pcsx2/pcsx2/R5900.cpp

650 lines
18 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "PrecompiledHeader.h"
#include "Common.h"
#include "R5900.h"
#include "R3000A.h"
#include "VUmicro.h"
#include "COP0.h"
#include "MTVU.h"
#include "System/SysThreads.h"
#include "R5900Exceptions.h"
#include "Hardware.h"
#include "IPU/IPUdma.h"
#include "Elfheader.h"
#include "CDVD/CDVD.h"
#include "Patch.h"
#include "GameDatabase.h"
#include "../DebugTools/Breakpoints.h"
#include "R5900OpcodeTables.h"
using namespace R5900; // for R5900 disasm tools
s32 EEsCycle; // used to sync the IOP to the EE
u32 EEoCycle;
__aligned16 cpuRegisters cpuRegs;
__aligned16 fpuRegisters fpuRegs;
__aligned16 tlbs tlb[48];
R5900cpu *Cpu = NULL;
bool g_SkipBiosHack; // set at boot if the skip bios hack is on, reset before the game has started
bool g_GameStarted; // set when we reach the game's entry point or earlier if the entry point cannot be determined
bool g_GameLoading; // EELOAD has been called to load the game
static const uint eeWaitCycles = 3072;
bool eeEventTestIsActive = false;
u32 eeloadMain = 0;
extern SysMainMemory& GetVmMemory();
void cpuReset()
{
vu1Thread.WaitVU();
if (GetMTGS().IsOpen())
GetMTGS().WaitGS(); // GS better be done processing before we reset the EE, just in case.
GetVmMemory().ResetAll();
memzero(cpuRegs);
memzero(fpuRegs);
memzero(tlb);
cpuRegs.pc = 0xbfc00000; //set pc reg to stack
cpuRegs.CP0.n.Config = 0x440;
cpuRegs.CP0.n.Status.val= 0x70400004; //0x10900000 <-- wrong; // COP0 enabled | BEV = 1 | TS = 1
cpuRegs.CP0.n.PRid = 0x00002e20; // PRevID = Revision ID, same as R5900
fpuRegs.fprc[0] = 0x00002e30; // fpu Revision..
fpuRegs.fprc[31] = 0x01000001; // fpu Status/Control
g_nextEventCycle = cpuRegs.cycle + 4;
EEsCycle = 0;
EEoCycle = cpuRegs.cycle;
hwReset();
rcntInit();
psxReset();
extern void Deci2Reset(); // lazy, no good header for it yet.
Deci2Reset();
g_GameStarted = false;
g_GameLoading = false;
g_SkipBiosHack = EmuConfig.UseBOOT2Injection;
ElfCRC = 0;
DiscSerial = L"";
ElfEntry = -1;
// Probably not the right place, but it has to be done when the ram is actually initialized
if(USBsetRAM != 0)
USBsetRAM(iopMem->Main);
// FIXME: LastELF should be reset on media changes as well as on CPU resets, in
// the very unlikely case that a user swaps to another media source that "looks"
// the same (identical ELF names) but is actually different (devs actually could
// run into this while testing minor binary hacked changes to ISO images, which
// is why I found out about this) --air
LastELF = L"";
eeloadMain = 0;
}
void cpuShutdown()
{
hwShutdown();
}
__ri void cpuException(u32 code, u32 bd)
{
bool errLevel2, checkStatus;
u32 offset = 0;
cpuRegs.branch = 0; // Tells the interpreter that an exception occurred during a branch.
