pcsx2/pcsx2/x86/iR3000A.cpp

1535 lines
35 KiB
C++

/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2002-2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
// recompiler reworked to add dynamic linking Jan06
// and added reg caching, const propagation, block analysis Jun06
// zerofrog(@gmail.com)
#include "PrecompiledHeader.h"
#include "iR3000A.h"
#include <time.h>
#ifndef _WIN32
#include <sys/types.h>
#endif
#include "PsxCommon.h"
#include "VU.h"
#include "ix86/ix86.h"
#include "iCore.h"
#include "SamplProf.h"
extern u32 g_psxNextBranchCycle;
extern void psxBREAK();
extern void zeroEx();
u32 g_psxMaxRecMem = 0;
u32 s_psxrecblocks[] = {0};
//Using assembly code from an external file.
#ifdef __LINUX__
extern "C" {
#endif
void psxRecRecompile(u32 startpc);
#ifdef __LINUX__
}
#endif
uptr *psxRecLUT;
#define PSX_NUMBLOCKS (1<<12)
#define MAPBASE 0x48000000
#define RECMEM_SIZE (8*1024*1024)
#define PSX_MEMMASK 0x5fffffff // mask when comparing two pcs
// R3000A statics
int psxreclog = 0;
static u8 *recMem = NULL; // the recompiled blocks will be here
static BASEBLOCK *recRAM = NULL; // and the ptr to the blocks here
static BASEBLOCK *recROM = NULL; // and here
static BASEBLOCK *recROM1 = NULL; // also here
static BASEBLOCKEX *recBlocks = NULL;
static u8 *recPtr = NULL;
u32 psxpc; // recompiler psxpc
int psxbranch; // set for branch
u32 g_iopCyclePenalty;
static EEINST* s_pInstCache = NULL;
static u32 s_nInstCacheSize = 0;
static BASEBLOCK* s_pCurBlock = NULL;
static BASEBLOCKEX* s_pCurBlockEx = NULL;
#if defined(_MSC_VER) && !defined(__x86_64__)
static BASEBLOCK* s_pDispatchBlock = NULL;
#endif
static u32 s_nEndBlock = 0; // what psxpc the current block ends
static u32 s_nNextBlock = 0; // next free block in recBlocks
static u32 s_ConstGPRreg;
static u32 s_saveConstGPRreg = 0, s_saveHasConstReg = 0, s_saveFlushedConstReg = 0;
static EEINST* s_psaveInstInfo = NULL;
u32 s_psxBlockCycles = 0; // cycles of current block recompiling
static u32 s_savenBlockCycles = 0;
static void iPsxBranchTest(u32 newpc, u32 cpuBranch);
void psxRecompileNextInstruction(int delayslot);
extern void (*rpsxBSC[64])();
void rpsxpropBSC(EEINST* prev, EEINST* pinst);
#ifdef _DEBUG
u32 psxdump = 0;
#else
#define psxdump 0
#endif
#define PSX_GETBLOCK(x) PC_GETBLOCK_(x, psxRecLUT)
#define PSXREC_CLEARM(mem) { \
if ((mem) < g_psxMaxRecMem && psxRecLUT[(mem) >> 16]) { \
BASEBLOCK* p = PSX_GETBLOCK(mem); \
if( *(u32*)p ) psxRecClearMem(p); \
} \
} \
BASEBLOCKEX* PSX_GETBLOCKEX(BASEBLOCK* p)
{
// BASEBLOCKEX* pex = *(BASEBLOCKEX**)(p+1);
// if( pex >= recBlocks && pex < recBlocks+PSX_NUMBLOCKS )
// return pex;
// otherwise, use the sorted list
return GetBaseBlockEx(p->startpc, 1);
}
////////////////////////////////////////////////////
#ifdef _DEBUG
using namespace R3000A;
static void iIopDumpBlock( int startpc, u8 * ptr )
{
FILE *f;
#ifdef __LINUX__
char command[256];
#endif
u32 i, j;
EEINST* pcur;
u8 used[34];
int numused, count;
SysPrintf( "dump1 %x:%x, %x\n", startpc, psxpc, psxRegs.cycle );
Path::CreateDirectory( "dumps" );
string filename( Path::Combine( "dumps", fmt_string( "psxdump%.8X.txt", startpc ) ) );
fflush( stdout );
f = fopen( filename.c_str(), "w" );
assert( f != NULL );
for ( i = startpc; i < s_nEndBlock; i += 4 ) {
fprintf( f, "%s\n", disR3000Fasm( iopMemRead32( i ), i ) );
}
// write the instruction info
fprintf(f, "\n\nlive0 - %x, lastuse - %x used - %x\n", EEINST_LIVE0, EEINST_LASTUSE, EEINST_USED);
memzero_obj(used);
numused = 0;
for(i = 0; i < ArraySize(s_pInstCache->regs); ++i) {
if( s_pInstCache->regs[i] & EEINST_USED ) {
used[i] = 1;
numused++;
}
}
fprintf(f, " ");
for(i = 0; i < ArraySize(s_pInstCache->regs); ++i) {
if( used[i] ) fprintf(f, "%2d ", i);
}
fprintf(f, "\n");
fprintf(f, " ");
for(i = 0; i < ArraySize(s_pInstCache->regs); ++i) {
if( used[i] ) fprintf(f, "%s ", disRNameGPR[i]);
}
fprintf(f, "\n");
pcur = s_pInstCache+1;
for( i = 0; i < (s_nEndBlock-startpc)/4; ++i, ++pcur) {
fprintf(f, "%2d: %2.2x ", i+1, pcur->info);
count = 1;
for(j = 0; j < ArraySize(s_pInstCache->regs); j++) {
if( used[j] ) {
fprintf(f, "%2.2x%s", pcur->regs[j], ((count%8)&&count<numused)?"_":" ");
++count;
}
}
fprintf(f, "\n");
}
fclose( f );
#ifdef __LINUX__
// dump the asm
f = fopen( "mydump1", "wb" );
fwrite( ptr, 1, (uptr)x86Ptr - (uptr)ptr, f );
fclose( f );
sprintf( command, "objdump -D --target=binary --architecture=i386 -M intel mydump1 | cat %s - > tempdump", filename );
system( command );
sprintf(command, "mv tempdump %s", filename);
system(command);
f = fopen( filename, "a+" );
#endif
}
#endif
u8 _psxLoadWritesRs(u32 tempcode)
{
switch(tempcode>>26) {
case 32: case 33: case 34: case 35: case 36: case 37: case 38:
return ((tempcode>>21)&0x1f)==((tempcode>>16)&0x1f); // rs==rt
}
return 0;
}
u8 _psxIsLoadStore(u32 tempcode)
{
switch(tempcode>>26) {
