pcsx2/common/src/Utilities/ThreadTools.cpp

315 lines
8.2 KiB
C++

/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2002-2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "PrecompiledHeader.h"
#include "Threading.h"
using namespace Threading;
namespace Threading
{
PersistentThread::PersistentThread() :
m_thread()
, m_returncode( 0 )
, m_running( false )
, m_post_event()
{
}
// Perform a blocking termination of the thread, to ensure full object cleanup.
PersistentThread::~PersistentThread()
{
Cancel( false );
}
void PersistentThread::Start()
{
if( pthread_create( &m_thread, NULL, _internal_callback, this ) != 0 )
throw Exception::ThreadCreationError();
m_running = true;
}
// Remarks:
// Provision of non-blocking Cancel() is probably academic, since destroying a PersistentThread
// object performs a blocking Cancel regardless of if you explicitly do a non-blocking Cancel()
// prior, since the ExecuteTask() method requires a valid object state. If you really need
// fire-and-forget behavior on threads, use pthreads directly for now.
// (TODO : make a DetachedThread class?)
//
// Parameters:
// isBlocking - indicates if the Cancel action should block for thread completion or not.
//
void PersistentThread::Cancel( bool isBlocking )
{
if( !m_running ) return;
m_running = false;
pthread_cancel( m_thread );
if( isBlocking )
pthread_join( m_thread, (void**)&m_returncode );
else
pthread_detach( m_thread );
}
// Blocks execution of the calling thread until this thread completes its task. The
// caller should make sure to signal the thread to exit, or else blocking may deadlock the
// calling thread. Classes which extend PersistentThread should override this method
// and signal any necessary thread exit variables prior to blocking.
//
// Returns the return code of the thread.
// This method is roughly the equivalent of pthread_join().
//
sptr PersistentThread::Block()
{
bool isOwner = (pthread_self() == m_thread);
DevAssert( !isOwner, "Thread deadlock detected; Block() should never be called by the owner thread." );
pthread_join( m_thread, (void**)&m_returncode );
return m_returncode;
}
bool PersistentThread::IsRunning() const
{
return ( m_running && (ESRCH != pthread_kill( m_thread, 0 )) );
}
// Exceptions:
// InvalidOperation - thrown if the thread is still running or has never been started.
//
sptr PersistentThread::GetReturnCode() const
{
if( !m_running )
throw Exception::InvalidOperation( "Thread.GetReturnCode : thread has not been started." );
if( IsRunning() )
throw Exception::InvalidOperation( "Thread.GetReturnCode : thread is still running." );
return m_returncode;
}
void* PersistentThread::_internal_callback( void* itsme )
{
jASSUME( itsme != NULL );
PersistentThread& owner = *((PersistentThread*)itsme);
owner.m_returncode = owner.ExecuteTask();
return (void*)owner.m_returncode;
}
// pthread Cond is an evil api that is not suited for Pcsx2 needs.
// Let's not use it. (Air)
#if 0
WaitEvent::WaitEvent()
{
int err = 0;
err = pthread_cond_init(&cond, NULL);
err = pthread_mutex_init(&mutex, NULL);
}
WaitEvent::~WaitEvent()
{
pthread_cond_destroy( &cond );
pthread_mutex_destroy( &mutex );
}
void WaitEvent::Set()
{
pthread_mutex_lock( &mutex );
pthread_cond_signal( &cond );
pthread_mutex_unlock( &mutex );
}
void WaitEvent::Wait()
{
pthread_mutex_lock( &mutex );
pthread_cond_wait( &cond, &mutex );
pthread_mutex_unlock( &mutex );
}
#endif
Semaphore::Semaphore()
{
sem_init( &sema, false, 0 );
}
Semaphore::~Semaphore()
{
sem_destroy( &sema );
}
void Semaphore::Reset()
{
sem_destroy( &sema );
sem_init( &sema, false, 0 );
}
void Semaphore::Post()
{
sem_post( &sema );
}
void Semaphore::Post( int multiple )
{
#if defined(_MSC_VER)
sem_post_multiple( &sema, multiple );
#endif
}
void Semaphore::Wait()
{
sem_wait( &sema );
}
// Performs an uncancellable wait on a semaphore; restoring the thread's previous cancel state
// after the wait has completed. Useful for situations where the semaphore itself is stored on
// the stack and passed to another thread via GUI message or such, avoiding complications where
// the thread might be cancelled and the stack value becomes invalid.
