pcsx2/plugins/GSdx/GSDevice9.cpp

1531 lines
37 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSdx.h"
#include "GSDevice9.h"
#include "resource.h"
#include <fstream>
GSDevice9::GSDevice9()
: m_lost(false)
{
m_rbswapped = true;
FXAA_Compiled = false;
ExShader_Compiled = false;
memset(&m_pp, 0, sizeof(m_pp));
memset(&m_d3dcaps, 0, sizeof(m_d3dcaps));
memset(&m_state, 0, sizeof(m_state));
m_state.bf = 0xffffffff;
}
GSDevice9::~GSDevice9()
{
for(auto &i : m_om_bs) delete i.second;
for(auto &i : m_om_dss) delete i.second;
for(auto &i : m_ps_ss) delete i.second;
for(auto &i : m_mskfix) delete i.second;
if(m_state.vs_cb) _aligned_free(m_state.vs_cb);
if(m_state.ps_cb) _aligned_free(m_state.ps_cb);
}
static void FindAdapter(IDirect3D9 *d3d9, UINT &adapter, D3DDEVTYPE &devtype, std::string adapter_id = "")
{
adapter = D3DADAPTER_DEFAULT;
devtype = D3DDEVTYPE_HAL;
if (!adapter_id.length())
adapter_id = theApp.GetConfigS("Adapter");
if (adapter_id == "default")
;
else if (adapter_id == "ref")
{
devtype = D3DDEVTYPE_REF;
}
else
{
int n = d3d9->GetAdapterCount();
for (int i = 0; i < n; i++)
{
D3DADAPTER_IDENTIFIER9 id;
if (D3D_OK != d3d9->GetAdapterIdentifier(i, 0, &id))
break;
if (GSAdapter(id) == adapter_id)
{
adapter = i;
devtype = D3DDEVTYPE_HAL;
break;
}
}
}
}
// if supported and null != msaa_desc, msaa_desc will contain requested Count and Quality
static bool IsMsaaSupported(IDirect3D9* d3d, UINT adapter, D3DDEVTYPE devtype, D3DFORMAT depth_format, uint32 msaaCount, DXGI_SAMPLE_DESC* msaa_desc = NULL)
{
if(msaaCount > 16) return false;
D3DCAPS9 d3dcaps;
memset(&d3dcaps, 0, sizeof(d3dcaps));
d3d->GetDeviceCaps(adapter, devtype, &d3dcaps);
DWORD quality[2] = {0, 0};
if(SUCCEEDED(d3d->CheckDeviceMultiSampleType(d3dcaps.AdapterOrdinal, d3dcaps.DeviceType, D3DFMT_A8R8G8B8, TRUE, (D3DMULTISAMPLE_TYPE)msaaCount, &quality[0])) && quality[0] > 0
&& SUCCEEDED(d3d->CheckDeviceMultiSampleType(d3dcaps.AdapterOrdinal, d3dcaps.DeviceType, depth_format, TRUE, (D3DMULTISAMPLE_TYPE)msaaCount, &quality[1])) && quality[1] > 0)
{
if(msaa_desc)
{
msaa_desc->Count = msaaCount;
msaa_desc->Quality = std::min<DWORD>(quality[0] - 1, quality[1] - 1);
}
return true;
}
return false;
}
static bool TestDepthFormat(IDirect3D9* d3d, UINT adapter, D3DDEVTYPE devtype, D3DFORMAT format)
{
if(FAILED(d3d->CheckDeviceFormat(adapter, devtype, D3DFMT_X8R8G8B8, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, format)))
{
return false;
}
if(FAILED(d3d->CheckDepthStencilMatch(adapter, devtype, D3DFMT_X8R8G8B8, D3DFMT_X8R8G8B8, format)))
{
return false;
}
return true;
}
static D3DFORMAT BestD3dFormat(IDirect3D9* d3d, UINT adapter, D3DDEVTYPE devtype, int msaaCount = 0, DXGI_SAMPLE_DESC* msaa_desc = NULL)
{
// In descending order of preference
static D3DFORMAT fmts[] =
{
D3DFMT_D32,
D3DFMT_D32F_LOCKABLE,
D3DFMT_D24S8
};
if(1 == msaaCount) msaaCount = 0;
for(size_t i = 0; i < countof(fmts); i++)
{
if(TestDepthFormat(d3d, adapter, devtype, fmts[i]) && (!msaaCount || IsMsaaSupported(d3d, adapter, devtype, fmts[i], msaaCount, msaa_desc)))
{
return fmts[i];
}
}
return D3DFMT_UNKNOWN;
}
// return: 32, 24, or 0 if not supported. if 1==msaa, considered as msaa=0
uint32 GSDevice9::GetMaxDepth(uint32 msaa, std::string adapter_id)
{
CComPtr<IDirect3D9> d3d;
d3d.Attach(Direct3DCreate9(D3D_SDK_VERSION));
UINT adapter;
D3DDEVTYPE devtype;
FindAdapter(d3d, adapter, devtype, adapter_id);
switch(BestD3dFormat(d3d, adapter, devtype, msaa))
{
case D3DFMT_D32:
case D3DFMT_D32F_LOCKABLE:
return 32;
case D3DFMT_D24S8:
return 24;
}
return 0;
}
void GSDevice9::ForceValidMsaaConfig()
{
if(0 == GetMaxDepth(theApp.GetConfigI("UserHacks_MSAA")))
{
theApp.SetConfig("UserHacks_MSAA", 0); // replace invalid msaa value in ini file with 0.