case 32: case 33: case 34: case 35: case 36: case 37: case 38:
// 4 byte stores
case 40: case 41: case 42: case 43: case 46:
return 1;
}
return 0;
}
void _psxFlushAllUnused()
{
int i;
for(i = 0; i < 34; ++i) {
if( psxpc < s_nEndBlock ) {
if( (g_pCurInstInfo[1].regs[i]&EEINST_USED) )
continue;
}
else if( (g_pCurInstInfo[0].regs[i]&EEINST_USED) )
continue;
if( i < 32 && PSX_IS_CONST1(i) ) _psxFlushConstReg(i);
else {
_deleteX86reg(X86TYPE_PSX, i, 1);
}
}
}
int _psxFlushUnusedConstReg()
{
int i;
for(i = 1; i < 32; ++i) {
if( (g_psxHasConstReg & (1<<i)) && !(g_psxFlushedConstReg&(1<<i)) &&
!_recIsRegWritten(g_pCurInstInfo+1, (s_nEndBlock-psxpc)/4, XMMTYPE_GPRREG, i) ) {
// check if will be written in the future
MOV32ItoM((uptr)&psxRegs.GPR.r[i], g_psxConstRegs[i]);
g_psxFlushedConstReg |= 1<<i;
return 1;
}
}
return 0;
}
void _psxFlushCachedRegs()
{
_psxFlushConstRegs();
}
void _psxFlushConstReg(int reg)
{
if( PSX_IS_CONST1( reg ) && !(g_psxFlushedConstReg&(1<<reg)) ) {
MOV32ItoM((uptr)&psxRegs.GPR.r[reg], g_psxConstRegs[reg]);
g_psxFlushedConstReg |= (1<<reg);
}
}
void _psxFlushConstRegs()
{
int i;
// flush constants
// ignore r0
for(i = 1; i < 32; ++i) {
if( g_psxHasConstReg & (1<<i) ) {
if( !(g_psxFlushedConstReg&(1<<i)) ) {
MOV32ItoM((uptr)&psxRegs.GPR.r[i], g_psxConstRegs[i]);
g_psxFlushedConstReg |= 1<<i;
}
#if defined(_DEBUG)&&0
else {
// make sure the const regs are the same
u8* ptemp;
CMP32ItoM((uptr)&psxRegs.GPR.r[i], g_psxConstRegs[i]);
ptemp = JE8(0);
CALLFunc((uptr)checkconstreg);
x86SetJ8( ptemp );
}
#else
if( g_psxHasConstReg == g_psxFlushedConstReg )
break;
#endif
}
}
}
void _psxDeleteReg(int reg, int flush)
{
if( !reg ) return;
if( flush && PSX_IS_CONST1(reg) ) {
_psxFlushConstReg(reg);
return;
}
PSX_DEL_CONST(reg);
_deleteX86reg(X86TYPE_PSX, reg, flush ? 0 : 2);
}
void _psxMoveGPRtoR(x86IntRegType to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoR( to, g_psxConstRegs[fromgpr] );
else {
// check x86
MOV32MtoR(to, (uptr)&psxRegs.GPR.r[ fromgpr ] );
}
}
void _psxMoveGPRtoM(u32 to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoM( to, g_psxConstRegs[fromgpr] );
else {
// check x86
MOV32MtoR(EAX, (uptr)&psxRegs.GPR.r[ fromgpr ] );
MOV32RtoM(to, EAX );
}
}
void _psxMoveGPRtoRm(x86IntRegType to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoRmOffset( to, g_psxConstRegs[fromgpr], 0 );
else {
// check x86
MOV32MtoR(EAX, (uptr)&psxRegs.GPR.r[ fromgpr ] );
MOV32RtoRm(to, EAX );
}
}
void _psxFlushCall(int flushtype)
{
_freeX86regs();
if( flushtype & FLUSH_CACHED_REGS )
_psxFlushConstRegs();
}
void psxSaveBranchState()
{
s_savenBlockCycles = s_psxBlockCycles;
s_saveConstGPRreg = 0xffffffff; // indicate searching
s_saveHasConstReg = g_psxHasConstReg;
s_saveFlushedConstReg = g_psxFlushedConstReg;
s_psaveInstInfo = g_pCurInstInfo;
// save all regs
memcpy(s_saveX86regs, x86regs, sizeof(x86regs));
}
void psxLoadBranchState()
{
s_psxBlockCycles = s_savenBlockCycles;
if( s_saveConstGPRreg != 0xffffffff ) {
assert( s_saveConstGPRreg > 0 );
// make sure right GPR was saved
assert( g_psxHasConstReg == s_saveHasConstReg || (g_psxHasConstReg ^ s_saveHasConstReg) == (1<<s_saveConstGPRreg) );
// restore the GPR reg
g_psxConstRegs[s_saveConstGPRreg] = s_ConstGPRreg;
PSX_SET_CONST(s_saveConstGPRreg);
//s_saveConstGPRreg = 0;
}
g_psxHasConstReg = s_saveHasConstReg;
g_psxFlushedConstReg = s_saveFlushedConstReg;
g_pCurInstInfo = s_psaveInstInfo;
// restore all regs
memcpy(x86regs, s_saveX86regs, sizeof(x86regs));
}
////////////////////
// Code Templates //
////////////////////
void PSX_CHECK_SAVE_REG(int reg)
{
if( s_saveConstGPRreg == 0xffffffff ) {
if( PSX_IS_CONST1(reg) ) {
s_saveConstGPRreg = reg;
s_ConstGPRreg = g_psxConstRegs[reg];
}
}
else {
// can be non zero when double loading
//assert( s_saveConstGPRreg == 0 );
}
}
void _psxOnWriteReg(int reg)
{
PSX_CHECK_SAVE_REG(reg);
PSX_DEL_CONST(reg);
}
// rd = rs op rt
void psxRecompileCodeConst0(R3000AFNPTR constcode, R3000AFNPTR_INFO constscode, R3000AFNPTR_INFO consttcode, R3000AFNPTR_INFO noconstcode)
{
if ( ! _Rd_ ) return;
// for now, don't support xmm
PSX_CHECK_SAVE_REG(_Rd_);
_deleteX86reg(X86TYPE_PSX, _Rs_, 1);
_deleteX86reg(X86TYPE_PSX, _Rt_, 1);
_deleteX86reg(X86TYPE_PSX, _Rd_, 0);
if( PSX_IS_CONST2(_Rs_, _Rt_) ) {
PSX_SET_CONST(_Rd_);
constcode();
return;
}
if( PSX_IS_CONST1(_Rs_) ) {
constscode(0);
PSX_DEL_CONST(_Rd_);
return;
}
if( PSX_IS_CONST1(_Rt_) ) {
consttcode(0);
PSX_DEL_CONST(_Rd_);
return;
}
noconstcode(0);
PSX_DEL_CONST(_Rd_);
}
// rt = rs op imm16
void psxRecompileCodeConst1(R3000AFNPTR constcode, R3000AFNPTR_INFO noconstcode)
{
if ( ! _Rt_ ) {
if( (psxRegs.code>>26) == 9 ) {
//ADDIU, call bios
#ifdef _DEBUG
MOV32ItoM( (uptr)&psxRegs.code, psxRegs.code );
MOV32ItoM( (uptr)&psxRegs.pc, psxpc );
_psxFlushCall(FLUSH_NODESTROY);
CALLFunc((uptr)zeroEx);
#endif
// Bios Call: Force the IOP to do a Branch Test ASAP.
