pcsx2/pcsx2/R3000AInterpreter.cpp

298 lines
6.5 KiB
C++

// SPDX-FileCopyrightText: 2002-2023 PCSX2 Dev Team
// SPDX-License-Identifier: LGPL-3.0+
#include "R3000A.h"
#include "Common.h"
#include "Config.h"
#include "VMManager.h"
#include "R5900OpcodeTables.h"
#include "DebugTools/Breakpoints.h"
#include "IopBios.h"
#include "IopHw.h"
using namespace R3000A;
// Used to flag delay slot instructions when throwig exceptions.
bool iopIsDelaySlot = false;
static bool branch2 = 0;
static u32 branchPC;
static void doBranch(s32 tar); // forward declared prototype
/*********************************************************
* Register branch logic *
* Format: OP rs, offset *
*********************************************************/
void psxBGEZ() // Branch if Rs >= 0
{
if (_i32(_rRs_) >= 0) doBranch(_BranchTarget_);
}
void psxBGEZAL() // Branch if Rs >= 0 and link
{
_SetLink(31);
if (_i32(_rRs_) >= 0)
{
doBranch(_BranchTarget_);
}
}
void psxBGTZ() // Branch if Rs > 0
{
if (_i32(_rRs_) > 0) doBranch(_BranchTarget_);
}
void psxBLEZ() // Branch if Rs <= 0
{
if (_i32(_rRs_) <= 0) doBranch(_BranchTarget_);
}
void psxBLTZ() // Branch if Rs < 0
{
if (_i32(_rRs_) < 0) doBranch(_BranchTarget_);
}
void psxBLTZAL() // Branch if Rs < 0 and link
{
_SetLink(31);
if (_i32(_rRs_) < 0)
{
doBranch(_BranchTarget_);
}
}
/*********************************************************
* Register branch logic *
* Format: OP rs, rt, offset *
*********************************************************/
void psxBEQ() // Branch if Rs == Rt
{
if (_i32(_rRs_) == _i32(_rRt_)) doBranch(_BranchTarget_);
}
void psxBNE() // Branch if Rs != Rt
{
if (_i32(_rRs_) != _i32(_rRt_)) doBranch(_BranchTarget_);
}
/*********************************************************
* Jump to target *
* Format: OP target *
*********************************************************/
void psxJ()
{
// check for iop module import table magic
u32 delayslot = iopMemRead32(psxRegs.pc);
if (delayslot >> 16 == 0x2400 && irxImportExec(irxImportTableAddr(psxRegs.pc), delayslot & 0xffff))
return;
doBranch(_JumpTarget_);
}
void psxJAL()
{
_SetLink(31);
doBranch(_JumpTarget_);
}
/*********************************************************
* Register jump *
* Format: OP rs, rd *
*********************************************************/
void psxJR()
{
doBranch(_u32(_rRs_));
}
void psxJALR()
{
if (_Rd_)
{
_SetLink(_Rd_);
}
doBranch(_u32(_rRs_));
}
void psxBreakpoint(bool memcheck)
{
u32 pc = psxRegs.pc;
if (CBreakPoints::CheckSkipFirst(BREAKPOINT_IOP, pc) != 0)
return;
if (!memcheck)
{
auto cond = CBreakPoints::GetBreakPointCondition(BREAKPOINT_IOP, pc);
if (cond && !cond->Evaluate())
return;
}
CBreakPoints::SetBreakpointTriggered(true, BREAKPOINT_IOP);
VMManager::SetPaused(true);
Cpu->ExitExecution();
}
void psxMemcheck(u32 op, u32 bits, bool store)
{
// compute accessed address
u32 start = psxRegs.GPR.r[(op >> 21) & 0x1F];
if ((s16)op != 0)
start += (s16)op;
u32 end = start + bits / 8;
auto checks = CBreakPoints::GetMemChecks(BREAKPOINT_IOP);
for (size_t i = 0; i < checks.size(); i++)
{
auto& check = checks[i];
if (check.result == 0)
continue;
if ((check.cond & MEMCHECK_WRITE) == 0 && store)
continue;
if ((check.cond & MEMCHECK_READ) == 0 && !store)
continue;
if (start < check.end && check.start < end)
psxBreakpoint(true);
}
}
void psxCheckMemcheck()
{
u32 pc = psxRegs.pc;
int needed = psxIsMemcheckNeeded(pc);
if (needed == 0)
return;
u32 op = iopMemRead32(needed == 2 ? pc + 4 : pc);
// Yeah, we use the R5900 opcode table for the R3000
const R5900::OPCODE& opcode = R5900::GetInstruction(op);
bool store = (opcode.flags & IS_STORE) != 0;
switch (opcode.flags & MEMTYPE_MASK)
{
case MEMTYPE_BYTE:
psxMemcheck(op, 8, store);
break;
case MEMTYPE_HALF:
psxMemcheck(op, 16, store);
break;
case MEMTYPE_WORD:
psxMemcheck(op, 32, store);
break;
case MEMTYPE_DWORD:
psxMemcheck(op, 64, store);
break;
}
}
///////////////////////////////////////////
// These macros are used to assemble the repassembler functions
static __fi void execI()
{
// This function is called for every instruction.