}
};
bool GSDevice9::Create(const std::shared_ptr<GSWnd> &wnd)
{
if(!__super::Create(wnd))
{
return false;
}
// d3d
m_d3d.Attach(Direct3DCreate9(D3D_SDK_VERSION));
if(!m_d3d) return false;
UINT adapter;
D3DDEVTYPE devtype;
FindAdapter(m_d3d, adapter, devtype);
D3DADAPTER_IDENTIFIER9 id;
if(S_OK == m_d3d->GetAdapterIdentifier(adapter, 0, &id))
{
printf("%s (%d.%d.%d.%d)\n",
id.Description,
id.DriverVersion.HighPart >> 16,
id.DriverVersion.HighPart & 0xffff,
id.DriverVersion.LowPart >> 16,
id.DriverVersion.LowPart & 0xffff);
}
ForceValidMsaaConfig();
// Get best format/depth for msaa. Assumption is that if the resulting depth is 24 instead of possible 32,
// the user was already warned when she selected it. (Lower res z buffer without warning is unacceptable).
m_depth_format = BestD3dFormat(m_d3d, adapter, devtype, m_msaa, &m_msaa_desc);
if(D3DFMT_UNKNOWN == m_depth_format)
{
// can't find a format with requested msaa, try without.
m_depth_format = BestD3dFormat(m_d3d, adapter, devtype, 0);
if(D3DFMT_UNKNOWN == m_depth_format)
{
return false;
}
m_msaa = 0;
}
memset(&m_d3dcaps, 0, sizeof(m_d3dcaps));
m_d3d->GetDeviceCaps(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &m_d3dcaps);
//
if(m_d3dcaps.VertexShaderVersion < (m_d3dcaps.PixelShaderVersion & ~0x10000))
{
if(m_d3dcaps.VertexShaderVersion > D3DVS_VERSION(0, 0))
{
ASSERT(0);
return false;
}
// else vertex shader should be emulated in software (gma950)
}
m_d3dcaps.VertexShaderVersion = m_d3dcaps.PixelShaderVersion & ~0x10000;
if(m_d3dcaps.PixelShaderVersion >= D3DPS_VERSION(3, 0))
{
SetFeatureLevel(D3D_FEATURE_LEVEL_9_3, false);
}
else if(m_d3dcaps.PixelShaderVersion >= D3DPS_VERSION(2, 0))
{
SetFeatureLevel(D3D_FEATURE_LEVEL_9_2, false);
}
else
{
string s = format(
"Supported pixel shader version is too low!\n\nSupported: %d.%d\nNeeded: 2.0 or higher",
D3DSHADER_VERSION_MAJOR(m_d3dcaps.PixelShaderVersion), D3DSHADER_VERSION_MINOR(m_d3dcaps.PixelShaderVersion));
MessageBox(NULL, s.c_str(), "GSdx", MB_OK);
return false;
}
if(!Reset(1, 1))
{
return false;
}
m_dev->Clear(0, NULL, D3DCLEAR_TARGET, 0, 1.0f, 0);
// convert
static const D3DVERTEXELEMENT9 il_convert[] =
{
{0, 0, D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
{0, 16, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},
D3DDECL_END()
};
vector<unsigned char> shader;
theApp.LoadResource(IDR_CONVERT_FX, shader);
CompileShader((const char *)shader.data(), shader.size(), "convert.fx", "vs_main", nullptr, &m_convert.vs, il_convert, countof(il_convert), &m_convert.il);
for(size_t i = 0; i < countof(m_convert.ps); i++)
{
CompileShader((const char *)shader.data(), shader.size(), "convert.fx", format("ps_main%d", i), nullptr, &m_convert.ps[i]);
}
m_convert.dss.DepthEnable = false;
m_convert.dss.StencilEnable = false;
m_convert.bs.BlendEnable = false;
m_convert.bs.RenderTargetWriteMask = D3DCOLORWRITEENABLE_RGBA;
