pcsx2/pcsx2/IopMem.cpp

552 lines
12 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "PrecompiledHeader.h"
#include "common/AlignedMalloc.h"
#include "R3000A.h"
#include "Common.h"
#include "ps2/pgif.h" // for PSX kernel TTY in iopMemWrite32
#include "SPU2/spu2.h"
#include "DEV9/DEV9.h"
#include "IopHw.h"
uptr *psxMemWLUT = NULL;
const uptr *psxMemRLUT = NULL;
IopVM_MemoryAllocMess* iopMem = NULL;
alignas(__pagesize) u8 iopHw[Ps2MemSize::IopHardware];
void iopMemAlloc()
{
// TODO: Move to memmap
psxMemWLUT = (uptr*)_aligned_malloc(0x2000 * sizeof(uptr) * 2, 16);
if (!psxMemWLUT)
pxFailRel("Failed to allocate IOP memory lookup table");
psxMemRLUT = psxMemWLUT + 0x2000; //(uptr*)_aligned_malloc(0x10000 * sizeof(uptr),16);
iopMem = reinterpret_cast<IopVM_MemoryAllocMess*>(SysMemory::GetIOPMem());
}
void iopMemRelease()
{
safe_aligned_free(psxMemWLUT);
psxMemRLUT = nullptr;
iopMem = nullptr;
}
// Note! Resetting the IOP's memory state is dependent on having *all* psx memory allocated,
// which is performed by MemInit and PsxMemInit()
void iopMemReset()
{
pxAssert( iopMem );
DbgCon.WriteLn("IOP resetting main memory...");
memset(psxMemWLUT, 0, 0x2000 * sizeof(uptr) * 2); // clears both allocations, RLUT and WLUT
// Trick! We're accessing RLUT here through WLUT, since it's the non-const pointer.
// So the ones with a 0x2000 prefixed are RLUT tables.
// Map IOP main memory, which is Read/Write, and mirrored three times
// at 0x0, 0x8000, and 0xa000:
for (int i=0; i<0x0080; i++)
{
psxMemWLUT[i + 0x0000] = (uptr)&iopMem->Main[(i & 0x1f) << 16];
// RLUTs, accessed through WLUT.
psxMemWLUT[i + 0x2000] = (uptr)&iopMem->Main[(i & 0x1f) << 16];
}
// A few single-page allocations for things we store in special locations.
psxMemWLUT[0x2000 + 0x1f00] = (uptr)iopMem->P;
psxMemWLUT[0x2000 + 0x1f80] = (uptr)iopHw;
//psxMemWLUT[0x1bf80] = (uptr)iopHw;
psxMemWLUT[0x1f00] = (uptr)iopMem->P;
psxMemWLUT[0x1f80] = (uptr)iopHw;
//psxMemWLUT[0xbf80] = (uptr)iopHw;
// Read-only memory areas, so don't map WLUT for these...
for (int i = 0; i < 0x0040; i++)
{
psxMemWLUT[i + 0x2000 + 0x1fc0] = (uptr)&eeMem->ROM[i << 16];
}
for (int i = 0; i < 0x0040; i++)
{
psxMemWLUT[i + 0x2000 + 0x1e00] = (uptr)&eeMem->ROM1[i << 16];
}
for (int i = 0; i < 0x0008; i++)
{
psxMemWLUT[i + 0x2000 + 0x1e40] = (uptr)&eeMem->ROM2[i << 16];
}
// sif!! (which is read only? (air))
psxMemWLUT[0x2000 + 0x1d00] = (uptr)iopMem->Sif;
//psxMemWLUT[0x1bd00] = (uptr)iopMem->Sif;
// this one looks like an old hack for some special write-only memory area,
// but leaving it in for reference (air)
//for (i=0; i<0x0008; i++) psxMemWLUT[i + 0xbfc0] = (uptr)&psR[i << 16];
}
u8 iopMemRead8(u32 mem)
{
mem &= 0x1fffffff;
u32 t = mem >> 16;
if (t == 0x1f80)
{
switch( mem & 0xf000 )
{
case 0x1000: return IopMemory::iopHwRead8_Page1(mem);
case 0x3000: return IopMemory::iopHwRead8_Page3(mem);
case 0x8000: return IopMemory::iopHwRead8_Page8(mem);
default:
return psxHu8(mem);
}
}
else if (t == 0x1f40)
{
return psxHw4Read8(mem);
}
else
{
const u8* p = (const u8*)(psxMemRLUT[mem >> 16]);
if (p != NULL)
{
return *(const u8 *)(p + (mem & 0xffff));
}
else
{
if (t == 0x1000)
return DEV9read8(mem);
PSXMEM_LOG("err lb %8.8lx", mem);
return 0;
}
}
}
u16 iopMemRead16(u32 mem)
{
mem &= 0x1fffffff;
u32 t = mem >> 16;
if (t == 0x1f80)
{
switch( mem & 0xf000 )
{
case 0x1000: return IopMemory::iopHwRead16_Page1(mem);
case 0x3000: return IopMemory::iopHwRead16_Page3(mem);
