pcsx2/plugins/GSdx/res/tfx10.fx

502 lines
8.6 KiB
HLSL

cbuffer cb0
{
float4 VertexScale;
float4 VertexOffset;
float2 TextureScale;
};
struct VS_INPUT
{
uint2 p : POSITION0;
uint z : POSITION1;
float2 t : TEXCOORD0;
float q : TEXCOORD1;
float4 c : COLOR0;
float4 f : COLOR1;
};
struct VS_OUTPUT
{
float4 p : SV_Position;
float4 t : TEXCOORD0;
float4 c : COLOR0;
};
#ifndef VS_BPP
#define VS_BPP 0
#define VS_BPPZ 0
#define VS_TME 1
#define VS_FST 1
#define VS_PRIM 0
#endif
VS_OUTPUT vs_main(VS_INPUT input)
{
if(VS_BPPZ == 1) // 24
{
input.z = input.z & 0xffffff;
}
else if(VS_BPPZ == 2) // 16
{
input.z = input.z & 0xffff;
}
if(VS_PRIM == 6) // sprite
{
//input.p.xy = (input.p.xy + 15) & ~15; // HACK
}
VS_OUTPUT output;
float4 p = float4(input.p, input.z, 0);
// FIXME:
// A litte accuracy problem in many games where the screen is copied in columns and the sides have a half pixel gap for some reason
// (probably to avoid page breaks with linear filtering). That half pixel coordinate gets multiplied by 2 (VertexScale) and occasionally
// ends on .9999999, which the rasterizer floors to 1 less pixel we need, leaving a visible gap after drawing.
p += float4(0.5f, 0.5f, 0, 0); // add 1/32 pixel
output.p = p * VertexScale - VertexOffset;
if(VS_TME == 1)
{
if(VS_FST == 1)
{
output.t.xy = input.t * TextureScale;
output.t.w = 1.0f;
}
else
{
output.t.xy = input.t;
output.t.w = input.q;
}
}
else
{
output.t.xy = 0;
output.t.w = 1.0f;
}
output.c = input.c;
output.t.z = input.f.a;
return output;
}
#ifndef IIP
#define IIP 0
#define PRIM 3
#endif
#if PRIM == 0
[maxvertexcount(1)]
void gs_main(point VS_OUTPUT input[1], inout PointStream<VS_OUTPUT> stream)
{
stream.Append(input[0]);
}
#elif PRIM == 1
[maxvertexcount(2)]
void gs_main(line VS_OUTPUT input[2], inout LineStream<VS_OUTPUT> stream)
{
#if IIP == 0
input[0].c = input[1].c;
#endif
stream.Append(input[0]);
stream.Append(input[1]);
}
#elif PRIM == 2
[maxvertexcount(3)]
void gs_main(triangle VS_OUTPUT input[3], inout TriangleStream<VS_OUTPUT> stream)
{
#if IIP == 0
input[0].c = input[2].c;
input[1].c = input[2].c;
#endif
stream.Append(input[0]);
stream.Append(input[1]);
stream.Append(input[2]);
}
#elif PRIM == 3
[maxvertexcount(4)]
void gs_main(line VS_OUTPUT input[2], inout TriangleStream<VS_OUTPUT> stream)
{
input[0].p.z = input[1].p.z;
input[0].t.zw = input[1].t.zw;
#if IIP == 0
input[0].c = input[1].c;
#endif
VS_OUTPUT lb = input[1];
lb.p.x = input[0].p.x;
lb.t.x = input[0].t.x;
VS_OUTPUT rt = input[1];
rt.p.y = input[0].p.y;
rt.t.y = input[0].t.y;
stream.Append(input[0]);
stream.Append(lb);
stream.Append(rt);