D3DTEXTUREFILTERTYPE LinearToAnisotropic = theApp.GetConfigI("MaxAnisotropy") && !theApp.GetConfigB("paltex") ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR;
D3DTEXTUREFILTERTYPE PointToAnisotropic = theApp.GetConfigI("MaxAnisotropy") && !theApp.GetConfigB("paltex") ? D3DTEXF_ANISOTROPIC : D3DTEXF_POINT;
m_convert.ln.FilterMin[0] = LinearToAnisotropic;
m_convert.ln.FilterMag[0] = LinearToAnisotropic;
m_convert.ln.FilterMin[1] = LinearToAnisotropic;
m_convert.ln.FilterMag[1] = LinearToAnisotropic;
m_convert.ln.AddressU = D3DTADDRESS_CLAMP;
m_convert.ln.AddressV = D3DTADDRESS_CLAMP;
m_convert.ln.MaxAnisotropy = theApp.GetConfigI("MaxAnisotropy");
m_convert.pt.FilterMin[0] = PointToAnisotropic;
m_convert.pt.FilterMag[0] = PointToAnisotropic;
m_convert.pt.FilterMin[1] = PointToAnisotropic;
m_convert.pt.FilterMag[1] = PointToAnisotropic;
m_convert.pt.AddressU = D3DTADDRESS_CLAMP;
m_convert.pt.AddressV = D3DTADDRESS_CLAMP;
m_convert.pt.MaxAnisotropy = theApp.GetConfigI("MaxAnisotropy");
// merge
theApp.LoadResource(IDR_MERGE_FX, shader);
for(size_t i = 0; i < countof(m_merge.ps); i++)
{
CompileShader((const char *)shader.data(), shader.size(), "merge.fx", format("ps_main%d", i), nullptr, &m_merge.ps[i]);
}
m_merge.bs.BlendEnable = true;
m_merge.bs.BlendOp = D3DBLENDOP_ADD;
m_merge.bs.SrcBlend = D3DBLEND_SRCALPHA;
m_merge.bs.DestBlend = D3DBLEND_INVSRCALPHA;
m_merge.bs.BlendOpAlpha = D3DBLENDOP_ADD;
m_merge.bs.SrcBlendAlpha = D3DBLEND_ONE;
m_merge.bs.DestBlendAlpha = D3DBLEND_ZERO;
m_merge.bs.RenderTargetWriteMask = D3DCOLORWRITEENABLE_RGBA;
// interlace
theApp.LoadResource(IDR_INTERLACE_FX, shader);
for(size_t i = 0; i < countof(m_interlace.ps); i++)
{
CompileShader((const char *)shader.data(), shader.size(), "interlace.fx", format("ps_main%d", i), nullptr, &m_interlace.ps[i]);
}
// Shade Boost
int ShadeBoost_Contrast = theApp.GetConfigI("ShadeBoost_Contrast");
int ShadeBoost_Brightness = theApp.GetConfigI("ShadeBoost_Brightness");
int ShadeBoost_Saturation = theApp.GetConfigI("ShadeBoost_Saturation");
string str[3];
str[0] = format("%d", ShadeBoost_Saturation);
str[1] = format("%d", ShadeBoost_Brightness);
str[2] = format("%d", ShadeBoost_Contrast);
D3D_SHADER_MACRO macro[] =
{
{"SB_SATURATION", str[0].c_str()},
{"SB_BRIGHTNESS", str[1].c_str()},
{"SB_CONTRAST", str[2].c_str()},
{NULL, NULL},
};
theApp.LoadResource(IDR_SHADEBOOST_FX, shader);
CompileShader((const char *)shader.data(), shader.size(), "shadeboost.fx", "ps_main", macro, &m_shadeboost.ps);
// create shader layout
VSSelector sel;
VSConstantBuffer cb;
SetupVS(sel, &cb);
//
memset(&m_date.dss, 0, sizeof(m_date.dss));
m_date.dss.StencilEnable = true;
m_date.dss.StencilReadMask = 1;
m_date.dss.StencilWriteMask = 1;
m_date.dss.StencilFunc = D3DCMP_ALWAYS;
m_date.dss.StencilPassOp = D3DSTENCILOP_REPLACE;
m_date.dss.StencilRef = 1;
memset(&m_date.bs, 0, sizeof(m_date.bs));
//
return true;
}
bool GSDevice9::Reset(int w, int h)
{
if(!__super::Reset(w, h))
return false;
HRESULT hr;
