pcsx2/3rdparty/lzma/src/Sha256Opt.c

374 lines
8.8 KiB
C

/* Sha256Opt.c -- SHA-256 optimized code for SHA-256 hardware instructions
2021-04-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#if defined(_MSC_VER)
#if (_MSC_VER < 1900) && (_MSC_VER >= 1200)
// #define USE_MY_MM
#endif
#endif
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_SHA
#ifndef __SHA__
#define ATTRIB_SHA __attribute__((__target__("sha,ssse3")))
#if defined(_MSC_VER)
// SSSE3: for clang-cl:
#include <tmmintrin.h>
#define __SHA__
#endif
#endif
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 8) // fix that check
#define USE_HW_SHA
#ifndef __SHA__
#define ATTRIB_SHA __attribute__((__target__("sha,ssse3")))
// #pragma GCC target("sha,ssse3")
#endif
#endif
#elif defined(__INTEL_COMPILER)
#if (__INTEL_COMPILER >= 1800) // fix that check
#define USE_HW_SHA
#endif
#elif defined(_MSC_VER)
#ifdef USE_MY_MM
#define USE_VER_MIN 1300
#else
#define USE_VER_MIN 1910
#endif
#if _MSC_VER >= USE_VER_MIN
#define USE_HW_SHA
#endif
#endif
// #endif // MY_CPU_X86_OR_AMD64
#ifdef USE_HW_SHA
// #pragma message("Sha256 HW")
// #include <wmmintrin.h>
#if !defined(_MSC_VER) || (_MSC_VER >= 1900)
#include <immintrin.h>
#else
#include <emmintrin.h>
#if defined(_MSC_VER) && (_MSC_VER >= 1600)
// #include <intrin.h>
#endif
#ifdef USE_MY_MM
#include "My_mm.h"
#endif
#endif
/*
SHA256 uses:
SSE2:
_mm_loadu_si128
_mm_storeu_si128
_mm_set_epi32
_mm_add_epi32
_mm_shuffle_epi32 / pshufd
SSSE3:
_mm_shuffle_epi8 / pshufb
_mm_alignr_epi8
SHA:
_mm_sha256*
*/
// K array must be aligned for 16-bytes at least.
// The compiler can look align attribute and selects
// movdqu - for code without align attribute
// movdqa - for code with align attribute
extern
MY_ALIGN(64)
const UInt32 SHA256_K_ARRAY[64];
#define K SHA256_K_ARRAY
#define ADD_EPI32(dest, src) dest = _mm_add_epi32(dest, src);
#define SHA256_MSG1(dest, src) dest = _mm_sha256msg1_epu32(dest, src);
#define SHA25G_MSG2(dest, src) dest = _mm_sha256msg2_epu32(dest, src);
#define LOAD_SHUFFLE(m, k) \
m = _mm_loadu_si128((const __m128i *)(const void *)(data + (k) * 16)); \
m = _mm_shuffle_epi8(m, mask); \
#define SM1(g0, g1, g2, g3) \
SHA256_MSG1(g3, g0); \
#define SM2(g0, g1, g2, g3) \
tmp = _mm_alignr_epi8(g1, g0, 4); \
ADD_EPI32(g2, tmp); \
SHA25G_MSG2(g2, g1); \
// #define LS0(k, g0, g1, g2, g3) LOAD_SHUFFLE(g0, k)
// #define LS1(k, g0, g1, g2, g3) LOAD_SHUFFLE(g1, k+1)
#define NNN(g0, g1, g2, g3)
#define RND2(t0, t1) \
t0 = _mm_sha256rnds2_epu32(t0, t1, msg);
#define RND2_0(m, k) \
msg = _mm_add_epi32(m, *(const __m128i *) (const void *) &K[(k) * 4]); \
RND2(state0, state1); \
msg = _mm_shuffle_epi32(msg, 0x0E); \
#define RND2_1 \
RND2(state1, state0); \
// We use scheme with 3 rounds ahead for SHA256_MSG1 / 2 rounds ahead for SHA256_MSG2
#define R4(k, g0, g1, g2, g3, OP0, OP1) \
RND2_0(g0, k); \
OP0(g0, g1, g2, g3); \
RND2_1; \
OP1(g0, g1, g2, g3); \
#define R16(k, OP0, OP1, OP2, OP3, OP4, OP5, OP6, OP7) \
R4 ( (k)*4+0, m0, m1, m2, m3, OP0, OP1 ) \
R4 ( (k)*4+1, m1, m2, m3, m0, OP2, OP3 ) \
R4 ( (k)*4+2, m2, m3, m0, m1, OP4, OP5 ) \
R4 ( (k)*4+3, m3, m0, m1, m2, OP6, OP7 ) \
#define PREPARE_STATE \
tmp = _mm_shuffle_epi32(state0, 0x1B); /* abcd */ \
state0 = _mm_shuffle_epi32(state1, 0x1B); /* efgh */ \
state1 = state0; \
state0 = _mm_unpacklo_epi64(state0, tmp); /* cdgh */ \
state1 = _mm_unpackhi_epi64(state1, tmp); /* abef */ \
void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
#ifdef ATTRIB_SHA
ATTRIB_SHA
#endif
void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks)
{
const __m128i mask = _mm_set_epi32(0x0c0d0e0f, 0x08090a0b, 0x04050607, 0x00010203);
__m128i tmp;
__m128i state0, state1;
if (numBlocks == 0)
return;
state0 = _mm_loadu_si128((const __m128i *) (const void *) &state[0]);
state1 = _mm_loadu_si128((const __m128i *) (const void *) &state[4]);
PREPARE_STATE
do
{
__m128i state0_save, state1_save;
__m128i m0, m1, m2, m3;
__m128i msg;
// #define msg tmp