// Important! This helps prevent game freeze-ups during boot-up and stage loads.
// Note: Fixes to cdvd have removed the need for this code.
//MOV32MtoR( EAX, (uptr)&psxRegs.cycle );
//MOV32RtoM( (uptr)&g_psxNextBranchCycle, EAX );
}
return;
}
// for now, don't support xmm
PSX_CHECK_SAVE_REG(_Rt_);
_deleteX86reg(X86TYPE_PSX, _Rs_, 1);
_deleteX86reg(X86TYPE_PSX, _Rt_, 0);
if( PSX_IS_CONST1(_Rs_) ) {
PSX_SET_CONST(_Rt_);
constcode();
return;
}
noconstcode(0);
PSX_DEL_CONST(_Rt_);
}
// rd = rt op sa
void psxRecompileCodeConst2(R3000AFNPTR constcode, R3000AFNPTR_INFO noconstcode)
{
if ( ! _Rd_ ) return;
// for now, don't support xmm
PSX_CHECK_SAVE_REG(_Rd_);
_deleteX86reg(X86TYPE_PSX, _Rt_, 1);
_deleteX86reg(X86TYPE_PSX, _Rd_, 0);
if( PSX_IS_CONST1(_Rt_) ) {
PSX_SET_CONST(_Rd_);
constcode();
return;
}
noconstcode(0);
PSX_DEL_CONST(_Rd_);
}
// rd = rt MULT rs (SPECIAL)
void psxRecompileCodeConst3(R3000AFNPTR constcode, R3000AFNPTR_INFO constscode, R3000AFNPTR_INFO consttcode, R3000AFNPTR_INFO noconstcode, int LOHI)
{
_deleteX86reg(X86TYPE_PSX, _Rs_, 1);
_deleteX86reg(X86TYPE_PSX, _Rt_, 1);
if( LOHI ) {
_deleteX86reg(X86TYPE_PSX, PSX_HI, 1);
_deleteX86reg(X86TYPE_PSX, PSX_LO, 1);
}
if( PSX_IS_CONST2(_Rs_, _Rt_) ) {
constcode();
return;
}
if( PSX_IS_CONST1(_Rs_) ) {
constscode(0);
return;
}
if( PSX_IS_CONST1(_Rt_) ) {
consttcode(0);
return;
}
noconstcode(0);
}
static u8* m_recBlockAlloc = NULL;
static const uint m_recBlockAllocSize =
(((Ps2MemSize::IopRam + Ps2MemSize::Rom + Ps2MemSize::Rom1) / 4) * sizeof(BASEBLOCK))
+ (PSX_NUMBLOCKS*sizeof(BASEBLOCKEX)); // recBlocks
static void recAlloc()
{
// Note: the VUrec depends on being able to grab an allocation below the 0x10000000 line,
// so we give the EErec an address above that to try first as it's basemem address, hence
// the 0x28000000 pick (0x20000000 is picked by the EE)
if( recMem == NULL )
recMem = (u8*)SysMmapEx( 0x28000000, RECMEM_SIZE, 0, "recAlloc(R3000a)" );
if( recMem == NULL )
throw Exception::OutOfMemory( "R3000a Init > failed to allocate memory for the recompiler." );
if( psxRecLUT == NULL )
psxRecLUT = (uptr*) malloc(0x010000 * sizeof(uptr));
// Goal: Allocate BASEBLOCKs for every possible branch target in IOP memory.
// Any 4-byte aligned address makes a valid branch target as per MIPS design (all instructions are
// always 4 bytes long).
if( m_recBlockAlloc == NULL )
m_recBlockAlloc = (u8*)_aligned_malloc( m_recBlockAllocSize, 4096 );
if( m_recBlockAlloc == NULL )
throw Exception::OutOfMemory( "R3000a Init > Failed to allocate memory for baseblock lookup tables." );
u8* curpos = m_recBlockAlloc;
recRAM = (BASEBLOCK*)curpos; curpos += (Ps2MemSize::IopRam / 4) * sizeof(BASEBLOCK);
recROM = (BASEBLOCK*)curpos; curpos += (Ps2MemSize::Rom / 4) * sizeof(BASEBLOCK);
recROM1 = (BASEBLOCK*)curpos; curpos += (Ps2MemSize::Rom1 / 4) * sizeof(BASEBLOCK);
recBlocks = (BASEBLOCKEX*)curpos; // curpos += sizeof(BASEBLOCKEX)*EE_NUMBLOCKS;
if( s_pInstCache == NULL )
{
s_nInstCacheSize = 128;
s_pInstCache = (EEINST*)malloc( sizeof(EEINST) * s_nInstCacheSize );
}
if( s_pInstCache == NULL )
throw Exception::OutOfMemory( "R3000a Init > Failed to allocate memory for pInstCache." );
ProfilerRegisterSource( "IOPRec", recMem, RECMEM_SIZE );
}
void recResetIOP()
{
// calling recResetIOP without first calling recInit is bad mojo.