stream.Append(input[1]);
}
#endif
Texture2D Texture;
Texture2D Palette;
SamplerState TextureSampler;
SamplerState PaletteSampler;
cbuffer cb1
{
float4 FogColor;
float MINU;
float MAXU;
float MINV;
float MAXV;
uint UMSK;
uint UFIX;
uint VMSK;
uint VFIX;
float TA0;
float TA1;
float AREF;
float _pad;
float2 WH;
float2 rWrH;
};
struct PS_INPUT
{
float4 p : SV_Position;
float4 t : TEXCOORD0;
float4 c : COLOR0;
};
struct PS_OUTPUT
{
float4 c0 : SV_Target0;
float4 c1 : SV_Target1;
};
#ifndef FST
#define FST 0
#define WMS 3
#define WMT 3
#define BPP 0
#define AEM 0
#define TFX 0
#define TCC 1
#define ATE 0
#define ATST 2
#define FOG 0
#define CLR1 0
#define FBA 0
#define AOUT 0
#endif
float4 Normalize16(float4 f)
{
return f / float4(0x001f, 0x03e0, 0x7c00, 0x8000);
}
float4 Extract16(uint i)
{
float4 f;
f.r = i & 0x001f;
f.g = i & 0x03e0;
f.b = i & 0x7c00;
f.a = i & 0x8000;
return f;
}
int repeatu(int tc)
{
return WMS == 3 ? ((tc & UMSK) | UFIX) : tc;
}
int repeatv(int tc)
{
return WMT == 3 ? ((tc & VMSK) | VFIX) : tc;
}
float4 sample(float2 tc)
{
float4 t;
// if(WMS >= 2 || WMT >= 2)
if(WMS >= 3 || WMT >= 3)
{
int4 itc = tc.xyxy * WH.xyxy;
float4 tc01;
tc01.x = repeatu(itc.x);
tc01.y = repeatv(itc.y);
tc01.z = repeatu(itc.z + 1);
tc01.w = repeatv(itc.w + 1);
tc01 *= rWrH.xyxy;
float4 t00 = Texture.Sample(TextureSampler, tc01.xy);
float4 t01 = Texture.Sample(TextureSampler, tc01.zy);
float4 t10 = Texture.Sample(TextureSampler, tc01.xw);
float4 t11 = Texture.Sample(TextureSampler, tc01.zw);
float2 dd = frac(tc * WH);
t = lerp(lerp(t00, t01, dd.x), lerp(t10, t11, dd.x), dd.y);
}
else
{
t = Texture.Sample(TextureSampler, tc);
}
return t;
}
float4 sample8hp(float2 tc)
{
float4 tc01;
// if(WMS >= 2 || WMT >= 2)
if(WMS >= 3 || WMT >= 3)
{
int4 itc = tc.xyxy * WH.xyxy;
tc01.x = repeatu(itc.x);
tc01.y = repeatv(itc.y);
tc01.z = repeatu(itc.z + 1);
tc01.w = repeatv(itc.w + 1);
tc01 *= rWrH.xyxy;
}
else
{
tc01.x = tc.x;
tc01.y = tc.y;
tc01.z = tc.x + rWrH.x;
tc01.w = tc.y + rWrH.y;
}
float4 t;
t.x = Texture.Sample(TextureSampler, tc01.xy).a;
t.y = Texture.Sample(TextureSampler, tc01.zy).a;
t.z = Texture.Sample(TextureSampler, tc01.xw).a;
t.w = Texture.Sample(TextureSampler, tc01.zw).a;
float4 t00 = Palette.Sample(PaletteSampler, t.x);
float4 t01 = Palette.Sample(PaletteSampler, t.y);
float4 t10 = Palette.Sample(PaletteSampler, t.z);
float4 t11 = Palette.Sample(PaletteSampler, t.w);
float2 dd = frac(tc * WH);
return lerp(lerp(t00, t01, dd.x), lerp(t10, t11, dd.x), dd.y);
}
float4 sample16p(float2 tc)
{
float4 t;
float4 tc01;
// if(WMS >= 2 || WMT >= 2)
if(WMS >= 3 || WMT >= 3)
