pcsx2/pcsx2/Memory.h

144 lines
6.0 KiB
C

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#ifdef __linux__
#include <signal.h>
#endif
#include "vtlb.h"
#include <xmmintrin.h>
// [TODO] This *could* be replaced with an assignment operator on u128 that implicitly
// uses _mm_store and _mm_load internally. However, there are alignment concerns --
// u128 is not alignment strict. (we would need a u128 and u128a for types known to
// be strictly 128-bit aligned).
static __fi void CopyQWC( void* dest, const void* src )
{
_mm_store_ps( (float*)dest, _mm_load_ps((const float*)src) );
}
static __fi void ZeroQWC( void* dest )
{
_mm_store_ps( (float*)dest, _mm_setzero_ps() );
}
static __fi void ZeroQWC( u128& dest )
{
_mm_store_ps( (float*)&dest, _mm_setzero_ps() );
}
#define PSM(mem) (vtlb_GetPhyPtr((mem)&0x1fffffff)) //pcsx2 is a competition.The one with most hacks wins :D
#define psHs8(mem) (*(s8 *)&eeHw[(mem) & 0xffff])
#define psHs16(mem) (*(s16*)&eeHw[(mem) & 0xffff])
#define psHs32(mem) (*(s32*)&eeHw[(mem) & 0xffff])
#define psHs64(mem) (*(s64*)&eeHw[(mem) & 0xffff])
#define psHu8(mem) (*(u8 *)&eeHw[(mem) & 0xffff])
#define psHu16(mem) (*(u16*)&eeHw[(mem) & 0xffff])
#define psHu32(mem) (*(u32*)&eeHw[(mem) & 0xffff])
#define psHu64(mem) (*(u64*)&eeHw[(mem) & 0xffff])
#define psHu128(mem)(*(u128*)&eeHw[(mem) & 0xffff])
#define psMs8(mem) (*(s8 *)&eeMem->Main[(mem) & 0x1ffffff])
#define psMs16(mem) (*(s16*)&eeMem->Main[(mem) & 0x1ffffff])
#define psMs32(mem) (*(s32*)&eeMem->Main[(mem) & 0x1ffffff])
#define psMs64(mem) (*(s64*)&eeMem->Main[(mem) & 0x1ffffff])
#define psMu8(mem) (*(u8 *)&eeMem->Main[(mem) & 0x1ffffff])
#define psMu16(mem) (*(u16*)&eeMem->Main[(mem) & 0x1ffffff])
#define psMu32(mem) (*(u32*)&eeMem->Main[(mem) & 0x1ffffff])
#define psMu64(mem) (*(u64*)&eeMem->Main[(mem) & 0x1ffffff])
#define psRs8(mem) (*(s8 *)&eeMem->ROM[(mem) & 0x3fffff])
#define psRs16(mem) (*(s16*)&eeMem->ROM[(mem) & 0x3fffff])
#define psRs32(mem) (*(s32*)&eeMem->ROM[(mem) & 0x3fffff])
#define psRs64(mem) (*(s64*)&eeMem->ROM[(mem) & 0x3fffff])
#define psRu8(mem) (*(u8 *)&eeMem->ROM[(mem) & 0x3fffff])
#define psRu16(mem) (*(u16*)&eeMem->ROM[(mem) & 0x3fffff])
#define psRu32(mem) (*(u32*)&eeMem->ROM[(mem) & 0x3fffff])
#define psRu64(mem) (*(u64*)&eeMem->ROM[(mem) & 0x3fffff])
#define psR1s8(mem) (*(s8 *)&eeMem->ROM1[(mem) & 0x3ffff])
#define psR1s16(mem) (*(s16*)&eeMem->ROM1[(mem) & 0x3ffff])
#define psR1s32(mem) (*(s32*)&eeMem->ROM1[(mem) & 0x3ffff])
#define psR1s64(mem) (*(s64*)&eeMem->ROM1[(mem) & 0x3ffff])
#define psR1u8(mem) (*(u8 *)&eeMem->ROM1[(mem) & 0x3ffff])
#define psR1u16(mem) (*(u16*)&eeMem->ROM1[(mem) & 0x3ffff])
#define psR1u32(mem) (*(u32*)&eeMem->ROM1[(mem) & 0x3ffff])