jASSUME( psxRecLUT != NULL );
jASSUME( recMem != NULL );
jASSUME( m_recBlockAlloc != NULL );
DbgCon::Status( "iR3000A > Resetting recompiler memory and structures!" );
memzero_ptr<0x010000 * sizeof(uptr)>( psxRecLUT );
memset_8<0xcd,RECMEM_SIZE>( recMem );
memzero_ptr<m_recBlockAllocSize>( m_recBlockAlloc );
// We're only mapping 20 pages here in 4 places.
// 0x80 comes from : (Ps2MemSize::IopRam / 0x10000) * 4
for (int i=0; i<0x80; i++)
{
psxRecLUT[i + 0x0000] = (uptr)&recRAM[(i & 0x1f) << 14];
psxRecLUT[i + 0x8000] = (uptr)&recRAM[(i & 0x1f) << 14];
psxRecLUT[i + 0xa000] = (uptr)&recRAM[(i & 0x1f) << 14];
}
for (int i=0; i<(Ps2MemSize::Rom / 0x10000); i++)
{
psxRecLUT[i + 0x1fc0] = (uptr)&recROM[i << 14];
psxRecLUT[i + 0x9fc0] = (uptr)&recROM[i << 14];
psxRecLUT[i + 0xbfc0] = (uptr)&recROM[i << 14];
}
for (int i=0; i<(Ps2MemSize::Rom1 / 0x10000); i++)
{
psxRecLUT[i + 0x1e00] = (uptr)&recROM1[i << 14];
psxRecLUT[i + 0x9e00] = (uptr)&recROM1[i << 14];
psxRecLUT[i + 0xbe00] = (uptr)&recROM1[i << 14];
}
if( s_pInstCache )
memset( s_pInstCache, 0, sizeof(EEINST)*s_nInstCacheSize );
ResetBaseBlockEx(1);
g_psxMaxRecMem = 0;
recPtr = recMem;
psxbranch = 0;
}
static void recShutdown()
{
ProfilerTerminateSource( "IOPRec" );
SafeSysMunmap(recMem, RECMEM_SIZE);
safe_aligned_free( m_recBlockAlloc );
safe_free(psxRecLUT);
safe_free( s_pInstCache );
s_nInstCacheSize = 0;
x86Shutdown();
}
#pragma warning(disable:4731) // frame pointer register 'ebp' modified by inline assembly code
/*
static __forceinline void R3000AExecute()
{
BASEBLOCK* pblock;
pblock = PSX_GETBLOCK(psxRegs.pc);
if ( !pblock->GetFnptr() || (pblock->startpc&PSX_MEMMASK) != (psxRegs.pc&PSX_MEMMASK) ) {
psxRecRecompile(psxRegs.pc);
}
assert( pblock->GetFnptr() != 0 );
#ifdef _DEBUG
fnptr = (u8*)pblock->GetFnptr();
#ifdef _MSC_VER
__asm {
// save data
mov oldesi, esi;
mov s_uSaveESP, esp;
sub s_uSaveESP, 8;
push ebp;
call fnptr; // jump into function
// restore data
pop ebp;
mov esi, oldesi;
}
#else // linux
__asm__("movl %%esi, %0\n"
"movl %%esp, %1\n"
"sub $8, %%esp\n"
"push %%ebp\n"
"call *%2\n"
"pop %%ebp\n"
"movl %0, %%esi\n" : "=m"(oldesi), "=m"(s_uSaveESP) : "c"(fnptr) : );
#endif // _MSC_VER
#else
((R3000AFNPTR)pblock->GetFnptr())();
#endif
}*/
u32 g_psxlastpc = 0;
#ifdef _MSC_VER
static u32 g_temp;
// jumped to when invalid psxpc address
__declspec(naked) void psxDispatcher()
{
// EDX contains the current psxpc to jump to, stack contains the jump addr to modify
__asm push edx
//jASSUME( psxRegs.pc <= PSX_MEMMASK );
s_pDispatchBlock = PSX_GETBLOCK( psxRegs.pc );
if( s_pDispatchBlock->startpc != psxRegs.pc )
psxRecRecompile(psxRegs.pc);
__asm
{
mov eax, s_pDispatchBlock
mov eax, dword ptr [eax]
}
#ifdef _DEBUG
__asm mov g_temp, eax
assert( g_temp );
#endif
// Modify the prev block's jump address, and jump to the new block:
__asm
{
shl eax,4
pop ecx // x86Ptr to mod
mov edx, eax
sub edx, ecx
sub edx, 4
mov dword ptr [ecx], edx
jmp eax
}
}
__declspec(naked) void psxDispatcherClear()
{
// EDX contains the current psxpc
__asm mov psxRegs.pc, edx
__asm push edx
//jASSUME( psxRegs.pc <= PSX_MEMMASK );
// calc PSX_GETBLOCK
s_pDispatchBlock = PSX_GETBLOCK(psxRegs.pc);
if( s_pDispatchBlock->startpc == psxRegs.pc ) {
assert( s_pDispatchBlock->GetFnptr() != 0 );
// already modded the code, jump to the new place
__asm
{
pop edx
add esp, 4 // ignore stack
mov eax, s_pDispatchBlock
mov eax, dword ptr [eax]
//and eax, 0x0fffffff
shl eax,4
jmp eax
}
}
__asm
{
call psxRecRecompile
add esp, 4 // pop old param
mov eax, s_pDispatchBlock
mov eax, dword ptr [eax]
pop ecx // old fnptr
//and eax, 0x0fffffff
shl eax,4
mov byte ptr [ecx], 0xe9 // jmp32
mov edx, eax
sub edx, ecx
sub edx, 5
mov dword ptr [ecx+1], edx
jmp eax
}
}
// called when jumping to variable psxpc address
__declspec(naked) void psxDispatcherReg()
{
//jASSUME( psxRegs.pc <= PSX_MEMMASK );
s_pDispatchBlock = PSX_GETBLOCK( psxRegs.pc );
if( s_pDispatchBlock->startpc != psxRegs.pc )
psxRecRecompile(psxRegs.pc);
__asm
{
mov eax, s_pDispatchBlock
mov eax, dword ptr [eax]
}
#ifdef _DEBUG
__asm mov g_temp, eax
assert( g_temp );
#endif
__asm
{
shl eax, 4
jmp eax
}
}
#else // _MSC_VER
// Linux uses an assembly version of these routines.