case 0x8000: return IopMemory::iopHwRead16_Page8(mem);
default:
return psxHu16(mem);
}
}
else
{
const u8* p = (const u8*)(psxMemRLUT[mem >> 16]);
if (p != NULL)
{
if (t == 0x1d00)
{
u16 ret;
switch(mem & 0xF0)
{
case 0x00:
ret= psHu16(SBUS_F200);
break;
case 0x10:
ret= psHu16(SBUS_F210);
break;
case 0x40:
ret= psHu16(SBUS_F240) | 0x0002;
break;
case 0x60:
ret = 0;
break;
default:
ret = psxHu16(mem);
break;
}
//SIF_LOG("Sif reg read %x value %x", mem, ret);
return ret;
}
return *(const u16 *)(p + (mem & 0xffff));
}
else
{
if (t == 0x1F90)
return SPU2read(mem);
if (t == 0x1000)
return DEV9read16(mem);
PSXMEM_LOG("err lh %8.8lx", mem);
return 0;
}
}
}
u32 iopMemRead32(u32 mem)
{
mem &= 0x1fffffff;
u32 t = mem >> 16;
if (t == 0x1f80)
{
switch( mem & 0xf000 )
{
case 0x1000: return IopMemory::iopHwRead32_Page1(mem);
case 0x3000: return IopMemory::iopHwRead32_Page3(mem);
case 0x8000: return IopMemory::iopHwRead32_Page8(mem);
default:
return psxHu32(mem);
}
} else
{
//see also Hw.c
const u8* p = (const u8*)(psxMemRLUT[mem >> 16]);
if (p != NULL)
{
if (t == 0x1d00)
{
u32 ret;
switch(mem & 0x8F0)
{
case 0x00:
ret= psHu32(SBUS_F200);
break;
case 0x10:
ret= psHu32(SBUS_F210);
break;
case 0x20:
ret= psHu32(SBUS_F220);
break;
case 0x30: // EE Side
ret= psHu32(SBUS_F230);
break;
case 0x40:
ret= psHu32(SBUS_F240) | 0xF0000002;
break;
case 0x60:
ret = 0;
break;
default:
ret = psxHu32(mem);
break;
}
//SIF_LOG("Sif reg read %x value %x", mem, ret);
return ret;
}
return *(const u32 *)(p + (mem & 0xffff));
}
else
{
if (t == 0x1000)
return DEV9read32(mem);
return 0;
}
}
}
void iopMemWrite8(u32 mem, u8 value)
{
mem &= 0x1fffffff;
u32 t = mem >> 16;
if (t == 0x1f80)
{
switch( mem & 0xf000 )
{
case 0x1000: IopMemory::iopHwWrite8_Page1(mem,value); break;
case 0x3000: IopMemory::iopHwWrite8_Page3(mem,value); break;
case 0x8000: IopMemory::iopHwWrite8_Page8(mem,value); break;
default:
psxHu8(mem) = value;
break;
}
}
else if (t == 0x1f40)
{
psxHw4Write8(mem, value);
}
else
{
u8* p = (u8 *)(psxMemWLUT[mem >> 16]);
if (p != NULL && !(psxRegs.CP0.n.Status & 0x10000) )
{
*(u8 *)(p + (mem & 0xffff)) = value;
psxCpu->Clear(mem&~3, 1);
}
else
{
if (t == 0x1d00)
{
Console.WriteLn("sw8 [0x%08X]=0x%08X", mem, value);
psxSu8(mem) = value;
return;
}
if (t == 0x1000)
{
DEV9write8(mem, value); return;
}
PSXMEM_LOG("err sb %8.8lx = %x", mem, value);
}
}
}
void iopMemWrite16(u32 mem, u16 value)
{
mem &= 0x1fffffff;
u32 t = mem >> 16;
if (t == 0x1f80)
{
switch( mem & 0xf000 )
{
case 0x1000: IopMemory::iopHwWrite16_Page1(mem,value); break;
case 0x3000: IopMemory::iopHwWrite16_Page3(mem,value); break;
case 0x8000: IopMemory::iopHwWrite16_Page8(mem,value); break;
default:
psxHu16(mem) = value;
break;
}
} else
{
u8* p = (u8 *)(psxMemWLUT[mem >> 16]);
if (p != NULL && !(psxRegs.CP0.n.Status & 0x10000) )
{
if( t==0x1D00 ) Console.WriteLn("sw16 [0x%08X]=0x%08X", mem, value);
*(u16 *)(p + (mem & 0xffff)) = value;
psxCpu->Clear(mem&~3, 1);
}
else
{
if (t == 0x1d00)
{
switch (mem & 0x8f0)
{
case 0x10:
// write to ps2 mem
psHu16(SBUS_F210) = value;
return;
case 0x40:
{
u32 temp = value & 0xF0;
// write to ps2 mem
if(value & 0x20 || value & 0x80)
{
psHu16(SBUS_F240) &= ~0xF000;
psHu16(SBUS_F240) |= 0x2000;
}
if(psHu16(SBUS_F240) & temp)
psHu16(SBUS_F240) &= ~temp;
else
psHu16(SBUS_F240) |= temp;
return;
}
case 0x60:
psHu32(SBUS_F260) = 0;
return;
}
#if PSX_EXTRALOGS
DevCon.Warning("IOP 16 Write to %x value %x", mem, value);
#endif
psxSu16(mem) = value; return;
}
