pcsx2/common/Vulkan/Builders.cpp

945 lines
29 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2021 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "common/Vulkan/Builders.h"
#include "common/Vulkan/Util.h"
#include "common/Assertions.h"
#include <limits>
namespace Vulkan
{
DescriptorSetLayoutBuilder::DescriptorSetLayoutBuilder() { Clear(); }
void DescriptorSetLayoutBuilder::Clear()
{
m_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
m_ci.pNext = nullptr;
m_ci.flags = 0;
m_ci.pBindings = nullptr;
m_ci.bindingCount = 0;
}
VkDescriptorSetLayout DescriptorSetLayoutBuilder::Create(VkDevice device)
{
VkDescriptorSetLayout layout;
VkResult res = vkCreateDescriptorSetLayout(device, &m_ci, nullptr, &layout);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDescriptorSetLayout() failed: ");
return VK_NULL_HANDLE;
}
Clear();
return layout;
}
void DescriptorSetLayoutBuilder::AddBinding(
u32 binding, VkDescriptorType dtype, u32 dcount, VkShaderStageFlags stages)
{
pxAssert(m_ci.bindingCount < MAX_BINDINGS);
VkDescriptorSetLayoutBinding& b = m_bindings[m_ci.bindingCount];
b.binding = binding;
b.descriptorType = dtype;
b.descriptorCount = dcount;
b.stageFlags = stages;
b.pImmutableSamplers = nullptr;
m_ci.pBindings = m_bindings.data();
m_ci.bindingCount++;
}
PipelineLayoutBuilder::PipelineLayoutBuilder() { Clear(); }
void PipelineLayoutBuilder::Clear()
{
m_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
m_ci.pNext = nullptr;
m_ci.flags = 0;
m_ci.pSetLayouts = nullptr;
m_ci.setLayoutCount = 0;
m_ci.pPushConstantRanges = nullptr;
m_ci.pushConstantRangeCount = 0;
}
VkPipelineLayout PipelineLayoutBuilder::Create(VkDevice device)
{
VkPipelineLayout layout;
VkResult res = vkCreatePipelineLayout(device, &m_ci, nullptr, &layout);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreatePipelineLayout() failed: ");
return VK_NULL_HANDLE;
}
Clear();
return layout;
}
void PipelineLayoutBuilder::AddDescriptorSet(VkDescriptorSetLayout layout)
{
pxAssert(m_ci.setLayoutCount < MAX_SETS);
m_sets[m_ci.setLayoutCount] = layout;
m_ci.setLayoutCount++;
m_ci.pSetLayouts = m_sets.data();
}
void PipelineLayoutBuilder::AddPushConstants(VkShaderStageFlags stages, u32 offset, u32 size)
{
pxAssert(m_ci.pushConstantRangeCount < MAX_PUSH_CONSTANTS);
VkPushConstantRange& r = m_push_constants[m_ci.pushConstantRangeCount];
r.stageFlags = stages;
r.offset = offset;
r.size = size;
m_ci.pushConstantRangeCount++;
m_ci.pPushConstantRanges = m_push_constants.data();
}
GraphicsPipelineBuilder::GraphicsPipelineBuilder() { Clear(); }
void GraphicsPipelineBuilder::Clear()
{
m_ci = {};
m_ci.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
m_shader_stages = {};
m_vertex_input_state = {};
m_vertex_input_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
m_ci.pVertexInputState = &m_vertex_input_state;
m_vertex_attributes = {};
m_vertex_buffers = {};
m_input_assembly = {};
m_input_assembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
m_rasterization_state = {};
m_rasterization_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
m_rasterization_state.lineWidth = 1.0f;
m_depth_state = {};
m_depth_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
m_blend_state = {};
m_blend_state.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
m_blend_attachments = {};
m_viewport_state = {};
m_viewport_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
m_viewport = {};
m_scissor = {};
m_dynamic_state = {};
m_dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
m_dynamic_state_values = {};
m_multisample_state = {};
m_multisample_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
m_provoking_vertex = {};
m_provoking_vertex.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_PROVOKING_VERTEX_STATE_CREATE_INFO_EXT;
// set defaults
SetNoCullRasterizationState();
SetNoDepthTestState();
SetNoBlendingState();
SetPrimitiveTopology(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