// Enabling the define below will probably, no, will cause the interpretor to be slower.
//#define EXTRA_DEBUG
#if defined(EXTRA_DEBUG) || defined(PCSX2_DEVBUILD)
if (psxIsBreakpointNeeded(psxRegs.pc))
psxBreakpoint(false);
psxCheckMemcheck();
#endif
// Inject IRX hack
if (psxRegs.pc == 0x1630 && EmuConfig.CurrentIRX.length() > 3) {
if (iopMemRead32(0x20018) == 0x1F) {
// FIXME do I need to increase the module count (0x1F -> 0x20)
iopMemWrite32(0x20094, 0xbffc0000);
}
}
psxRegs.code = iopMemRead32(psxRegs.pc);
PSXCPU_LOG("%s", disR3000AF(psxRegs.code, psxRegs.pc));
psxRegs.pc+= 4;
psxRegs.cycle++;
if ((psxHu32(HW_ICFG) & (1 << 3)))
{
//One of the Iop to EE delta clocks to be set in PS1 mode.
psxRegs.iopCycleEE -= 9;
}
else
{ //default ps2 mode value
psxRegs.iopCycleEE -= 8;
}
psxBSC[psxRegs.code >> 26]();
}
static void doBranch(s32 tar) {
if (tar == 0x0)
DevCon.Warning("[R3000 Interpreter] Warning: Branch to 0x0!");
// When upgrading the IOP, there are two resets, the second of which is a 'fake' reset
// This second 'reset' involves UDNL calling SYSMEM and LOADCORE directly, resetting LOADCORE's modules
// This detects when SYSMEM is called and clears the modules then
if(tar == 0x890)
{
DevCon.WriteLn(Color_Gray, "[R3000 Debugger] Branch to 0x890 (SYSMEM). Clearing modules.");
R3000SymbolMap.ClearModules();
}
branch2 = iopIsDelaySlot = true;
branchPC = tar;
execI();
PSXCPU_LOG( "\n" );
iopIsDelaySlot = false;
psxRegs.pc = branchPC;
iopEventTest();
}
static void intReserve() {
}
static void intAlloc() {
}
static void intReset() {
intAlloc();
}
static s32 intExecuteBlock( s32 eeCycles )
{
psxRegs.iopBreak = 0;
psxRegs.iopCycleEE = eeCycles;
while (psxRegs.iopCycleEE > 0)
{
if ((psxHu32(HW_ICFG) & 8) && ((psxRegs.pc & 0x1fffffffU) == 0xa0 || (psxRegs.pc & 0x1fffffffU) == 0xb0 || (psxRegs.pc & 0x1fffffffU) == 0xc0))
psxBiosCall();
branch2 = 0;
while (!branch2)
execI();
}
return psxRegs.iopBreak + psxRegs.iopCycleEE;
}
static void intClear(u32 Addr, u32 Size) {
}
static void intShutdown() {
}
R3000Acpu psxInt = {
intReserve,
intReset,
intExecuteBlock,
intClear,
intShutdown
};