if (t == 0x1F90) {
SPU2write(mem, value); return;
}
if (t == 0x1000) {
DEV9write16(mem, value); return;
}
PSXMEM_LOG("err sh %8.8lx = %x", mem, value);
}
}
}
void iopMemWrite32(u32 mem, u32 value)
{
mem &= 0x1fffffff;
u32 t = mem >> 16;
if (t == 0x1f80)
{
switch( mem & 0xf000 )
{
case 0x1000: IopMemory::iopHwWrite32_Page1(mem,value); break;
case 0x3000: IopMemory::iopHwWrite32_Page3(mem,value); break;
case 0x8000: IopMemory::iopHwWrite32_Page8(mem,value); break;
default:
psxHu32(mem) = value;
break;
}
} else
{
//see also Hw.c
u8* p = (u8 *)(psxMemWLUT[mem >> 16]);
if( p != NULL && !(psxRegs.CP0.n.Status & 0x10000) )
{
*(u32 *)(p + (mem & 0xffff)) = value;
psxCpu->Clear(mem&~3, 1);
}
else
{
if (t == 0x1d00)
{
MEM_LOG("iop Sif reg write %x value %x", mem, value);
switch (mem & 0x8f0)
{
case 0x00: // EE write path (EE/IOP readable)
return; // this is the IOP, so read-only (do nothing)
case 0x10: // IOP write path (EE/IOP readable)
psHu32(SBUS_F210) = value;
return;
case 0x20: // Bits cleared when written from IOP.
psHu32(SBUS_F220) &= ~value;
return;
case 0x30: // bits set when written from IOP
psHu32(SBUS_F230) |= value;
return;
case 0x40: // Control Register
{
u32 temp = value & 0xF0;
if (value & 0x20 || value & 0x80)
{
psHu32(SBUS_F240) &= ~0xF000;
psHu32(SBUS_F240) |= 0x2000;
}
if (psHu32(SBUS_F240) & temp)
psHu32(SBUS_F240) &= ~temp;
else
psHu32(SBUS_F240) |= temp;
return;
}
case 0x60:
psHu32(SBUS_F260) = 0;
return;
}
#if PSX_EXTRALOGS
DevCon.Warning("IOP 32 Write to %x value %x", mem, value);
#endif
psxSu32(mem) = value;
// wtf? why were we writing to the EE's sif space? Commenting this out doesn't
// break any of my games, and should be more correct, but I guess we'll see. --air
//*(u32*)(eeHw+0xf200+(mem&0xf0)) = value;
return;
}
else if (t == 0x1000)
{
DEV9write32(mem, value); return;
}
}
}
}
int iopMemSafeCmpBytes(u32 mem, const void* src, u32 size)
{
// can memcpy so long as pages aren't crossed
const u8* sptr = static_cast<const u8*>(src);
const u8* const sptr_end = sptr + size;
while (sptr != sptr_end)
{
u8* dst = iopVirtMemW<u8>(mem);
if (!dst)
return -1;
const u32 remaining_in_page = std::min(0x1000 - (mem & 0xfff), static_cast<u32>(sptr_end - sptr));
const int res = std::memcmp(sptr, dst, remaining_in_page);
if (res != 0)
return res;
sptr += remaining_in_page;
mem += remaining_in_page;
}
return 0;
}
bool iopMemSafeReadBytes(u32 mem, void* dst, u32 size)
{
// can memcpy so long as pages aren't crossed
u8* dptr = static_cast<u8*>(dst);
u8* const dptr_end = dptr + size;
while (dptr != dptr_end)
{
const u8* src = iopVirtMemR<u8>(mem);
if (!src)
return false;
const u32 remaining_in_page = std::min(0x1000 - (mem & 0xfff), static_cast<u32>(dptr_end - dptr));
std::memcpy(dptr, src, remaining_in_page);
dptr += remaining_in_page;
mem += remaining_in_page;
}
return true;
}
bool iopMemSafeWriteBytes(u32 mem, const void* src, u32 size)
{
// can memcpy so long as pages aren't crossed
const u8* sptr = static_cast<const u8*>(src);
const u8* const sptr_end = sptr + size;
while (sptr != sptr_end)
{
u8* dst = iopVirtMemW<u8>(mem);
if (!dst)
return false;
const u32 remaining_in_page = std::min(0x1000 - (mem & 0xfff), static_cast<u32>(sptr_end - sptr));
std::memcpy(dst, sptr, remaining_in_page);
sptr += remaining_in_page;
mem += remaining_in_page;
}
return true;
}
std::string iopMemReadString(u32 mem, int maxlen)
{
std::string ret;
char c;
while ((c = iopMemRead8(mem++)) && maxlen--)
ret.push_back(c);
return ret;
}