#ifdef __LINUX__
extern "C" {
#endif
void psxDispatcher();
void psxDispatcherClear();
void psxDispatcherReg();
#ifdef __LINUX__
}
#endif
#endif // _MSC_VER
static void recExecute()
{
// note: this function is currently never used.
//for (;;) R3000AExecute();
}
static s32 recExecuteBlock( s32 eeCycles )
{
psxBreak = 0;
psxCycleEE = eeCycles;
// Register freezing note:
// The IOP does not use mmx/xmm registers, so we don't modify the status
// of the g_EEFreezeRegs here.
#ifdef _MSC_VER
__asm
{
push ebx
push esi
push edi
push ebp
call psxDispatcherReg
pop ebp
pop edi
pop esi
pop ebx
}
#else
__asm__
(
".intel_syntax\n"
"push %ebx\n"
"push %esi\n"
"push %edi\n"
"push %ebp\n"
"call psxDispatcherReg\n"
"pop %ebp\n"
"pop %edi\n"
"pop %esi\n"
"pop %ebx\n"
".att_syntax\n"
);
#endif
return psxBreak + psxCycleEE;
}
static void recClear(u32 Addr, u32 Size)
{
u32 i;
for(i = 0; i < Size; ++i, Addr+=4) {
PSXREC_CLEARM(Addr);
}
}
#define IOP_MIN_BLOCK_BYTES 15
void rpsxMemConstClear(u32 mem)
{
// NOTE! This assumes recLUT never changes its mapping
if( !psxRecLUT[mem>>16] )
return;
CMP32ItoM((uptr)PSX_GETBLOCK(mem), 0);
j8Ptr[6] = JE8(0);
_callFunctionArg1((uptr)psxRecClearMem, MEM_CONSTTAG, (uptr)PSX_GETBLOCK(mem));
x86SetJ8(j8Ptr[6]);
}
void psxRecClearMem(BASEBLOCK* p)
{
BASEBLOCKEX* pexblock;
BASEBLOCK* pstart;
int lastdelay;
assert( p != NULL );
if( p->uType & BLOCKTYPE_DELAYSLOT ) {
psxRecClearMem(p-1);
if( p->GetFnptr() == 0 )
return;
}
assert( p->GetFnptr() != 0 );
assert( p->startpc );
x86Ptr = (u8*)p->GetFnptr();
// there is a small problem: mem can be ored with 0xa<<28 or 0x8<<28, and don't know which
MOV32ItoR(EDX, p->startpc);
assert( (uptr)x86Ptr <= 0xffffffff );
PUSH32I((uptr)x86Ptr);
JMP32((uptr)psxDispatcherClear - ( (uptr)x86Ptr + 5 ));
assert( x86Ptr == (u8*)p->GetFnptr() + IOP_MIN_BLOCK_BYTES );
pstart = PSX_GETBLOCK(p->startpc);
pexblock = PSX_GETBLOCKEX(pstart);
assert( pexblock->startpc == pstart->startpc );
// don't delete if last is delay
lastdelay = pexblock->size;
if( pstart[pexblock->size-1].uType & BLOCKTYPE_DELAYSLOT ) {
assert( pstart[pexblock->size-1].GetFnptr() != pstart->GetFnptr() );
if( pstart[pexblock->size-1].GetFnptr() != 0 ) {
pstart[pexblock->size-1].uType = 0;
--lastdelay;
}
}
memset(pstart, 0, lastdelay*sizeof(BASEBLOCK));
RemoveBaseBlockEx(pexblock, 1);
pexblock->size = 0;
pexblock->startpc = 0;
}
void psxSetBranchReg(u32 reg)
{
psxbranch = 1;
if( reg != 0xffffffff ) {
_allocX86reg(ESI, X86TYPE_PCWRITEBACK, 0, MODE_WRITE);
_psxMoveGPRtoR(ESI, reg);
psxRecompileNextInstruction(1);
if( x86regs[ESI].inuse ) {
assert( x86regs[ESI].type == X86TYPE_PCWRITEBACK );
MOV32RtoM((uptr)&psxRegs.pc, ESI);
x86regs[ESI].inuse = 0;
}
else {
MOV32MtoR(EAX, (uptr)&g_recWriteback);
MOV32RtoM((uptr)&psxRegs.pc, EAX);
}
}
_psxFlushCall(FLUSH_EVERYTHING);
iPsxBranchTest(0xffffffff, 1);
JMP32((uptr)psxDispatcherReg - ( (uptr)x86Ptr + 5 ));
}
void psxSetBranchImm( u32 imm )
{
u32* ptr;
psxbranch = 1;
assert( imm );
// end the current block
MOV32ItoM( (uptr)&psxRegs.pc, imm );
_psxFlushCall(FLUSH_EVERYTHING);
iPsxBranchTest(imm, imm <= psxpc);
MOV32ItoR(EDX, 0);
ptr = (u32*)(x86Ptr-4);
*ptr = (uptr)JMP32((uptr)psxDispatcher - ( (uptr)x86Ptr + 5 ));
}
//fixme : this is all a huge hack, we base the counter advancements on the average an opcode should take (wtf?)
// If that wasn't bad enough we have default values like 9/8 which will get cast to int later
// (yeah, that means all sync code couldn't have worked to beginn with)
// So for now these are new settings that work.