cpuRegs.CP0.n.Cause = code & 0xffff;
if(cpuRegs.CP0.n.Status.b.ERL == 0)
{
//Error Level 0-1
errLevel2 = FALSE;
checkStatus = (cpuRegs.CP0.n.Status.b.BEV == 0); // for TLB/general exceptions
if (((code & 0x7C) >= 0x8) && ((code & 0x7C) <= 0xC))
offset = 0x0; //TLB Refill
else if ((code & 0x7C) == 0x0)
offset = 0x200; //Interrupt
else
offset = 0x180; // Everything else
}
else
{
//Error Level 2
errLevel2 = TRUE;
checkStatus = (cpuRegs.CP0.n.Status.b.DEV == 0); // for perf/debug exceptions
Console.Error("*PCSX2* FIX ME: Level 2 cpuException");
if ((code & 0x38000) <= 0x8000 )
{
//Reset / NMI
cpuRegs.pc = 0xBFC00000;
Console.Warning("Reset request");
cpuUpdateOperationMode();
return;
}
else if((code & 0x38000) == 0x10000)
offset = 0x80; //Performance Counter
else if((code & 0x38000) == 0x18000)
offset = 0x100; //Debug
else
Console.Error("Unknown Level 2 Exception!! Cause %x", code);
}
if (cpuRegs.CP0.n.Status.b.EXL == 0)
{
cpuRegs.CP0.n.Status.b.EXL = 1;
if (bd)
{
Console.Warning("branch delay!!");
cpuRegs.CP0.n.EPC = cpuRegs.pc - 4;
cpuRegs.CP0.n.Cause |= 0x80000000;
}
else
{
cpuRegs.CP0.n.EPC = cpuRegs.pc;
cpuRegs.CP0.n.Cause &= ~0x80000000;
}
}
else
{
offset = 0x180; //Override the cause
if (errLevel2) Console.Warning("cpuException: Status.EXL = 1 cause %x", code);
}
if (checkStatus)
cpuRegs.pc = 0x80000000 + offset;
else
cpuRegs.pc = 0xBFC00200 + offset;
cpuUpdateOperationMode();
}
void cpuTlbMiss(u32 addr, u32 bd, u32 excode)
{
// Avoid too much spamming on the interpreter
if (Cpu != &intCpu || IsDebugBuild) {
Console.Error("cpuTlbMiss pc:%x, cycl:%x, addr: %x, status=%x, code=%x",
cpuRegs.pc, cpuRegs.cycle, addr, cpuRegs.CP0.n.Status.val, excode);
}
cpuRegs.CP0.n.BadVAddr = addr;
cpuRegs.CP0.n.Context &= 0xFF80000F;
cpuRegs.CP0.n.Context |= (addr >> 9) & 0x007FFFF0;
cpuRegs.CP0.n.EntryHi = (addr & 0xFFFFE000) | (cpuRegs.CP0.n.EntryHi & 0x1FFF);
cpuRegs.pc -= 4;
cpuException(excode, bd);
}
void cpuTlbMissR(u32 addr, u32 bd) {
cpuTlbMiss(addr, bd, EXC_CODE_TLBL);
}
void cpuTlbMissW(u32 addr, u32 bd) {
cpuTlbMiss(addr, bd, EXC_CODE_TLBS);
}
// sets a branch test to occur some time from an arbitrary starting point.
__fi void cpuSetNextEvent( u32 startCycle, s32 delta )
{
// typecast the conditional to signed so that things don't blow up
// if startCycle is greater than our next branch cycle.
if( (int)(g_nextEventCycle - startCycle) > delta )
{
g_nextEventCycle = startCycle + delta;
}
}
// sets a branch to occur some time from the current cycle
__fi void cpuSetNextEventDelta( s32 delta )
{
cpuSetNextEvent( cpuRegs.cycle, delta );
}
// tests the cpu cycle against the given start and delta values.
// Returns true if the delta time has passed.
__fi int cpuTestCycle( u32 startCycle, s32 delta )
{
// typecast the conditional to signed so that things don't explode
// if the startCycle is ahead of our current cpu cycle.
return (int)(cpuRegs.cycle - startCycle) >= delta;
}
// tells the EE to run the branch test the next time it gets a chance.
__fi void cpuSetEvent()
{
g_nextEventCycle = cpuRegs.cycle;
}
__fi void cpuClearInt( uint i )
{
pxAssume( i < 32 );
cpuRegs.interrupt &= ~(1 << i);
}
static __fi void TESTINT( u8 n, void (*callback)() )
{
if( !(cpuRegs.interrupt & (1 << n)) ) return;
if( cpuTestCycle( cpuRegs.sCycle[n], cpuRegs.eCycle[n] ) )
{
cpuClearInt( n );
callback();
}
else
cpuSetNextEvent( cpuRegs.sCycle[n], cpuRegs.eCycle[n] );
}
// [TODO] move this function to LegacyDmac.cpp, and remove most of the DMAC-related headers from
// being included into R5900.cpp.
static __fi void _cpuTestInterrupts()
{
if (!dmacRegs.ctrl.DMAE || (psHu8(DMAC_ENABLER+2) & 1))
{
//Console.Write("DMAC Disabled or suspended");
return;
}
/* These are 'pcsx2 interrupts', they handle asynchronous stuff
that depends on the cycle timings */
TESTINT(DMAC_VIF1, vif1Interrupt);
TESTINT(DMAC_GIF, gifInterrupt);
TESTINT(DMAC_SIF0, EEsif0Interrupt);
TESTINT(DMAC_SIF1, EEsif1Interrupt);
// Profile-guided Optimization (sorta)
// The following ints are rarely called. Encasing them in a conditional
// as follows helps speed up most games.