// have to be specified even if dynamic
SetViewport(0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f);
SetScissorRect(0, 0, 1, 1);
SetMultisamples(VK_SAMPLE_COUNT_1_BIT);
}
VkPipeline GraphicsPipelineBuilder::Create(VkDevice device, VkPipelineCache pipeline_cache, bool clear /* = true */)
{
VkPipeline pipeline;
VkResult res = vkCreateGraphicsPipelines(device, pipeline_cache, 1, &m_ci, nullptr, &pipeline);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateGraphicsPipelines() failed: ");
return VK_NULL_HANDLE;
}
if (clear)
Clear();
return pipeline;
}
void GraphicsPipelineBuilder::SetShaderStage(
VkShaderStageFlagBits stage, VkShaderModule module, const char* entry_point)
{
pxAssert(m_ci.stageCount < MAX_SHADER_STAGES);
u32 index = 0;
for (; index < m_ci.stageCount; index++)
{
if (m_shader_stages[index].stage == stage)
break;
}
if (index == m_ci.stageCount)
{
m_ci.stageCount++;
m_ci.pStages = m_shader_stages.data();
}
VkPipelineShaderStageCreateInfo& s = m_shader_stages[index];
s.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
s.stage = stage;
s.module = module;
s.pName = entry_point;
}
void GraphicsPipelineBuilder::AddVertexBuffer(
u32 binding, u32 stride, VkVertexInputRate input_rate /*= VK_VERTEX_INPUT_RATE_VERTEX*/)
{
pxAssert(m_vertex_input_state.vertexAttributeDescriptionCount < MAX_VERTEX_BUFFERS);
VkVertexInputBindingDescription& b = m_vertex_buffers[m_vertex_input_state.vertexBindingDescriptionCount];
b.binding = binding;
b.stride = stride;
b.inputRate = input_rate;
m_vertex_input_state.vertexBindingDescriptionCount++;
m_vertex_input_state.pVertexBindingDescriptions = m_vertex_buffers.data();
m_ci.pVertexInputState = &m_vertex_input_state;
}
void GraphicsPipelineBuilder::AddVertexAttribute(u32 location, u32 binding, VkFormat format, u32 offset)
{
pxAssert(m_vertex_input_state.vertexAttributeDescriptionCount < MAX_VERTEX_BUFFERS);
VkVertexInputAttributeDescription& a =
m_vertex_attributes[m_vertex_input_state.vertexAttributeDescriptionCount];
a.location = location;
a.binding = binding;
a.format = format;
a.offset = offset;
m_vertex_input_state.vertexAttributeDescriptionCount++;
m_vertex_input_state.pVertexAttributeDescriptions = m_vertex_attributes.data();
m_ci.pVertexInputState = &m_vertex_input_state;
}
void GraphicsPipelineBuilder::SetPrimitiveTopology(
VkPrimitiveTopology topology, bool enable_primitive_restart /*= false*/)
{
m_input_assembly.topology = topology;
m_input_assembly.primitiveRestartEnable = enable_primitive_restart;
m_ci.pInputAssemblyState = &m_input_assembly;
}
void GraphicsPipelineBuilder::SetRasterizationState(
VkPolygonMode polygon_mode, VkCullModeFlags cull_mode, VkFrontFace front_face)
{
m_rasterization_state.polygonMode = polygon_mode;
m_rasterization_state.cullMode = cull_mode;
m_rasterization_state.frontFace = front_face;
m_ci.pRasterizationState = &m_rasterization_state;
}
void GraphicsPipelineBuilder::SetLineWidth(float width) { m_rasterization_state.lineWidth = width; }
void GraphicsPipelineBuilder::SetMultisamples(u32 multisamples, bool per_sample_shading)
{
m_multisample_state.rasterizationSamples = static_cast<VkSampleCountFlagBits>(multisamples);
m_multisample_state.sampleShadingEnable = per_sample_shading;
m_multisample_state.minSampleShading = (multisamples > 1) ? 1.0f : 0.0f;
}
void GraphicsPipelineBuilder::SetNoCullRasterizationState()
{
SetRasterizationState(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE);
}
void GraphicsPipelineBuilder::SetDepthState(bool depth_test, bool depth_write, VkCompareOp compare_op)
{
m_depth_state.depthTestEnable = depth_test;
m_depth_state.depthWriteEnable = depth_write;
m_depth_state.depthCompareOp = compare_op;
m_ci.pDepthStencilState = &m_depth_state;
}
void GraphicsPipelineBuilder::SetStencilState(
bool stencil_test, const VkStencilOpState& front, const VkStencilOpState& back)
{
m_depth_state.stencilTestEnable = stencil_test;
m_depth_state.front = front;
m_depth_state.back = back;
