERLAP_FACTOR;
|
|
|
|
// compensate empty buffer at beginning by scaling coefficient
|
|
float scale = (float)windowLen / (float)(skipstep * init_scaler);
|
|
if (scale > 1.0f)
|
|
{
|
|
init_scaler++;
|
|
}
|
|
else
|
|
{
|
|
scale = 1.0f;
|
|
}
|
|
|
|
// detect beats
|
|
for (int i = 0; i < skipstep; i++)
|
|
{
|
|
LONG_SAMPLETYPE max = 0;
|
|
|
|
float sum = beatcorr_ringbuff[beatcorr_ringbuffpos];
|
|
sum -= beat_lpf.update(sum);
|
|
|
|
if (sum > peakVal)
|
|
{
|
|
// found new local largest value
|
|
peakVal = sum;
|
|
peakPos = pos;
|
|
}
|
|
if (pos > peakPos + resetDur)
|
|
{
|
|
// largest value not updated for 200msec => accept as beat
|
|
peakPos += skipstep;
|
|
if (peakVal > 0)
|
|
{
|
|
// add detected beat to end of "beats" vector
|
|
BEAT temp = { (float)(peakPos * posScale), (float)(peakVal * scale) };
|
|
beats.push_back(temp);
|
|
}
|
|
|
|
peakVal = 0;
|
|
peakPos = pos;
|
|
}
|
|
|
|
beatcorr_ringbuff[beatcorr_ringbuffpos] = 0;
|
|
pos++;
|
|
beatcorr_ringbuffpos = (beatcorr_ringbuffpos + 1) % windowLen;
|
|
}
|
|
}
|
|
|
|
|
|
#define max(x,y) ((x) > (y) ? (x) : (y))
|
|
|
|
void BPMDetect::inputSamples(const SAMPLETYPE *samples, int numSamples)
|
|
{
|
|
SAMPLETYPE decimated[DECIMATED_BLOCK_SIZE];
|
|
|
|
// iterate so that max INPUT_BLOCK_SAMPLES processed per iteration
|
|
while (numSamples > 0)
|
|
{
|
|
int block;
|
|
int decSamples;
|
|
|
|
block = (numSamples > INPUT_BLOCK_SIZE) ? INPUT_BLOCK_SIZE : numSamples;
|
|
|
|
// decimate. note that converts to mono at the same time
|
|
decSamples = decimate(decimated, samples, block);
|
|
samples += block * channels;
|
|
numSamples -= block;
|
|
|
|
buffer->putSamples(decimated, decSamples);
|
|
}
|
|
|
|
// when the buffer has enough samples for processing...
|
|
int req = max(windowLen + XCORR_UPDATE_SEQUENCE, 2 * XCORR_UPDATE_SEQUENCE);
|
|
while ((int)buffer->numSamples() >= req)
|
|
{
|
|
// ... update autocorrelations...
|
|
updateXCorr(XCORR_UPDATE_SEQUENCE);
|
|
// ...update beat position calculation...