if( cpuRegs.interrupt & 0x60F19 ) // Bits 0 3 4 8 9 10 11 17 18( 1100000111100011001 )
{
TESTINT(DMAC_VIF0, vif0Interrupt);
TESTINT(DMAC_FROM_IPU, ipu0Interrupt);
TESTINT(DMAC_TO_IPU, ipu1Interrupt);
TESTINT(DMAC_FROM_SPR, SPRFROMinterrupt);
TESTINT(DMAC_TO_SPR, SPRTOinterrupt);
TESTINT(DMAC_MFIFO_VIF, vifMFIFOInterrupt);
TESTINT(DMAC_MFIFO_GIF, gifMFIFOInterrupt);
TESTINT(VIF_VU0_FINISH, vif0VUFinish);
TESTINT(VIF_VU1_FINISH, vif1VUFinish);
}
}
static __fi void _cpuTestTIMR()
{
cpuRegs.CP0.n.Count += cpuRegs.cycle-s_iLastCOP0Cycle;
s_iLastCOP0Cycle = cpuRegs.cycle;
// fixme: this looks like a hack to make up for the fact that the TIMR
// doesn't yet have a proper mechanism for setting itself up on a nextEventCycle.
// A proper fix would schedule the TIMR to trigger at a specific cycle anytime
// the Count or Compare registers are modified.
if ( (cpuRegs.CP0.n.Status.val & 0x8000) &&
cpuRegs.CP0.n.Count >= cpuRegs.CP0.n.Compare && cpuRegs.CP0.n.Count < cpuRegs.CP0.n.Compare+1000 )
{
Console.WriteLn( Color_Magenta, "timr intr: %x, %x", cpuRegs.CP0.n.Count, cpuRegs.CP0.n.Compare);
cpuException(0x808000, cpuRegs.branch);
}
}
static __fi void _cpuTestPERF()
{
// Perfs are updated when read by games (COP0's MFC0/MTC0 instructions), so we need
// only update them at semi-regular intervals to keep cpuRegs.cycle from wrapping
// around twice on us btween updates. Hence this function is called from the cpu's
// Counters update.
COP0_UpdatePCCR();
}
// Checks the COP0.Status for exception enablings.
// Exception handling for certain modes is *not* currently supported, this function filters
// them out. Exceptions while the exception handler is active (EIE), or exceptions of any
// level other than 0 are ignored here.
static bool cpuIntsEnabled(int Interrupt)
{
bool IntType = !!(cpuRegs.CP0.n.Status.val & Interrupt); //Choose either INTC or DMAC, depending on what called it
return IntType && cpuRegs.CP0.n.Status.b.EIE && cpuRegs.CP0.n.Status.b.IE &&
!cpuRegs.CP0.n.Status.b.EXL && (cpuRegs.CP0.n.Status.b.ERL == 0);
}
// if cpuRegs.cycle is greater than this cycle, should check cpuEventTest for updates
u32 g_nextEventCycle = 0;
// Shared portion of the branch test, called from both the Interpreter
// and the recompiler. (moved here to help alleviate redundant code)
__fi void _cpuEventTest_Shared()
{
ScopedBool etest(eeEventTestIsActive);
g_nextEventCycle = cpuRegs.cycle + eeWaitCycles;
// ---- INTC / DMAC (CPU-level Exceptions) -----------------
// Done first because exceptions raised during event tests need to be postponed a few
// cycles (fixes Grandia II [PAL], which does a spin loop on a vsync and expects to
// be able to read the value before the exception handler clears it).
uint mask = intcInterrupt() | dmacInterrupt();
if (cpuIntsEnabled(mask)) cpuException(mask, cpuRegs.branch);
// ---- Counters -------------
// Important: the vsync counter must be the first to be checked. It includes emulation
// escape/suspend hooks, and it's really a good idea to suspend/resume emulation before
// doing any actual meaningful branchtest logic.
if( cpuTestCycle( nextsCounter, nextCounter ) )
{
rcntUpdate();
_cpuTestPERF();
}
rcntUpdate_hScanline();
_cpuTestTIMR();
// ---- Interrupts -------------
// These are basically just DMAC-related events, which also piggy-back the same bits as
// the PS2's own DMA channel IRQs and IRQ Masks.