}
void GraphicsPipelineBuilder::SetNoStencilState()
{
m_depth_state.stencilTestEnable = VK_FALSE;
m_depth_state.front = {};
m_depth_state.back = {};
}
void GraphicsPipelineBuilder::SetNoDepthTestState() { SetDepthState(false, false, VK_COMPARE_OP_ALWAYS); }
void GraphicsPipelineBuilder::SetBlendConstants(float r, float g, float b, float a)
{
m_blend_state.blendConstants[0] = r;
m_blend_state.blendConstants[1] = g;
m_blend_state.blendConstants[2] = b;
m_blend_state.blendConstants[3] = a;
m_ci.pColorBlendState = &m_blend_state;
}
void GraphicsPipelineBuilder::AddBlendAttachment(bool blend_enable, VkBlendFactor src_factor,
VkBlendFactor dst_factor, VkBlendOp op, VkBlendFactor alpha_src_factor, VkBlendFactor alpha_dst_factor,
VkBlendOp alpha_op,
VkColorComponentFlags
write_mask /* = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT */)
{
pxAssert(m_blend_state.attachmentCount < MAX_ATTACHMENTS);
VkPipelineColorBlendAttachmentState& bs = m_blend_attachments[m_blend_state.attachmentCount];
bs.blendEnable = blend_enable;
bs.srcColorBlendFactor = src_factor;
bs.dstColorBlendFactor = dst_factor;
bs.colorBlendOp = op;
bs.srcAlphaBlendFactor = alpha_src_factor;
bs.dstAlphaBlendFactor = alpha_dst_factor;
bs.alphaBlendOp = alpha_op;
bs.colorWriteMask = write_mask;
m_blend_state.attachmentCount++;
m_blend_state.pAttachments = m_blend_attachments.data();
m_ci.pColorBlendState = &m_blend_state;
}
void GraphicsPipelineBuilder::SetBlendAttachment(u32 attachment, bool blend_enable, VkBlendFactor src_factor,
VkBlendFactor dst_factor, VkBlendOp op, VkBlendFactor alpha_src_factor, VkBlendFactor alpha_dst_factor,
VkBlendOp alpha_op,
VkColorComponentFlags
write_mask /*= VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT*/)
{
pxAssert(attachment < MAX_ATTACHMENTS);
VkPipelineColorBlendAttachmentState& bs = m_blend_attachments[attachment];
bs.blendEnable = blend_enable;
bs.srcColorBlendFactor = src_factor;
bs.dstColorBlendFactor = dst_factor;
bs.colorBlendOp = op;
bs.srcAlphaBlendFactor = alpha_src_factor;
bs.dstAlphaBlendFactor = alpha_dst_factor;
bs.alphaBlendOp = alpha_op;
bs.colorWriteMask = write_mask;
if (attachment >= m_blend_state.attachmentCount)
{
m_blend_state.attachmentCount = attachment + 1u;
m_blend_state.pAttachments = m_blend_attachments.data();
m_ci.pColorBlendState = &m_blend_state;
}
}
void GraphicsPipelineBuilder::AddBlendFlags(u32 flags)
{
m_blend_state.flags |= flags;
}
void GraphicsPipelineBuilder::ClearBlendAttachments()
{
m_blend_attachments = {};
m_blend_state.attachmentCount = 0;
}
void GraphicsPipelineBuilder::SetNoBlendingState()
{
ClearBlendAttachments();
SetBlendAttachment(0, false, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_ZERO, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE,
VK_BLEND_FACTOR_ZERO, VK_BLEND_OP_ADD,
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT);
}
void GraphicsPipelineBuilder::AddDynamicState(VkDynamicState state)
{
pxAssert(m_dynamic_state.dynamicStateCount < MAX_DYNAMIC_STATE);
m_dynamic_state_values[m_dynamic_state.dynamicStateCount] = state;
m_dynamic_state.dynamicStateCount++;
m_dynamic_state.pDynamicStates = m_dynamic_state_values.data();
m_ci.pDynamicState = &m_dynamic_state;
}
void GraphicsPipelineBuilder::SetDynamicViewportAndScissorState()
{
AddDynamicState(VK_DYNAMIC_STATE_VIEWPORT);
AddDynamicState(VK_DYNAMIC_STATE_SCISSOR);
}
void GraphicsPipelineBuilder::SetViewport(
float x, float y, float width, float height, float min_depth, float max_depth)
{
m_viewport.x = x;
m_viewport.y = y;
m_viewport.width = width;
m_viewport.height = height;
m_viewport.minDepth = min_depth;
m_viewport.maxDepth = max_depth;
m_viewport_state.pViewports = &m_viewport;
m_viewport_state.viewportCount = 1u;
m_ci.pViewportState = &m_viewport_state;
}
void GraphicsPipelineBuilder::SetScissorRect(s32 x, s32 y, u32 width, u32 height)
{
m_scissor.offset.x = x;
m_scissor.offset.y = y;
m_scissor.extent.width = width;