int mode = (!m_wnd->IsManaged() || theApp.GetConfigB("windowed")) ? Windowed : Fullscreen;
if(mode == DontCare)
{
mode = m_pp.Windowed ? Windowed : Fullscreen;
}
if(!m_lost)
{
if(m_swapchain && mode != Fullscreen && m_pp.Windowed)
{
m_swapchain = NULL;
m_pp.BackBufferWidth = w;
m_pp.BackBufferHeight = h;
m_pp.PresentationInterval = m_vsync ? D3DPRESENT_INTERVAL_ONE : D3DPRESENT_INTERVAL_IMMEDIATE;
hr = m_dev->CreateAdditionalSwapChain(&m_pp, &m_swapchain);
if(FAILED(hr)) return false;
CComPtr<IDirect3DSurface9> backbuffer;
hr = m_swapchain->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &backbuffer);
m_backbuffer = new GSTexture9(backbuffer);
return true;
}
}
m_swapchain = NULL;
m_vb = NULL;
m_vb_old = NULL;
m_vertex.start = 0;
m_vertex.count = 0;
m_index.start = 0;
m_index.count = 0;
if(m_state.vs_cb) _aligned_free(m_state.vs_cb);
if(m_state.ps_cb) _aligned_free(m_state.ps_cb);
memset(&m_state, 0, sizeof(m_state));
m_state.bf = 0xffffffff;
memset(&m_pp, 0, sizeof(m_pp));
m_pp.Windowed = TRUE;
m_pp.hDeviceWindow = (HWND)m_wnd->GetHandle();
m_pp.SwapEffect = D3DSWAPEFFECT_FLIP;
m_pp.BackBufferFormat = D3DFMT_X8R8G8B8;
m_pp.BackBufferWidth = 1;
m_pp.BackBufferHeight = 1;
m_pp.PresentationInterval = m_vsync ? D3DPRESENT_INTERVAL_ONE : D3DPRESENT_INTERVAL_IMMEDIATE;
// m_pp.Flags |= D3DPRESENTFLAG_VIDEO; // enables tv-out (but I don't think anyone would still use a regular tv...)
int mw = theApp.GetConfigI("ModeWidth");
int mh = theApp.GetConfigI("ModeHeight");
int mrr = theApp.GetConfigI("ModeRefreshRate");
if(m_wnd->IsManaged() && mode == Fullscreen && mw > 0 && mh > 0 && mrr >= 0)
{
m_pp.Windowed = FALSE;
m_pp.BackBufferWidth = mw;
m_pp.BackBufferHeight = mh;
// m_pp.FullScreen_RefreshRateInHz = mrr;
m_wnd->HideFrame();
}
if(!m_dev)
{
uint32 flags = m_d3dcaps.VertexProcessingCaps ? D3DCREATE_HARDWARE_VERTEXPROCESSING : D3DCREATE_SOFTWARE_VERTEXPROCESSING;
if(flags & D3DCREATE_HARDWARE_VERTEXPROCESSING)
{
flags |= D3DCREATE_PUREDEVICE;
}
hr = m_d3d->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, (HWND)m_wnd->GetHandle(), flags, &m_pp, &m_dev);
if(FAILED(hr)) return false;
}
else
{
hr = m_dev->Reset(&m_pp);
if(FAILED(hr))
{
if(D3DERR_DEVICELOST == hr)
{
Sleep(1000);
hr = m_dev->Reset(&m_pp);
}
if(FAILED(hr)) return false;
}
}
if(m_pp.Windowed)
{
m_pp.BackBufferWidth = 1;
m_pp.BackBufferHeight = 1;
hr = m_dev->CreateAdditionalSwapChain(&m_pp, &m_swapchain);
if(FAILED(hr)) return false;
}
CComPtr<IDirect3DSurface9> backbuffer;
if(m_swapchain)
{
hr = m_swapchain->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &backbuffer);
}
else
{
hr = m_dev->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &backbuffer);
}
m_backbuffer = new GSTexture9(backbuffer);
m_dev->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
m_dev->SetRenderState(D3DRS_LIGHTING, FALSE);
m_dev->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
m_dev->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE);