// (rama)
static u32 psxScaleBlockCycles()
{
return s_psxBlockCycles * (CHECK_IOP_CYCLERATE ? 2 : 1);
}
static void iPsxBranchTest(u32 newpc, u32 cpuBranch)
{
u32 blockCycles = psxScaleBlockCycles();
MOV32MtoR(ECX, (uptr)&psxRegs.cycle);
MOV32MtoR(EAX, (uptr)&psxCycleEE);
ADD32ItoR(ECX, blockCycles);
SUB32ItoR(EAX, blockCycles*8);
MOV32RtoM((uptr)&psxRegs.cycle, ECX); // update cycles
MOV32RtoM((uptr)&psxCycleEE, EAX);
j8Ptr[2] = JG8( 0 ); // jump if psxCycleEE > 0
RET2(); // returns control to the EE
// Continue onward with branching here:
x86SetJ8( j8Ptr[2] );
// check if should branch
SUB32MtoR(ECX, (uptr)&g_psxNextBranchCycle);
j8Ptr[0] = JS8( 0 );
CALLFunc((uptr)psxBranchTest);
if( newpc != 0xffffffff )
{
CMP32ItoM((uptr)&psxRegs.pc, newpc);
JNE32((uptr)psxDispatcherReg - ( (uptr)x86Ptr + 6 ));
}
// Skip branch jump target here:
x86SetJ8( j8Ptr[0] );
}
static const int *s_pCode;
#if !defined(_MSC_VER)
static void checkcodefn()
{
int pctemp;
#ifdef _MSC_VER
__asm mov pctemp, eax;
#else
__asm__("movl %%eax, %0" : : "m"(pctemp) );
#endif
SysPrintf("iop code changed! %x\n", pctemp);
}
#endif
void rpsxSYSCALL()
{
MOV32ItoM( (uptr)&psxRegs.code, psxRegs.code );
MOV32ItoM((uptr)&psxRegs.pc, psxpc - 4);
_psxFlushCall(FLUSH_NODESTROY);
_callFunctionArg2((uptr)psxException, MEM_CONSTTAG, MEM_CONSTTAG, 0x20, psxbranch==1);
CMP32ItoM((uptr)&psxRegs.pc, psxpc-4);
j8Ptr[0] = JE8(0);
ADD32ItoM((uptr)&psxRegs.cycle, psxScaleBlockCycles() );
SUB32ItoM((uptr)&psxCycleEE, psxScaleBlockCycles()*8 );
JMP32((uptr)psxDispatcherReg - ( (uptr)x86Ptr + 5 ));
// jump target for skipping blockCycle updates
x86SetJ8(j8Ptr[0]);
//if (!psxbranch) psxbranch = 2;
}
void rpsxBREAK()
{
MOV32ItoM( (uptr)&psxRegs.code, psxRegs.code );
MOV32ItoM((uptr)&psxRegs.pc, psxpc - 4);
_psxFlushCall(FLUSH_NODESTROY);
_callFunctionArg2((uptr)psxBREAK, MEM_CONSTTAG, MEM_CONSTTAG, 0x24, psxbranch==1);
CMP32ItoM((uptr)&psxRegs.pc, psxpc-4);
j8Ptr[0] = JE8(0);
ADD32ItoM((uptr)&psxRegs.cycle, psxScaleBlockCycles() );
SUB32ItoM((uptr)&psxCycleEE, psxScaleBlockCycles()*8 );
JMP32((uptr)psxDispatcherReg - ( (uptr)x86Ptr + 5 ));
x86SetJ8(j8Ptr[0]);
//if (!psxbranch) psxbranch = 2;
}
u32 psxRecompileCodeSafe(u32 temppc)
{
BASEBLOCK* pblock = PSX_GETBLOCK(temppc);
if( pblock->GetFnptr() != 0 && pblock->startpc != s_pCurBlock->startpc ) {
if( psxpc == pblock->startpc )
return 0;
}
return 1;
}
void psxRecompileNextInstruction(int delayslot)
{
static u8 s_bFlushReg = 1;
BASEBLOCK* pblock = PSX_GETBLOCK(psxpc);
// need *ppblock != s_pCurBlock because of branches
if( pblock->GetFnptr() != 0 && pblock->startpc != s_pCurBlock->startpc ) {
if( !delayslot && psxpc == pblock->startpc ) {
// code already in place, so jump to it and exit recomp
assert( PSX_GETBLOCKEX(pblock)->startpc == pblock->startpc );
_psxFlushCall(FLUSH_EVERYTHING);
MOV32ItoM((uptr)&psxRegs.pc, psxpc);
// if( pexblock->pOldFnptr ) {
// // code already in place, so jump to it and exit recomp
// JMP32((uptr)pexblock->pOldFnptr - ((uptr)x86Ptr + 5));
// branch = 3;
// return;
// }
JMP32((uptr)pblock->GetFnptr() - ((uptr)x86Ptr + 5));
psxbranch = 3;
return;
}
else {
if( !(delayslot && pblock->startpc == psxpc) ) {
u8* oldX86 = x86Ptr;
//__Log("clear block %x\n", pblock->startpc);
psxRecClearMem(pblock);
x86Ptr = oldX86;
if( delayslot )
SysPrintf("delay slot %x\n", psxpc);
}
}
}
if( delayslot )
pblock->uType = BLOCKTYPE_DELAYSLOT;
#ifdef _DEBUG
MOV32ItoR(EAX, psxpc);
#endif
s_pCode = iopVirtMemR<int>( psxpc );
assert(s_pCode);
psxRegs.code = *(int *)s_pCode;
s_psxBlockCycles++;
psxpc += 4;
//#ifdef _DEBUG
// CMP32ItoM((uptr)s_pCode, psxRegs.code);
// j8Ptr[0] = JE8(0);
// MOV32ItoR(EAX, psxpc);
// CALLFunc((uptr)checkcodefn);
// x86SetJ8( j8Ptr[ 0 ] );
//#endif
g_pCurInstInfo++;
#ifdef PCSX2_VM_COISSUE
assert( g_pCurInstInfo->info & EEINSTINFO_COREC );
#endif
g_iopCyclePenalty = 0;
rpsxBSC[ psxRegs.code >> 26 ]();
s_psxBlockCycles += g_iopCyclePenalty;
if( !delayslot ) {
if( s_bFlushReg ) {
//_psxFlushUnusedConstReg();
}
else s_bFlushReg = 1;
}
else s_bFlushReg = 1;
_clearNeededX86regs();
}
#include "IopHw.h"
void iDumpPsxRegisters(u32 startpc, u32 temp)
{
// [TODO] fixme : thie code is broken and has no labels. Needs a rewrite to be useful.