m_scissor.extent.height = height;
m_viewport_state.pScissors = &m_scissor;
m_viewport_state.scissorCount = 1u;
m_ci.pViewportState = &m_viewport_state;
}
void GraphicsPipelineBuilder::SetMultisamples(VkSampleCountFlagBits samples)
{
m_multisample_state.rasterizationSamples = samples;
m_ci.pMultisampleState = &m_multisample_state;
}
void GraphicsPipelineBuilder::SetPipelineLayout(VkPipelineLayout layout) { m_ci.layout = layout; }
void GraphicsPipelineBuilder::SetRenderPass(VkRenderPass render_pass, u32 subpass)
{
m_ci.renderPass = render_pass;
m_ci.subpass = subpass;
}
void GraphicsPipelineBuilder::SetProvokingVertex(VkProvokingVertexModeEXT mode)
{
Util::AddPointerToChain(&m_rasterization_state, &m_provoking_vertex);
m_provoking_vertex.provokingVertexMode = mode;
}
ComputePipelineBuilder::ComputePipelineBuilder() { Clear(); }
void ComputePipelineBuilder::Clear()
{
m_ci = {};
m_ci.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
m_si = {};
m_smap_entries = {};
m_smap_constants = {};
}
VkPipeline ComputePipelineBuilder::Create(VkDevice device, VkPipelineCache pipeline_cache /*= VK_NULL_HANDLE*/, bool clear /*= true*/)
{
VkPipeline pipeline;
VkResult res = vkCreateComputePipelines(device, pipeline_cache, 1, &m_ci, nullptr, &pipeline);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateComputePipelines() failed: ");
return VK_NULL_HANDLE;
}
if (clear)
Clear();
return pipeline;
}
void ComputePipelineBuilder::SetShader(VkShaderModule module, const char* entry_point)
{
m_ci.stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
m_ci.stage.stage = VK_SHADER_STAGE_COMPUTE_BIT;
m_ci.stage.module = module;
m_ci.stage.pName = entry_point;
}
void ComputePipelineBuilder::SetPipelineLayout(VkPipelineLayout layout)
{
m_ci.layout = layout;
}
void ComputePipelineBuilder::SetSpecializationBool(u32 index, bool value)
{
const u32 u32_value = static_cast<u32>(value);
SetSpecializationValue(index, u32_value);
}
void ComputePipelineBuilder::SetSpecializationValue(u32 index, u32 value)
{
if (m_si.mapEntryCount == 0)
{
m_si.pMapEntries = m_smap_entries.data();
m_si.pData = m_smap_constants.data();
m_ci.stage.pSpecializationInfo = &m_si;
}
m_smap_entries[m_si.mapEntryCount++] = {index, index * SPECIALIZATION_CONSTANT_SIZE, SPECIALIZATION_CONSTANT_SIZE};
m_si.dataSize += SPECIALIZATION_CONSTANT_SIZE;
}
SamplerBuilder::SamplerBuilder() { Clear(); }
void SamplerBuilder::Clear()
{
m_ci = {};
m_ci.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
}
VkSampler SamplerBuilder::Create(VkDevice device, bool clear /* = true */)
{
VkSampler sampler;
VkResult res = vkCreateSampler(device, &m_ci, nullptr, &sampler);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateSampler() failed: ");
return VK_NULL_HANDLE;
}
return sampler;
}
void SamplerBuilder::SetFilter(VkFilter mag_filter, VkFilter min_filter, VkSamplerMipmapMode mip_filter)
{
m_ci.magFilter = mag_filter;
m_ci.minFilter = min_filter;
m_ci.mipmapMode = mip_filter;
}
void SamplerBuilder::SetAddressMode(VkSamplerAddressMode u, VkSamplerAddressMode v, VkSamplerAddressMode w)
{
m_ci.addressModeU = u;
m_ci.addressModeV = v;
m_ci.addressModeW = w;
}
void SamplerBuilder::SetPointSampler(
VkSamplerAddressMode address_mode /* = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER */)
{
Clear();
SetFilter(VK_FILTER_NEAREST, VK_FILTER_NEAREST, VK_SAMPLER_MIPMAP_MODE_NEAREST);
SetAddressMode(address_mode, address_mode, address_mode);
}
void SamplerBuilder::SetLinearSampler(
bool mipmaps, VkSamplerAddressMode address_mode /* = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER */)
{
Clear();
SetFilter(VK_FILTER_LINEAR, VK_FILTER_LINEAR,
mipmaps ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST);
SetAddressMode(address_mode, address_mode, address_mode);
if (mipmaps)
{
m_ci.minLod = std::numeric_limits<float>::min();
m_ci.maxLod = std::numeric_limits<float>::max();
}
}
DescriptorSetUpdateBuilder::DescriptorSetUpdateBuilder() { Clear(); }