return true;
}
bool GSDevice9::IsLost(bool update)
{
if(!m_lost || update)
{
HRESULT hr = m_dev->TestCooperativeLevel();
m_lost = hr == D3DERR_DEVICELOST || hr == D3DERR_DEVICENOTRESET;
}
return m_lost;
}
void GSDevice9::Flip()
{
m_dev->EndScene();
HRESULT hr;
if(m_swapchain)
{
hr = m_swapchain->Present(NULL, NULL, NULL, NULL, 0);
}
else
{
hr = m_dev->Present(NULL, NULL, NULL, NULL);
}
m_dev->BeginScene();
if(FAILED(hr))
{
m_lost = true;
}
}
void GSDevice9::SetVSync(bool enable)
{
if(m_vsync == enable) return;
__super::SetVSync(enable);
// Clever trick: Delete the backbuffer, so that the next Present will fail and
// cause a DXDevice9::Reset call, which re-creates the backbuffer with current
// vsync settings. :)
delete m_backbuffer;
m_backbuffer = NULL;
}
void GSDevice9::BeginScene()
{
// m_dev->BeginScene();
}
void GSDevice9::DrawPrimitive()
{
int prims = 0;
switch(m_state.topology)
{
case D3DPT_POINTLIST:
prims = m_vertex.count;
break;
case D3DPT_LINELIST:
prims = m_vertex.count / 2;
break;
case D3DPT_LINESTRIP:
prims = m_vertex.count - 1;
break;
case D3DPT_TRIANGLELIST:
prims = m_vertex.count / 3;
break;
case D3DPT_TRIANGLESTRIP:
case D3DPT_TRIANGLEFAN:
prims = m_vertex.count - 2;
break;
default:
__assume(0);
}
m_dev->DrawPrimitive(m_state.topology, m_vertex.start, prims);
}
void GSDevice9::DrawIndexedPrimitive()
{
int prims = 0;
switch(m_state.topology)
{
case D3DPT_POINTLIST:
prims = m_index.count;
break;
case D3DPT_LINELIST:
case D3DPT_LINESTRIP:
prims = m_index.count / 2;
break;
case D3DPT_TRIANGLELIST:
case D3DPT_TRIANGLESTRIP:
case D3DPT_TRIANGLEFAN:
prims = m_index.count / 3;
break;
default:
__assume(0);
}
m_dev->DrawIndexedPrimitive(m_state.topology, m_vertex.start, 0, m_index.count, m_index.start, prims);
}
void GSDevice9::EndScene()
{
// m_dev->EndScene();
__super::EndScene();
}
void GSDevice9::ClearRenderTarget(GSTexture* t, const GSVector4& c)
{
if (!t) return;
ClearRenderTarget(t, (c * 255 + 0.5f).zyxw().rgba32());
}
void GSDevice9::ClearRenderTarget(GSTexture* rt, uint32 c)
{
if (!rt) return;
CComPtr<IDirect3DSurface9> surface;
m_dev->GetRenderTarget(0, &surface);
m_dev->SetRenderTarget(0, *(GSTexture9*)rt);
m_dev->Clear(0, NULL, D3DCLEAR_TARGET, c, 0, 0);
m_dev->SetRenderTarget(0, surface);
}
void GSDevice9::ClearDepth(GSTexture* t)
{
if (!t) return;
CComPtr<IDirect3DSurface9> dssurface;
m_dev->GetDepthStencilSurface(&dssurface);
m_dev->SetDepthStencilSurface(*(GSTexture9*)t);
m_dev->Clear(0, NULL, D3DCLEAR_ZBUFFER, 0, 0.0f, 0);
m_dev->SetDepthStencilSurface(dssurface);
}
void GSDevice9::ClearStencil(GSTexture* t, uint8 c)
{
if (!t) return;
CComPtr<IDirect3DSurface9> dssurface;
m_dev->GetDepthStencilSurface(&dssurface);
m_dev->SetDepthStencilSurface(*(GSTexture9*)t);
m_dev->Clear(0, NULL, D3DCLEAR_STENCIL, 0, 0, c);
m_dev->SetDepthStencilSurface(dssurface);
}
GSTexture* GSDevice9::CreateSurface(int type, int w, int h, bool msaa, int format)