#if 0
int i;
const char* pstr = temp ? "t" : "";
__Log("%spsxreg: %x %x ra:%x k0: %x %x\n", pstr, startpc, psxRegs.cycle, psxRegs.GPR.n.ra, psxRegs.GPR.n.k0, *(int*)PSXM(0x13c128));
for(i = 0; i < 34; i+=2) __Log("%spsx%s: %x %x\n", pstr, disRNameGPR[i], psxRegs.GPR.r[i], psxRegs.GPR.r[i+1]);
__Log("%scycle: %x %x %x; counters %x %x\n", pstr, psxRegs.cycle, g_psxNextBranchCycle, EEsCycle,
psxNextsCounter, psxNextCounter);
__Log("psxdma%d c%x b%x m%x t%x\n", 2, HW_DMA2_CHCR, HW_DMA2_BCR, HW_DMA2_MADR, HW_DMA2_TADR);
__Log("psxdma%d c%x b%x m%x\n", 3, HW_DMA3_CHCR, HW_DMA3_BCR, HW_DMA3_MADR);
__Log("psxdma%d c%x b%x m%x t%x\n", 4, HW_DMA4_CHCR, HW_DMA4_BCR, HW_DMA4_MADR, HW_DMA4_TADR);
__Log("psxdma%d c%x b%x m%x\n", 6, HW_DMA6_CHCR, HW_DMA6_BCR, HW_DMA6_MADR);
__Log("psxdma%d c%x b%x m%x\n", 7, HW_DMA7_CHCR, HW_DMA7_BCR, HW_DMA7_MADR);
__Log("psxdma%d c%x b%x m%x\n", 8, HW_DMA8_CHCR, HW_DMA8_BCR, HW_DMA8_MADR);
__Log("psxdma%d c%x b%x m%x t%x\n", 9, HW_DMA9_CHCR, HW_DMA9_BCR, HW_DMA9_MADR, HW_DMA9_TADR);
__Log("psxdma%d c%x b%x m%x\n", 10, HW_DMA10_CHCR, HW_DMA10_BCR, HW_DMA10_MADR);
__Log("psxdma%d c%x b%x m%x\n", 11, HW_DMA11_CHCR, HW_DMA11_BCR, HW_DMA11_MADR);
__Log("psxdma%d c%x b%x m%x\n", 12, HW_DMA12_CHCR, HW_DMA12_BCR, HW_DMA12_MADR);
for(i = 0; i < 7; ++i)
__Log("%scounter%d: mode %x count %I64x rate %x scycle %x target %I64x\n", pstr, i, psxCounters[i].mode, psxCounters[i].count, psxCounters[i].rate, psxCounters[i].sCycleT, psxCounters[i].target);
#endif
}
void iDumpPsxRegisters(u32 startpc);
#ifdef _DEBUG
static void printfn()
{
static int lastrec = 0;
static int curcount = 0;
const int skip = 0;
//*(int*)PSXM(0x27990) = 1; // enables cdvd bios output for scph10000
if( psxRegs.cycle == 0x113a1be5 ) {
// FILE* tempf = fopen("tempdmciop.txt", "wb");
// fwrite(PSXM(0), 0x200000, 1, tempf);
// fclose(tempf);
//psxdump |= 2;
}
// if( psxRegs.cycle == 0x114152d8 ) {
// psxRegs.GPR.n.s0 = 0x55000;
// }
if( (psxdump&2) && lastrec != g_psxlastpc ) {
curcount++;
if( curcount > skip ) {
iDumpPsxRegisters(g_psxlastpc, 1);
curcount = 0;
}
lastrec = g_psxlastpc;
}
}
#endif
void psxRecRecompile(u32 startpc)
{
u32 i;
u32 branchTo;
u32 willbranch3 = 0;
u32* ptr;
#ifdef _DEBUG
//psxdump |= 4;
if( psxdump & 4 )
iDumpPsxRegisters(startpc, 0);
#endif
assert( startpc );
// if recPtr reached the mem limit reset whole mem
if (((uptr)recPtr - (uptr)recMem) >= (RECMEM_SIZE - 0x10000)) {
DevCon::WriteLn("IOP Recompiler data reset");
recResetIOP();
}
s_pCurBlock = PSX_GETBLOCK(startpc);
if( s_pCurBlock->GetFnptr() ) {
// clear if already taken
assert( s_pCurBlock->startpc < startpc );
psxRecClearMem(s_pCurBlock);
}
if( s_pCurBlock->startpc == startpc ) {
s_pCurBlockEx = PSX_GETBLOCKEX(s_pCurBlock);
assert( s_pCurBlockEx->startpc == startpc );
}
else {
s_pCurBlockEx = NULL;
for(i = 0; i < PSX_NUMBLOCKS; ++i) {
if( recBlocks[(i+s_nNextBlock)%PSX_NUMBLOCKS].size == 0 ) {
s_pCurBlockEx = recBlocks+(i+s_nNextBlock)%PSX_NUMBLOCKS;
s_nNextBlock = (i+s_nNextBlock+1)%PSX_NUMBLOCKS;
break;
}
}
if( s_pCurBlockEx == NULL ) {
DevCon::WriteLn("IOP Recompiler data reset");
recResetIOP();
s_nNextBlock = 0;
s_pCurBlockEx = recBlocks;
}
s_pCurBlockEx->startpc = startpc;
}
x86SetPtr( recPtr );
x86Align(16);
recPtr = x86Ptr;
psxbranch = 0;
s_pCurBlock->startpc = startpc;
s_pCurBlock->SetFnptr( (uptr)x86Ptr );
s_psxBlockCycles = 0;
// reset recomp state variables
psxpc = startpc;
s_saveConstGPRreg = 0;
g_psxHasConstReg = g_psxFlushedConstReg = 1;
_initX86regs();
#ifdef _DEBUG
// for debugging purposes
MOV32ItoM((uptr)&g_psxlastpc, psxpc);
CALLFunc((uptr)printfn);
#endif
// go until the next branch
i = startpc;
s_nEndBlock = 0xffffffff;
while(1) {
BASEBLOCK* pblock = PSX_GETBLOCK(i);
if( pblock->GetFnptr() != 0 && pblock->startpc != s_pCurBlock->startpc ) {
if( i == pblock->startpc ) {
