pcsx2/plugins/GSdx/GSThread_CXX11.h

343 lines
6.6 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#pragma once
#include "GSdx.h"
#include "boost_spsc_queue.hpp"
class IGSThread
{
protected:
virtual void ThreadProc() = 0;
};
// let us use std::thread for now, comment out the definition to go back to pthread
// There are currently some bugs/limitations to std::thread (see various comment)
// For the moment let's keep pthread but uses new std object (mutex, cond_var)
//#define _STD_THREAD_
#ifdef _WINDOWS
class GSThread : public IGSThread
{
DWORD m_ThreadId;
HANDLE m_hThread;
static DWORD WINAPI StaticThreadProc(void* lpParam);
protected:
void CreateThread();
void CloseThread();
public:
GSThread();
virtual ~GSThread();
};
#else
#ifdef _STD_THREAD_
#include <thread>
#else
#include <pthread.h>
#endif
class GSThread : public IGSThread
{
#ifdef _STD_THREAD_
std::thread *t;
#else
pthread_attr_t m_thread_attr;
pthread_t m_thread;
#endif
static void* StaticThreadProc(void* param);
protected:
void CreateThread();
void CloseThread();
public:
GSThread();
virtual ~GSThread();
};
#endif
// To allow switching between queue dynamically
template<class T> class IGSJobQueue : public GSThread
{
public:
IGSJobQueue() {}
virtual ~IGSJobQueue() {}
virtual bool IsEmpty() const = 0;
virtual void Push(const T& item) = 0;
virtual void Wait() = 0;
virtual void Process(T& item) = 0;
virtual int GetPixels(bool reset) = 0;
};
// This queue doesn't reserve any thread. It would be nicer for 2c/4c CPU.
// pros: no hard limit on thread numbers
// cons: less performance by thread
template<class T, int CAPACITY> class GSJobQueue : public IGSJobQueue<T>
{
protected:
std::atomic<int16_t> m_count;
std::atomic<bool> m_exit;
ringbuffer_base<T, CAPACITY> m_queue;
std::mutex m_lock;
std::condition_variable m_empty;
std::condition_variable m_notempty;
void ThreadProc() {
std::unique_lock<std::mutex> l(m_lock);
while (true) {
while (m_count == 0) {
if (m_exit.load(memory_order_acquire)) return;
m_notempty.wait(l);
}
l.unlock();
int16_t consumed = 0;
for (int16_t nb = m_count; nb >= 0; nb--) {
if (m_queue.consume_one(*this))
consumed++;
}
l.lock();
m_count -= consumed;
if (m_count <= 0)
m_empty.notify_one();
}
}
public:
GSJobQueue() :
m_count(0),
m_exit(false)
{
this->CreateThread();
}
virtual ~GSJobQueue() {
m_exit.store(true, memory_order_release);
m_notempty.notify_one();
this->CloseThread();
}
bool IsEmpty() const {
ASSERT(m_count >= 0);
return m_count == 0;
}
void Push(const T& item) {
while(!m_queue.push(item))
std::this_thread::yield();
std::unique_lock<std::mutex> l(m_lock);
m_count++;
l.unlock();
m_notempty.notify_one();
}
void Wait() {
if (m_count > 0) {
std::unique_lock<std::mutex> l(m_lock);
while (m_count > 0) {
m_empty.wait(l);
}
}
ASSERT(m_count == 0);
}
void operator() (T& item) {
this->Process(item);
}
};
// This queue reserves 'only' RENDERING threads mostly the same performance as a no reservation queue if the CPU is fast enough
// pros: nearly best fps by thread
// cons: requires (1 + eThreads) cores for GS emulation only ! Reserved to 6/8 cores CPU.
// Note: I'm not sure of the source of the speedup
// 1/ It could be related to less MT logic (lock, cond var)
// 2/ But I highly suspect that waking up thread is rather slow. My guess
// is that low power feature (like C state) increases latency. In this case
// gain will be smaller if PCSX2 is running or in limited core CPU (<=4)
template<class T, int CAPACITY> class GSJobQueueSpin : public IGSJobQueue<T>
{
protected:
std::atomic<int16_t> m_count;
std::atomic<bool> m_exit;
ringbuffer_base<T, CAPACITY> m_queue;
std::mutex m_lock;
std::condition_variable m_empty;
void ThreadProc() {
std::unique_lock<std::mutex> l(m_lock, defer_lock);
while (true) {
while (m_count == 0) {
if (m_exit.load(memory_order_acquire)) return;
std::this_thread::yield();
}
int16_t consumed = 0;
for (int16_t nb = m_count; nb >= 0; nb--) {
if (m_queue.consume_one(*this))
consumed++;
}
l.lock();
m_count -= consumed;
l.unlock();
if (m_count <= 0)
m_empty.notify_one();
}
}
public:
GSJobQueueSpin() :
m_count(0),
m_exit(false)
{
this->CreateThread();
};
virtual ~GSJobQueueSpin() {
m_exit.store(true, memory_order_release);
this->CloseThread();
}
bool IsEmpty() const {
ASSERT(m_count >= 0);
return m_count == 0;
}
void Push(const T& item) {
while(!m_queue.push(item))
std::this_thread::yield();
m_count++;
}
void Wait() {
if (m_count > 0) {
std::unique_lock<std::mutex> l(m_lock);
while (m_count > 0) {
m_empty.wait(l);
}
}
ASSERT(m_count == 0);
}
void operator() (T& item) {
this->Process(item);
}
};
// This queue reserves RENDERING threads + GS threads onto dedicated CPU
// pros: best fps by thread
// cons: requires (1 + eThreads) cores for GS emulation only ! Reserved to 8 cores CPU.
#if 0
template<class T> class GSJobQueue : public IGSJobQueue<T>
{
protected:
std::atomic<int16_t> m_count;
std::atomic<bool> m_exit;
boost::lockfree::spsc_queue<T, boost::lockfree::capacity<255> > m_queue;
void ThreadProc() {
while (true) {
while (m_count == 0) {
if (m_exit.load(memory_order_acquire)) return;
std::this_thread::yield();
}
m_count -= m_queue.consume_all(*this);
}
}
public:
GSJobQueue() :
m_count(0),
m_exit(false)
{
CreateThread();
};
virtual ~GSJobQueue() {
m_exit = true;
CloseThread();
}
bool IsEmpty() const {
ASSERT(m_count >= 0);
return m_count == 0;
}
void Push(const T& item) {
m_count++;
while(!m_queue.push(item))
std::this_thread::yield();
}
void Wait() {
while (m_count > 0)
std::this_thread::yield();
ASSERT(m_count == 0);
}
virtual void Process(T& item) = 0;
void operator() (T& item) {
this->Process(item);
}
};
#endif