{
int4 itc = tc.xyxy * WH.xyxy;
tc01.x = repeatu(itc.x);
tc01.y = repeatv(itc.y);
tc01.z = repeatu(itc.z + 1);
tc01.w = repeatv(itc.w + 1);
tc01 *= rWrH.xyxy;
}
else
{
tc01.x = tc.x;
tc01.y = tc.y;
tc01.z = tc.x + rWrH.x;
tc01.w = tc.y + rWrH.y;
}
t.x = Texture.Sample(TextureSampler, tc01.xy).r;
t.y = Texture.Sample(TextureSampler, tc01.zy).r;
t.z = Texture.Sample(TextureSampler, tc01.xw).r;
t.w = Texture.Sample(TextureSampler, tc01.zw).r;
uint4 i = t * 65535;
float4 t00 = Extract16(i.x);
float4 t01 = Extract16(i.y);
float4 t10 = Extract16(i.z);
float4 t11 = Extract16(i.w);
float2 dd = frac(tc * WH);
return Normalize16(lerp(lerp(t00, t01, dd.x), lerp(t10, t11, dd.x), dd.y));
}
PS_OUTPUT ps_main(PS_INPUT input)
{
float2 tc = input.t.xy;
if(FST == 0)
{
tc /= input.t.w;
}
tc -= rWrH / 2;
if(WMS == 2)
{
tc.x = clamp(tc.x, MINU, MAXU);
}
if(WMT == 2)
{
tc.y = clamp(tc.y, MINV, MAXV);
}
float4 t;
if(BPP == 0) // 32
{
t = sample(tc);
}
else if(BPP == 1) // 24
{
t = sample(tc);
t.a = AEM == 0 || any(t.rgb) ? TA0 : 0;
}
else if(BPP == 2) // 16
{
t = sample(tc);
t.a = t.a >= 0.5 ? TA1 : AEM == 0 || any(t.rgb) ? TA0 : 0; // a bit incompatible with up-scaling because the 1 bit alpha is interpolated
}
else if(BPP == 3) // 8HP / 32-bit palette
{
t = sample8hp(tc);
}
else if(BPP == 4) // 8HP / 16-bit palette
{
// TODO: yuck, just pre-convert the palette to 32-bit
}
else if(BPP == 5) // 16P
{
t = sample16p(tc);
t.a = t.a >= 0.5 ? TA1 : AEM == 0 || any(t.rgb) ? TA0 : 0; // a bit incompatible with up-scaling because the 1 bit alpha is interpolated
}
float4 c = input.c;
if(TFX == 0)
{
if(TCC == 0)
{
c.rgb = c.rgb * t.rgb * 2;
}
else
{
c = c * t * 2;
}
}
else if(TFX == 1)
{
c = t;
}
else if(TFX == 2)
{
c.rgb = c.rgb * t.rgb * 2 + c.a;
if(TCC == 1)
{
c.a += t.a;
}
}
else if(TFX == 3)
{
c.rgb = c.rgb * t.rgb * 2 + c.a;
if(TCC == 1)
{
c.a = t.a;
}
}
c = saturate(c);
if(ATE == 1)
{
if(ATST == 0)
{
discard;
}
else if(ATST == 2 || ATST == 3) // l, le
{
clip(AREF - c.a);
}
else if(ATST == 4) // e
{
clip(0.9f/256 - abs(c.a - AREF));
}
else if(ATST == 5 || ATST == 6) // ge, g
{
clip(c.a - AREF);
}
else if(ATST == 7) // ne
{
clip(abs(c.a - AREF) - 0.9f/256);
}
}
if(FOG == 1)
{
c.rgb = lerp(FogColor.rgb, c.rgb, input.t.z);
}
if(CLR1 == 1) // needed for Cd * (As/Ad/F + 1) blending modes
{
c.rgb = 1;
}
PS_OUTPUT output;
output.c1 = c.a * 2; // used for alpha blending
if(AOUT == 1) // 16 bit output
{
float a = 128.0f / 255; // alpha output will be 0x80
c.a = FBA == 1 ? a : step(0.5, c.a) * a;
}
else if(FBA == 1)
{
if(c.a < 0.5) c.a += 0.5;
}
output.c0 = c;
return output;
}