#define psR1u64(mem) (*(u64*)&eeMem->ROM1[(mem) & 0x3ffff])
#define psR2s8(mem) (*(s8 *)&eeMem->ROM2[(mem) & 0x3ffff])
#define psR2s16(mem) (*(s16*)&eeMem->ROM2[(mem) & 0x3ffff])
#define psR2s32(mem) (*(s32*)&eeMem->ROM2[(mem) & 0x3ffff])
#define psR2s64(mem) (*(s64*)&eeMem->ROM2[(mem) & 0x3ffff])
#define psR2u8(mem) (*(u8 *)&eeMem->ROM2[(mem) & 0x3ffff])
#define psR2u16(mem) (*(u16*)&eeMem->ROM2[(mem) & 0x3ffff])
#define psR2u32(mem) (*(u32*)&eeMem->ROM2[(mem) & 0x3ffff])
#define psR2u64(mem) (*(u64*)&eeMem->ROM2[(mem) & 0x3ffff])
#define psERs8(mem) (*(s8 *)&eeMem->EROM[(mem) & 0x3ffff])
#define psERs16(mem) (*(s16*)&eeMem->EROM[(mem) & 0x3ffff])
#define psERs32(mem) (*(s32*)&eeMem->EROM[(mem) & 0x3ffff])
#define psERs64(mem) (*(s64*)&eeMem->EROM[(mem) & 0x3ffff])
#define psERu8(mem) (*(u8 *)&eeMem->EROM[(mem) & 0x3ffff])
#define psERu16(mem) (*(u16*)&eeMem->EROM[(mem) & 0x3ffff])
#define psERu32(mem) (*(u32*)&eeMem->EROM[(mem) & 0x3ffff])
#define psERu64(mem) (*(u64*)&eeMem->EROM[(mem) & 0x3ffff])
#define psSs32(mem) (*(s32 *)&eeMem->Scratch[(mem) & 0x3fff])
#define psSs64(mem) (*(s64 *)&eeMem->Scratch[(mem) & 0x3fff])
#define psSs128(mem) (*(s128*)&eeMem->Scratch[(mem) & 0x3fff])
#define psSu32(mem) (*(u32 *)&eeMem->Scratch[(mem) & 0x3fff])
#define psSu64(mem) (*(u64 *)&eeMem->Scratch[(mem) & 0x3fff])
#define psSu128(mem) (*(u128*)&eeMem->Scratch[(mem) & 0x3fff])
extern void memSetKernelMode();
//extern void memSetSupervisorMode();
extern void memSetUserMode();
extern void memSetPageAddr(u32 vaddr, u32 paddr);
extern void memClearPageAddr(u32 vaddr);
extern void memBindConditionalHandlers();
extern void memMapVUmicro();
extern int mmap_GetRamPageInfo( u32 paddr );
extern void mmap_MarkCountedRamPage( u32 paddr );
extern void mmap_ResetBlockTracking();
#define memRead8 vtlb_memRead<mem8_t>
#define memRead16 vtlb_memRead<mem16_t>
#define memRead32 vtlb_memRead<mem32_t>
#define memWrite8 vtlb_memWrite<mem8_t>
#define memWrite16 vtlb_memWrite<mem16_t>
#define memWrite32 vtlb_memWrite<mem32_t>
static __fi void memRead64(u32 mem, mem64_t* out) { vtlb_memRead64(mem, out); }
static __fi void memRead64(u32 mem, mem64_t& out) { vtlb_memRead64(mem, &out); }
static __fi void memRead128(u32 mem, mem128_t* out) { vtlb_memRead128(mem, out); }
static __fi void memRead128(u32 mem, mem128_t& out) { vtlb_memRead128(mem, &out); }
static __fi void memWrite64(u32 mem, const mem64_t* val) { vtlb_memWrite64(mem, val); }
static __fi void memWrite64(u32 mem, const mem64_t& val) { vtlb_memWrite64(mem, &val); }
static __fi void memWrite128(u32 mem, const mem128_t* val) { vtlb_memWrite128(mem, val); }
static __fi void memWrite128(u32 mem, const mem128_t& val) { vtlb_memWrite128(mem, &val); }
extern u16 ba0R16(u32 mem);