// branch = 3
willbranch3 = 1;
s_nEndBlock = i;
break;
}
}
psxRegs.code = iopMemRead32(i);
switch(psxRegs.code >> 26) {
case 0: // special
if( _Funct_ == 8 || _Funct_ == 9 ) { // JR, JALR
s_nEndBlock = i + 8;
goto StartRecomp;
}
break;
case 1: // regimm
if( _Rt_ == 0 || _Rt_ == 1 || _Rt_ == 16 || _Rt_ == 17 ) {
branchTo = _Imm_ * 4 + i + 4;
if( branchTo > startpc && branchTo < i ) s_nEndBlock = branchTo;
else s_nEndBlock = i+8;
goto StartRecomp;
}
break;
case 2: // J
case 3: // JAL
s_nEndBlock = i + 8;
goto StartRecomp;
// branches
case 4: case 5: case 6: case 7:
branchTo = _Imm_ * 4 + i + 4;
if( branchTo > startpc && branchTo < i ) s_nEndBlock = branchTo;
else s_nEndBlock = i+8;
goto StartRecomp;
}
i += 4;
}
StartRecomp:
// rec info //
{
EEINST* pcur;
if( s_nInstCacheSize < (s_nEndBlock-startpc)/4+1 ) {
free(s_pInstCache);
s_nInstCacheSize = (s_nEndBlock-startpc)/4+10;
s_pInstCache = (EEINST*)malloc(sizeof(EEINST)*s_nInstCacheSize);
assert( s_pInstCache != NULL );
}
pcur = s_pInstCache + (s_nEndBlock-startpc)/4;
_recClearInst(pcur);
pcur->info = 0;
for(i = s_nEndBlock; i > startpc; i -= 4 ) {
psxRegs.code = iopMemRead32(i-4);
pcur[-1] = pcur[0];
rpsxpropBSC(pcur-1, pcur);
pcur--;
}
}
#ifdef _DEBUG
// dump code
for(i = 0; i < ArraySize(s_psxrecblocks); ++i) {
if( startpc == s_psxrecblocks[i] ) {
iIopDumpBlock(startpc, recPtr);
}
}
if( (psxdump & 1) )
iIopDumpBlock(startpc, recPtr);
#endif
g_pCurInstInfo = s_pInstCache;
while (!psxbranch && psxpc < s_nEndBlock) {
psxRecompileNextInstruction(0);
}
#ifdef _DEBUG
if( (psxdump & 1) )
iIopDumpBlock(startpc, recPtr);
#endif
assert( (psxpc-startpc)>>2 <= 0xffff );
s_pCurBlockEx->size = (psxpc-startpc)>>2;
for(i = 1; i < (u32)s_pCurBlockEx->size-1; ++i) {
s_pCurBlock[i].SetFnptr( s_pCurBlock->GetFnptr() );
s_pCurBlock[i].startpc = s_pCurBlock->startpc;
}
// don't overwrite if delay slot
if( i < (u32)s_pCurBlockEx->size && !(s_pCurBlock[i].uType & BLOCKTYPE_DELAYSLOT) ) {
s_pCurBlock[i].SetFnptr( s_pCurBlock->GetFnptr() );
s_pCurBlock[i].startpc = s_pCurBlock->startpc;
}
// set the block ptr
AddBaseBlockEx(s_pCurBlockEx, 1);
if( !(psxpc&0x10000000) )
g_psxMaxRecMem = std::max( (psxpc&~0xa0000000), g_psxMaxRecMem );
if( psxbranch == 2 ) {
_psxFlushCall(FLUSH_EVERYTHING);
iPsxBranchTest(0xffffffff, 1);
JMP32((uptr)psxDispatcherReg - ( (uptr)x86Ptr + 5 ));
}
else {
assert( psxbranch != 3 );
if( psxbranch ) assert( !willbranch3 );
else
{
ADD32ItoM((uptr)&psxRegs.cycle, psxScaleBlockCycles() );
SUB32ItoM((uptr)&psxCycleEE, psxScaleBlockCycles()*8 );
}
if( willbranch3 ) {
BASEBLOCK* pblock = PSX_GETBLOCK(s_nEndBlock);
assert( psxpc == s_nEndBlock );
_psxFlushCall(FLUSH_EVERYTHING);
MOV32ItoM((uptr)&psxRegs.pc, psxpc);
JMP32((uptr)pblock->GetFnptr() - ((uptr)x86Ptr + 5));
psxbranch = 3;
}
else if( !psxbranch ) {
// didn't branch, but had to stop
MOV32ItoM( (uptr)&psxRegs.pc, psxpc );
_psxFlushCall(FLUSH_EVERYTHING);
ptr = JMP32(0);
//JMP32((uptr)psxDispatcherReg - ( (uptr)x86Ptr + 5 ));
}
}
assert( x86Ptr >= (u8*)s_pCurBlock->GetFnptr() + IOP_MIN_BLOCK_BYTES );
assert( x86Ptr < recMem+RECMEM_SIZE );
recPtr = x86Ptr;
assert( (g_psxHasConstReg&g_psxFlushedConstReg) == g_psxHasConstReg );
if( !psxbranch ) {
BASEBLOCK* pcurblock = s_pCurBlock;
u32 nEndBlock = s_nEndBlock;
s_pCurBlock = PSX_GETBLOCK(psxpc);
assert( ptr != NULL );
if( s_pCurBlock->startpc != psxpc ){
psxRecRecompile(psxpc);
}
// could have reset
if( pcurblock->startpc == startpc ) {
assert( pcurblock->GetFnptr() );
assert( s_pCurBlock->startpc == nEndBlock );
*ptr = (u32)((uptr)s_pCurBlock->GetFnptr() - ( (uptr)ptr + 4 ));
}
else {
psxRecRecompile(startpc);
assert( pcurblock->GetFnptr() != 0 );
}
}
else
assert( s_pCurBlock->GetFnptr() != 0 );
}
R3000Acpu psxRec = {
recAlloc,
recResetIOP,
recExecute,
recExecuteBlock,
recClear,
recShutdown
};