_cpuTestInterrupts();
// ---- IOP -------------
// * It's important to run a iopEventTest before calling ExecuteBlock. This
// is because the IOP does not always perform branch tests before returning
// (during the prev branch) and also so it can act on the state the EE has
// given it before executing any code.
//
// * The IOP cannot always be run. If we run IOP code every time through the
// cpuEventTest, the IOP generally starts to run way ahead of the EE.
EEsCycle += cpuRegs.cycle - EEoCycle;
EEoCycle = cpuRegs.cycle;
if( EEsCycle > 0 )
iopEventAction = true;
iopEventTest();
if( iopEventAction )
{
//if( EEsCycle < -450 )
// Console.WriteLn( " IOP ahead by: %d cycles", -EEsCycle );
EEsCycle = psxCpu->ExecuteBlock( EEsCycle );
iopEventAction = false;
}
// ---- VU0 -------------
// We're in a EventTest. All dynarec registers are flushed
// so there is no need to freeze registers here.
CpuVU0->ExecuteBlock();
// Note: We don't update the VU1 here because it runs it's micro-programs in
// one shot always. That is, when a program is executed the VU1 doesn't even
// bother to return until the program is completely finished.
// ---- Schedule Next Event Test --------------
if( EEsCycle > 192 )
{
// EE's running way ahead of the IOP still, so we should branch quickly to give the
// IOP extra timeslices in short order.
cpuSetNextEventDelta( 48 );
//Console.Warning( "EE ahead of the IOP -- Rapid Event! %d", EEsCycle );
}
// The IOP could be running ahead/behind of us, so adjust the iop's next branch by its
// relative position to the EE (via EEsCycle)
cpuSetNextEventDelta( ((g_iopNextEventCycle-psxRegs.cycle)*8) - EEsCycle );
// Apply the hsync counter's nextCycle
cpuSetNextEvent( hsyncCounter.sCycle, hsyncCounter.CycleT );
// Apply vsync and other counter nextCycles
cpuSetNextEvent( nextsCounter, nextCounter );
}
__ri void cpuTestINTCInts()
{
// Check the COP0's Status register for general interrupt disables, and the 0x400
// bit (which is INTC master toggle).
if( !cpuIntsEnabled(0x400) ) return;
if( (psHu32(INTC_STAT) & psHu32(INTC_MASK)) == 0 ) return;
cpuSetNextEventDelta( 4 );
if(eeEventTestIsActive && (iopCycleEE > 0))
{
iopBreak += iopCycleEE; // record the number of cycles the IOP didn't run.
iopCycleEE = 0;
}
}
__fi void cpuTestDMACInts()
{
// Check the COP0's Status register for general interrupt disables, and the 0x800
// bit (which is the DMAC master toggle).
if( !cpuIntsEnabled(0x800) ) return;
if ( ( (psHu16(0xe012) & psHu16(0xe010)) == 0) &&
( (psHu16(0xe010) & 0x8000) == 0) ) return;
cpuSetNextEventDelta( 4 );
if(eeEventTestIsActive && (iopCycleEE > 0))
{
iopBreak += iopCycleEE; // record the number of cycles the IOP didn't run.
iopCycleEE = 0;
}
}
__fi void cpuTestTIMRInts() {
if ((cpuRegs.CP0.n.Status.val & 0x10007) == 0x10001) {
_cpuTestPERF();
_cpuTestTIMR();
}
}
__fi void cpuTestHwInts() {
cpuTestINTCInts();
cpuTestDMACInts();
cpuTestTIMRInts();
}
__fi void CPU_INT( EE_EventType n, s32 ecycle)
{
// EE events happen 8 cycles in the future instead of whatever was requested.
// This can be used on games with PATH3 masking issues for example, or when
// some FMV look bad.
if(CHECK_EETIMINGHACK) ecycle = 8;
cpuRegs.interrupt|= 1 << n;
cpuRegs.sCycle[n] = cpuRegs.cycle;
cpuRegs.eCycle[n] = ecycle;
// Interrupt is happening soon: make sure both EE and IOP are aware.
if( ecycle <= 28 && iopCycleEE > 0 )
{
// If running in the IOP, force it to break immediately into the EE.