|
|
updateBeatPos(XCORR_UPDATE_SEQUENCE / 2);
|
|
// ... and remove proceessed samples from the buffer
|
|
int n = XCORR_UPDATE_SEQUENCE / OVERLAP_FACTOR;
|
|
buffer->receiveSamples(n);
|
|
}
|
|
}
|
|
|
|
|
|
void BPMDetect::removeBias()
|
|
{
|
|
int i;
|
|
|
|
// Remove linear bias: calculate linear regression coefficient
|
|
// 1. calc mean of 'xcorr' and 'i'
|
|
double mean_i = 0;
|
|
double mean_x = 0;
|
|
for (i = windowStart; i < windowLen; i++)
|
|
{
|
|
mean_x += xcorr[i];
|
|
}
|
|
mean_x /= (windowLen - windowStart);
|
|
mean_i = 0.5 * (windowLen - 1 + windowStart);
|
|
|
|
// 2. calculate linear regression coefficient
|
|
double b = 0;
|
|
double div = 0;
|
|
for (i = windowStart; i < windowLen; i++)
|
|
{
|
|
double xt = xcorr[i] - mean_x;
|
|
double xi = i - mean_i;
|
|
b += xt * xi;
|
|
div += xi * xi;
|
|
}
|
|
b /= div;
|
|
|
|
// subtract linear regression and resolve min. value bias
|
|
float minval = FLT_MAX; // arbitrary large number
|
|
for (i = windowStart; i < windowLen; i ++)
|
|
{
|
|
xcorr[i] -= (float)(b * i);
|
|
if (xcorr[i] < minval)
|
|
{
|
|
minval = xcorr[i];
|
|
}
|
|
}
|
|
|
|
// subtract min.value
|
|
for (i = windowStart; i < windowLen; i ++)
|
|
{
|
|
xcorr[i] -= minval;
|
|
}
|
|
}
|
|
|
|
|
|
// Calculate N-point moving average for "source" values
|
|
void MAFilter(float *dest, const float *source, int start, int end, int N)
|
|
{
|
|
for (int i = start; i < end; i++)
|
|
{
|
|
int i1 = i - N / 2;
|
|
int i2 = i + N / 2 + 1;
|
|
if (i1 < start) i1 = start;
|
|
if (i2 > end) i2 = end;
|
|
|
|
double sum = 0;
|
|
for (int j = i1; j < i2; j ++)
|
|
{
|
|
sum += source[j];
|
|
}
|
|
dest[i] = (float)(sum / (i2 - i1));
|
|
}
|
|
}
|
|
|
|
|
|
float BPMDetect::getBpm()
|
|
{
|
|
double peakPos;
|
|
double coeff;
|
|
PeakFinder peakFinder;
|
|
|
|
// remove bias from xcorr data
|
|
removeBias();
|
|
|
|
coeff = 60.0 * ((double)sampleRate / (double)decimateBy);
|
|
|
|
// save bpm debug data if debug data writing enabled
|
|
_SaveDebugData("soundtouch-bpm-xcorr.txt", xcorr, windowStart, windowLen, coeff);
|
|
|
|
// Smoothen by N-point moving-average
|
|
float *data = new float[windowLen];
|
|
memset(data, 0, sizeof(float) * windowLen);
|
|
MAFilter(data, xcorr, windowStart, windowLen, MOVING_AVERAGE_N);
|
|
|
|
// find peak position
|
|
peakPos = peakFinder.detectPeak(data, windowStart, windowLen);
|
|
|
|
// save bpm debug data if debug data writing enabled
|
|
_SaveDebugData("soundtouch-bpm-smoothed.txt", data, windowStart, windowLen, coeff);
|
|
|
|
delete[] data;
|
|
|
|
assert(decimateBy != 0);
|
|
if (peakPos < 1e-9) return 0.0; // detection failed.
|
|
|
|
_SaveDebugBeatPos("soundtouch-detected-beats.txt", beats);
|
|
|
|
// calculate BPM
|
|
float bpm = (float)(coeff / peakPos);
|
|
return (bpm >= MIN_BPM && bpm <= MAX_BPM_VALID) ? bpm : 0;
|
|
}
|
|
|
|
|
|
/// Get beat position arrays. Note: The array includes also really low beat detection values
|
|
/// in absence of clear strong beats. Consumer may wish to filter low values away.
|
|
/// - "pos" receive array of beat positions
|
|
/// - "values" receive array of beat detection strengths
|
|
/// - max_num indicates max.size of "pos" and "values" array.
|
|
///
|
|
/// You can query a suitable array sized by calling this with NULL in "pos" & "values".
|
|
///
|
|
/// \return number of beats in the arrays.
|
|
int BPMDetect::getBeats(float *pos, float *values, int max_num)
|
|
{
|
|
int num = beats.size();
|
|
if ((!pos) || (!values)) return num; // pos or values NULL, return just size
|
|
|
|
for (int i = 0; (i < num) && (i < max_num); i++)
|
|
{
|
|
pos[i] = beats[i].pos;
|
|
values[i] = beats[i].strength;
|
|
}
|
|
return num;
|
|
}
|