//
// Performance note: this function has quite a bit more overhead compared to Semaphore::Wait(), so
// consider manually specifying the thread as uncancellable and using Wait() instead if you need
// to do a lot of no-cancel waits in a tight loop worker thread, for example.
void Semaphore::WaitNoCancel()
{
int oldstate;
pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, &oldstate );
Wait();
pthread_setcancelstate( oldstate, NULL );
}
int Semaphore::Count()
{
int retval;
sem_getvalue( &sema, &retval );
return retval;
}
MutexLock::MutexLock()
{
int err = 0;
err = pthread_mutex_init( &mutex, NULL );
}
MutexLock::MutexLock( bool isRecursive )
{
if( isRecursive )
{
pthread_mutexattr_t mutexAttribute;
int status = pthread_mutexattr_init( &mutexAttribute );
if (status != 0) { /* ... */ }
status = pthread_mutexattr_settype( &mutexAttribute, PTHREAD_MUTEX_RECURSIVE);
if (status != 0) { /* ... */}
int err = 0;
err = pthread_mutex_init( &mutex, &mutexAttribute );
}
else
{
int err = 0;
err = pthread_mutex_init( &mutex, NULL );
}
}
MutexLock::~MutexLock()
{
pthread_mutex_destroy( &mutex );
}
void MutexLock::Lock()
{
pthread_mutex_lock( &mutex );
}
void MutexLock::Unlock()
{
pthread_mutex_unlock( &mutex );
}
//////////////////////////////////////////////////////////////////////
// define some overloads for InterlockedExchanges
// for commonly used types, like u32 and s32.
__forceinline long pcsx2_InterlockedExchange( volatile long* target, long srcval )
{
return _InterlockedExchange( target, srcval );
}
__forceinline long pcsx2_InterlockedCompareExchange( volatile long* target, long srcval, long comp )
{
// Use the pthreads-win32 implementation...
return _InterlockedCompareExchange( target, srcval, comp );
}
__forceinline long pcsx2_InterlockedExchangeAdd( volatile long* target, long srcval )
{
return _InterlockedExchangeAdd( target, srcval );
}
__forceinline void AtomicExchange( volatile u32& Target, u32 value )
{
pcsx2_InterlockedExchange( (volatile long*)&Target, value );
}
__forceinline void AtomicExchangeAdd( volatile u32& Target, u32 value )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, value );
}
__forceinline void AtomicIncrement( volatile u32& Target )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, 1 );
}
__forceinline void AtomicDecrement( volatile u32& Target )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, -1 );
}
__forceinline void AtomicExchange( volatile s32& Target, s32 value )
{
pcsx2_InterlockedExchange( (volatile long*)&Target, value );
}
__forceinline void AtomicExchangeAdd( s32& Target, u32 value )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, value );
}
__forceinline void AtomicIncrement( volatile s32& Target )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, 1 );
}
__forceinline void AtomicDecrement( volatile s32& Target )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, -1 );
}
__forceinline void _AtomicExchangePointer( const void ** target, const void* value )
{
pcsx2_InterlockedExchange( (volatile long*)target, (long)value );
}
__forceinline void _AtomicCompareExchangePointer( const void ** target, const void* value, const void* comparand )
{
pcsx2_InterlockedCompareExchange( (volatile long*)target, (long)value, (long)comparand );
}
}