void DescriptorSetUpdateBuilder::Clear()
{
m_writes = {};
m_num_writes = 0;
}
void DescriptorSetUpdateBuilder::Update(VkDevice device, bool clear /*= true*/)
{
pxAssert(m_num_writes > 0);
vkUpdateDescriptorSets(device, m_num_writes, (m_num_writes > 0) ? m_writes.data() : nullptr, 0, nullptr);
if (clear)
Clear();
}
void DescriptorSetUpdateBuilder::AddImageDescriptorWrite(VkDescriptorSet set, u32 binding, VkImageView view,
VkImageLayout layout /*= VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL*/)
{
pxAssert(m_num_writes < MAX_WRITES && m_num_image_infos < MAX_IMAGE_INFOS);
VkDescriptorImageInfo& ii = m_image_infos[m_num_image_infos++];
ii.imageView = view;
ii.imageLayout = layout;
ii.sampler = VK_NULL_HANDLE;
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = 1;
dw.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
dw.pImageInfo = &ii;
}
void DescriptorSetUpdateBuilder::AddImageDescriptorWrites(VkDescriptorSet set, u32 binding,
const VkImageView* views, u32 num_views, VkImageLayout layout /*= VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL*/)
{
pxAssert(m_num_writes < MAX_WRITES && (m_num_image_infos + num_views) < MAX_IMAGE_INFOS);
#if 1
// NOTE: This is deliberately split up - updating multiple descriptors in one write is broken on Adreno.
for (u32 i = 0; i < num_views; i++)
AddImageDescriptorWrite(set, binding + i, views[i], layout);
#else
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = num_views;
dw.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
dw.pImageInfo = &m_image_infos[m_num_image_infos];
for (u32 i = 0; i < num_views; i++)
{
VkDescriptorImageInfo& ii = m_image_infos[m_num_image_infos++];
ii.imageView = views[i];
ii.imageLayout = layout;
ii.sampler = VK_NULL_HANDLE;
}
#endif
}
void DescriptorSetUpdateBuilder::AddSamplerDescriptorWrite(VkDescriptorSet set, u32 binding, VkSampler sampler)
{
pxAssert(m_num_writes < MAX_WRITES && m_num_image_infos < MAX_IMAGE_INFOS);
VkDescriptorImageInfo& ii = m_image_infos[m_num_image_infos++];
ii.imageView = VK_NULL_HANDLE;
ii.imageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
ii.sampler = sampler;
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = 1;
dw.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
dw.pImageInfo = &ii;
}
void DescriptorSetUpdateBuilder::AddSamplerDescriptorWrites(
VkDescriptorSet set, u32 binding, const VkSampler* samplers, u32 num_samplers)
{
pxAssert(m_num_writes < MAX_WRITES && (m_num_image_infos + num_samplers) < MAX_IMAGE_INFOS);
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = num_samplers;
dw.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
dw.pImageInfo = &m_image_infos[m_num_image_infos];
for (u32 i = 0; i < num_samplers; i++)
{
VkDescriptorImageInfo& ii = m_image_infos[m_num_image_infos++];
ii.imageView = VK_NULL_HANDLE;
ii.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
ii.sampler = samplers[i];
}
}
void DescriptorSetUpdateBuilder::AddCombinedImageSamplerDescriptorWrite(VkDescriptorSet set, u32 binding,
VkImageView view, VkSampler sampler, VkImageLayout layout /*= VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL*/)
{
pxAssert(m_num_writes < MAX_WRITES && m_num_image_infos < MAX_IMAGE_INFOS);
VkDescriptorImageInfo& ii = m_image_infos[m_num_image_infos++];
ii.imageView = view;
ii.imageLayout = layout;
ii.sampler = sampler;
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = 1;
dw.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
dw.pImageInfo = &ii;
}
void DescriptorSetUpdateBuilder::AddCombinedImageSamplerDescriptorWrites(VkDescriptorSet set, u32 binding,
const VkImageView* views, const VkSampler* samplers, u32 num_views,
VkImageLayout layout /* = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL */)
{
pxAssert(m_num_writes < MAX_WRITES && (m_num_image_infos + num_views) < MAX_IMAGE_INFOS);
#if 1
// NOTE: This is deliberately split up - updating multiple descriptors in one write is broken on Adreno.