state0_save = state0;
state1_save = state1;
LOAD_SHUFFLE (m0, 0)
LOAD_SHUFFLE (m1, 1)
LOAD_SHUFFLE (m2, 2)
LOAD_SHUFFLE (m3, 3)
R16 ( 0, NNN, NNN, SM1, NNN, SM1, SM2, SM1, SM2 );
R16 ( 1, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 );
R16 ( 2, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 );
R16 ( 3, SM1, SM2, NNN, SM2, NNN, NNN, NNN, NNN );
ADD_EPI32(state0, state0_save);
ADD_EPI32(state1, state1_save);
data += 64;
}
while (--numBlocks);
PREPARE_STATE
_mm_storeu_si128((__m128i *) (void *) &state[0], state0);
_mm_storeu_si128((__m128i *) (void *) &state[4], state1);
}
#endif // USE_HW_SHA
#elif defined(MY_CPU_ARM_OR_ARM64)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_SHA
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_SHA
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_SHA
#endif
#endif
#ifdef USE_HW_SHA
// #pragma message("=== Sha256 HW === ")
#if defined(__clang__) || defined(__GNUC__)
#ifdef MY_CPU_ARM64
#define ATTRIB_SHA __attribute__((__target__("+crypto")))
#else
#define ATTRIB_SHA __attribute__((__target__("fpu=crypto-neon-fp-armv8")))
#endif
#else
// _MSC_VER
// for arm32
#define _ARM_USE_NEW_NEON_INTRINSICS
#endif
#if defined(_MSC_VER) && defined(MY_CPU_ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
typedef uint32x4_t v128;
// typedef __n128 v128; // MSVC
#ifdef MY_CPU_BE
#define MY_rev32_for_LE(x)
#else
#define MY_rev32_for_LE(x) x = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(x)))
#endif
#define LOAD_128(_p) (*(const v128 *)(const void *)(_p))
#define STORE_128(_p, _v) *(v128 *)(void *)(_p) = (_v)
#define LOAD_SHUFFLE(m, k) \
m = LOAD_128((data + (k) * 16)); \
MY_rev32_for_LE(m); \
// K array must be aligned for 16-bytes at least.
extern
MY_ALIGN(64)
const UInt32 SHA256_K_ARRAY[64];
#define K SHA256_K_ARRAY
#define SHA256_SU0(dest, src) dest = vsha256su0q_u32(dest, src);
#define SHA25G_SU1(dest, src2, src3) dest = vsha256su1q_u32(dest, src2, src3);
#define SM1(g0, g1, g2, g3) SHA256_SU0(g3, g0)
#define SM2(g0, g1, g2, g3) SHA25G_SU1(g2, g0, g1)
#define NNN(g0, g1, g2, g3)
#define R4(k, g0, g1, g2, g3, OP0, OP1) \
msg = vaddq_u32(g0, *(const v128 *) (const void *) &K[(k) * 4]); \
tmp = state0; \
state0 = vsha256hq_u32( state0, state1, msg ); \
state1 = vsha256h2q_u32( state1, tmp, msg ); \
OP0(g0, g1, g2, g3); \
OP1(g0, g1, g2, g3); \
#define R16(k, OP0, OP1, OP2, OP3, OP4, OP5, OP6, OP7) \
R4 ( (k)*4+0, m0, m1, m2, m3, OP0, OP1 ) \
R4 ( (k)*4+1, m1, m2, m3, m0, OP2, OP3 ) \
R4 ( (k)*4+2, m2, m3, m0, m1, OP4, OP5 ) \
R4 ( (k)*4+3, m3, m0, m1, m2, OP6, OP7 ) \
void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
#ifdef ATTRIB_SHA
ATTRIB_SHA
#endif
void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks)
{
v128 state0, state1;
if (numBlocks == 0)
return;
state0 = LOAD_128(&state[0]);
state1 = LOAD_128(&state[4]);
do
{
v128 state0_save, state1_save;
v128 m0, m1, m2, m3;
v128 msg, tmp;
state0_save = state0;
state1_save = state1;
LOAD_SHUFFLE (m0, 0)
LOAD_SHUFFLE (m1, 1)
LOAD_SHUFFLE (m2, 2)
LOAD_SHUFFLE (m3, 3)
R16 ( 0, NNN, NNN, SM1, NNN, SM1, SM2, SM1, SM2 );
R16 ( 1, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 );
R16 ( 2, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 );
R16 ( 3, SM1, SM2, NNN, SM2, NNN, NNN, NNN, NNN );
state0 = vaddq_u32(state0, state0_save);
state1 = vaddq_u32(state1, state1_save);
data += 64;
}
while (--numBlocks);
STORE_128(&state[0], state0);
STORE_128(&state[4], state1);
}
#endif // USE_HW_SHA
#endif // MY_CPU_ARM_OR_ARM64
#ifndef USE_HW_SHA
// #error Stop_Compiling_UNSUPPORTED_SHA
// #include <stdlib.h>
// #include "Sha256.h"
void MY_FAST_CALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks);
#pragma message("Sha256 HW-SW stub was used")
void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks)
{
Sha256_UpdateBlocks(state, data, numBlocks);
/*
UNUSED_VAR(state);
UNUSED_VAR(data);
UNUSED_VAR(numBlocks);
exit(1);
return;
*/
}
#endif