// the EE's branch test is due to run.
iopBreak += iopCycleEE; // record the number of cycles the IOP didn't run.
iopCycleEE = 0;
}
cpuSetNextEventDelta( cpuRegs.eCycle[n] );
}
// Called from recompilers; __fastcall define is mandatory.
void __fastcall eeGameStarting()
{
if (!g_GameStarted)
{
//Console.WriteLn( Color_Green, "(R5900) ELF Entry point! [addr=0x%08X]", ElfEntry );
g_GameStarted = true;
g_GameLoading = false;
GetCoreThread().GameStartingInThread();
// GameStartingInThread may issue a reset of the cpu and/or recompilers. Check for and
// handle such things here:
Cpu->CheckExecutionState();
}
else
{
Console.WriteLn( Color_Green, "(R5900) Re-executed ELF Entry point (ignored) [addr=0x%08X]", ElfEntry );
}
}
// Called from recompilers; __fastcall define is mandatory.
void __fastcall eeloadHook()
{
const wxString &elf_override = GetCoreThread().GetElfOverride();
if (!elf_override.IsEmpty())
cdvdReloadElfInfo(L"host:" + elf_override);
else
cdvdReloadElfInfo();
wxString discelf;
int disctype = GetPS2ElfName(discelf);
std::string elfname;
if (cpuRegs.GPR.n.a0.SD[0] >= 2) // argc >= 2
elfname = (char*)PSM(memRead32(cpuRegs.GPR.n.a1.UD[0] + 4)); // argv[1]
if (g_SkipBiosHack && elfname.empty())
{
std::string elftoload;
if (!elf_override.IsEmpty())
{
elftoload = "host:";
elftoload += elf_override.ToUTF8();
}
else
{
if (disctype == 2)
elftoload = discelf.ToUTF8();
}
if (!elftoload.empty())
{
#if 0
// FIXME: you'd think that changing argc and argv would work but no, need to work out why not
// This method would support adding command line arguments to homebrew (and is generally less hacky)
// It works if you hook on rom0:PS2LOGO loading, but not on the first call with no arguments
cpuRegs.GPR.n.a0.SD[0] = 2; // argc = 2
// argv[0] = "EELOAD"
strcpy((char*)PSM(cpuRegs.GPR.n.a1.UD[0] + 0x40), "EELOAD");
memWrite32(cpuRegs.GPR.n.a1.UD[0] + 0, cpuRegs.GPR.n.a1.UD[0] + 0x40);
// argv[1] = elftoload
strcpy((char*)PSM(cpuRegs.GPR.n.a1.UD[0] + 0x47), elftoload.c_str());
memWrite32(cpuRegs.GPR.n.a1.UD[0] + 4, cpuRegs.GPR.n.a1.UD[0] + 0x47);
memWrite32(cpuRegs.GPR.n.a1.UD[0] + 8, 0);
g_GameLoading = true;
return;
#else
// The strings are all 64-bit aligned. Why? I don't know, but they are
for (u32 osdsys_str = EELOAD_START; osdsys_str < EELOAD_START + EELOAD_SIZE; osdsys_str += 8) {
if (!strcmp((char*)PSM(osdsys_str), "rom0:OSDSYS")) {
for (u32 osdsys_ptr = osdsys_str - 4; osdsys_ptr >= EELOAD_START; osdsys_ptr -= 4) {
if (memRead32(osdsys_ptr) == osdsys_str) {
strcpy((char*)PSM(cpuRegs.GPR.n.a1.UD[0] + 0x40), elftoload.c_str());
memWrite32(osdsys_ptr, cpuRegs.GPR.n.a1.UD[0] + 0x40);
g_GameLoading = true;
return;
}
}
}
}
#endif
}
}
if (!g_GameStarted && (disctype == 2 || disctype == 1) && elfname == discelf)
g_GameLoading = true;
}
inline bool isBranchOrJump(u32 addr)
{
u32 op = memRead32(addr);
const OPCODE& opcode = GetInstruction(op);
return (opcode.flags & IS_BRANCH) != 0;
}
// The next two functions return 0 if no breakpoint is needed,
// 1 if it's needed on the current pc, 2 if it's needed in the delay slot
// 3 if needed in both
int isBreakpointNeeded(u32 addr)
{
int bpFlags = 0;
if (CBreakPoints::IsAddressBreakPoint(addr))
bpFlags += 1;
// there may be a breakpoint in the delay slot
if (isBranchOrJump(addr) && CBreakPoints::IsAddressBreakPoint(addr+4))
bpFlags += 2;
return bpFlags;
}
int isMemcheckNeeded(u32 pc)
{
if (CBreakPoints::GetNumMemchecks() == 0)
return 0;
u32 addr = pc;
if (isBranchOrJump(addr))
addr += 4;
u32 op = memRead32(addr);
const OPCODE& opcode = GetInstruction(op);
if (opcode.flags & IS_MEMORY)
return addr == pc ? 1 : 2;
return 0;
}