for (u32 i = 0; i < num_views; i++)
AddCombinedImageSamplerDescriptorWrite(set, binding + i, views[i], samplers[i], layout);
#else
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = num_views;
dw.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
dw.pImageInfo = &m_image_infos[m_num_image_infos];
for (u32 i = 0; i < num_views; i++)
{
VkDescriptorImageInfo& ii = m_image_infos[m_num_image_infos++];
ii.imageView = views[i];
ii.sampler = samplers[i];
ii.imageLayout = layout;
}
#endif
}
void DescriptorSetUpdateBuilder::AddBufferDescriptorWrite(
VkDescriptorSet set, u32 binding, VkDescriptorType dtype, VkBuffer buffer, u32 offset, u32 size)
{
pxAssert(m_num_writes < MAX_WRITES && m_num_buffer_infos < MAX_BUFFER_INFOS);
VkDescriptorBufferInfo& bi = m_buffer_infos[m_num_buffer_infos++];
bi.buffer = buffer;
bi.offset = offset;
bi.range = size;
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = 1;
dw.descriptorType = dtype;
dw.pBufferInfo = &bi;
}
void DescriptorSetUpdateBuilder::AddBufferViewDescriptorWrite(
VkDescriptorSet set, u32 binding, VkDescriptorType dtype, VkBufferView view)
{
pxAssert(m_num_writes < MAX_WRITES && m_num_views < MAX_VIEWS);
VkBufferView& bi = m_views[m_num_views++];
bi = view;
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = 1;
dw.descriptorType = dtype;
dw.pTexelBufferView = &bi;
}
void DescriptorSetUpdateBuilder::AddInputAttachmentDescriptorWrite(
VkDescriptorSet set, u32 binding, VkImageView view, VkImageLayout layout /*= VK_IMAGE_LAYOUT_GENERAL*/)
{
pxAssert(m_num_writes < MAX_WRITES && m_num_image_infos < MAX_IMAGE_INFOS);
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = 1;
dw.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT;
dw.pImageInfo = &m_image_infos[m_num_image_infos];
VkDescriptorImageInfo& ii = m_image_infos[m_num_image_infos++];
ii.imageView = view;
ii.imageLayout = layout;
ii.sampler = VK_NULL_HANDLE;
}
void DescriptorSetUpdateBuilder::AddStorageImageDescriptorWrite(
VkDescriptorSet set, u32 binding, VkImageView view, VkImageLayout layout /*= VK_IMAGE_LAYOUT_GENERAL*/)
{
pxAssert(m_num_writes < MAX_WRITES && m_num_image_infos < MAX_IMAGE_INFOS);
VkWriteDescriptorSet& dw = m_writes[m_num_writes++];
dw.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
dw.dstSet = set;
dw.dstBinding = binding;
dw.descriptorCount = 1;
dw.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
dw.pImageInfo = &m_image_infos[m_num_image_infos];
VkDescriptorImageInfo& ii = m_image_infos[m_num_image_infos++];
ii.imageView = view;
ii.imageLayout = layout;
ii.sampler = VK_NULL_HANDLE;
}
FramebufferBuilder::FramebufferBuilder() { Clear(); }
void FramebufferBuilder::Clear()
{
m_ci = {};
m_ci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
m_images = {};
}
VkFramebuffer FramebufferBuilder::Create(VkDevice device, bool clear /*= true*/)
{
VkFramebuffer fb;
VkResult res = vkCreateFramebuffer(device, &m_ci, nullptr, &fb);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer() failed: ");
return VK_NULL_HANDLE;
}
if (clear)
Clear();
return fb;
}
void FramebufferBuilder::AddAttachment(VkImageView image)
{
pxAssert(m_ci.attachmentCount < MAX_ATTACHMENTS);
m_images[m_ci.attachmentCount] = image;
m_ci.attachmentCount++;
m_ci.pAttachments = m_images.data();
}
void FramebufferBuilder::SetSize(u32 width, u32 height, u32 layers)
{
m_ci.width = width;
m_ci.height = height;
m_ci.layers = layers;
}
void FramebufferBuilder::SetRenderPass(VkRenderPass render_pass) { m_ci.renderPass = render_pass; }
RenderPassBuilder::RenderPassBuilder() { Clear(); }
void RenderPassBuilder::Clear()
{
m_ci = {};
m_ci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
m_attachments = {};
m_attachment_references = {};
m_num_attachment_references = 0;
m_subpasses = {};
}
VkRenderPass RenderPassBuilder::Create(VkDevice device, bool clear /*= true*/)
{
VkRenderPass rp;
VkResult res = vkCreateRenderPass(device, &m_ci, nullptr, &rp);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateRenderPass() failed: ");
return VK_NULL_HANDLE;
}
return rp;
}
u32 RenderPassBuilder::AddAttachment(VkFormat format, VkSampleCountFlagBits samples, VkAttachmentLoadOp load_op,
VkAttachmentStoreOp store_op, VkImageLayout initial_layout, VkImageLayout final_layout)
{
pxAssert(m_ci.attachmentCount < MAX_ATTACHMENTS);
const u32 index = m_ci.attachmentCount;
VkAttachmentDescription& ad = m_attachments[index];
ad.format = format;
ad.samples = samples;
ad.loadOp = load_op;
ad.storeOp = store_op;
ad.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
ad.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
ad.initialLayout = initial_layout;
ad.finalLayout = final_layout;
m_ci.attachmentCount++;
m_ci.pAttachments = m_attachments.data();
return index;
}
u32 RenderPassBuilder::AddSubpass()
{
pxAssert(m_ci.subpassCount < MAX_SUBPASSES);
const u32 index = m_ci.subpassCount;
VkSubpassDescription& sp = m_subpasses[index];
sp.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
m_ci.subpassCount++;
m_ci.pSubpasses = m_subpasses.data();
return index;
}
void RenderPassBuilder::AddSubpassColorAttachment(u32 subpass, u32 attachment, VkImageLayout layout)
{
pxAssert(subpass < m_ci.subpassCount && m_num_attachment_references < MAX_ATTACHMENT_REFERENCES);
VkAttachmentReference& ar = m_attachment_references[m_num_attachment_references++];
ar.attachment = attachment;
ar.layout = layout;
VkSubpassDescription& sp = m_subpasses[subpass];
if (sp.colorAttachmentCount == 0)
sp.pColorAttachments = &ar;
sp.colorAttachmentCount++;
}
void RenderPassBuilder::AddSubpassDepthAttachment(u32 subpass, u32 attachment, VkImageLayout layout)
{
pxAssert(subpass < m_ci.subpassCount && m_num_attachment_references < MAX_ATTACHMENT_REFERENCES);
VkAttachmentReference& ar = m_attachment_references[m_num_attachment_references++];
ar.attachment = attachment;
ar.layout = layout;
VkSubpassDescription& sp = m_subpasses[subpass];
sp.pDepthStencilAttachment = &ar;
}
BufferViewBuilder::BufferViewBuilder() { Clear(); }
void BufferViewBuilder::Clear()
{
m_ci = {};
m_ci.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
}
VkBufferView BufferViewBuilder::Create(VkDevice device, bool clear /*= true*/)
{
VkBufferView bv;
VkResult res = vkCreateBufferView(device, &m_ci, nullptr, &bv);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateBufferView() failed: ");
return VK_NULL_HANDLE;
}
return bv;
}
void BufferViewBuilder::Set(VkBuffer buffer, VkFormat format, u32 offset, u32 size)
{
m_ci.buffer = buffer;
m_ci.format = format;
m_ci.offset = offset;
m_ci.range = size;
}
} // namespace Vulkan