{
HRESULT hr;
CComPtr<IDirect3DTexture9> texture;
CComPtr<IDirect3DSurface9> surface;
switch(type)
{
case GSTexture::RenderTarget:
if(msaa) hr = m_dev->CreateRenderTarget(w, h, (D3DFORMAT)format, (D3DMULTISAMPLE_TYPE)m_msaa_desc.Count, m_msaa_desc.Quality, FALSE, &surface, NULL);
else hr = m_dev->CreateTexture(w, h, 1, D3DUSAGE_RENDERTARGET, (D3DFORMAT)format, D3DPOOL_DEFAULT, &texture, NULL);
break;
case GSTexture::DepthStencil:
if(msaa) hr = m_dev->CreateDepthStencilSurface(w, h, (D3DFORMAT)format, (D3DMULTISAMPLE_TYPE)m_msaa_desc.Count, m_msaa_desc.Quality, FALSE, &surface, NULL);
else hr = m_dev->CreateDepthStencilSurface(w, h, (D3DFORMAT)format, D3DMULTISAMPLE_NONE, 0, FALSE, &surface, NULL);
break;
case GSTexture::Texture:
hr = m_dev->CreateTexture(w, h, 1, 0, (D3DFORMAT)format, D3DPOOL_MANAGED, &texture, NULL);
break;
case GSTexture::Offscreen:
hr = m_dev->CreateOffscreenPlainSurface(w, h, (D3DFORMAT)format, D3DPOOL_SYSTEMMEM, &surface, NULL);
break;
}
GSTexture9* t = NULL;
if(surface)
{
t = new GSTexture9(surface);
}
if(texture)
{
t = new GSTexture9(texture);
}
if(t)
{
switch(type)
{
case GSTexture::RenderTarget:
ClearRenderTarget(t, 0);
break;
case GSTexture::DepthStencil:
ClearDepth(t);
break;
}
}
else
{
throw std::bad_alloc();
}
return t;
}
GSTexture* GSDevice9::CreateRenderTarget(int w, int h, bool msaa, int format)
{
return __super::CreateRenderTarget(w, h, msaa, format ? format : D3DFMT_A8R8G8B8);
}
GSTexture* GSDevice9::CreateDepthStencil(int w, int h, bool msaa, int format)
{
return __super::CreateDepthStencil(w, h, msaa, format ? format : m_depth_format);
}
GSTexture* GSDevice9::CreateTexture(int w, int h, int format)
{
return __super::CreateTexture(w, h, format ? format : D3DFMT_A8R8G8B8);
}
GSTexture* GSDevice9::CreateOffscreen(int w, int h, int format)
{
return __super::CreateOffscreen(w, h, format ? format : D3DFMT_A8R8G8B8);
}
GSTexture* GSDevice9::Resolve(GSTexture* t)
{
ASSERT(t != NULL && t->IsMSAA());
if(GSTexture* dst = CreateRenderTarget(t->GetWidth(), t->GetHeight(), false, t->GetFormat()))
{
dst->SetScale(t->GetScale());
m_dev->StretchRect(*(GSTexture9*)t, NULL, *(GSTexture9*)dst, NULL, D3DTEXF_POINT);
return dst;
}
return NULL;
}
GSTexture* GSDevice9::CopyOffscreen(GSTexture* src, const GSVector4& sRect, int w, int h, int format, int ps_shader)
{
GSTexture* dst = NULL;
if(format == 0)
{
format = D3DFMT_A8R8G8B8;
}
if(format != D3DFMT_A8R8G8B8)
{
ASSERT(0);
return false;
}
if(GSTexture* rt = CreateRenderTarget(w, h, false, format))
{
GSVector4 dRect(0, 0, w, h);
if(GSTexture* src2 = src->IsMSAA() ? Resolve(src) : src)
{
StretchRect(src2, sRect, rt, dRect, m_convert.ps[1], NULL, 0);
if(src2 != src) Recycle(src2);
}
dst = CreateOffscreen(w, h, format);
if(dst)
{
m_dev->GetRenderTargetData(*(GSTexture9*)rt, *(GSTexture9*)dst);
}
Recycle(rt);
}
return dst;
}
void GSDevice9::CopyRect(GSTexture* sTex, GSTexture* dTex, const GSVector4i& r)
{
if(!sTex || !dTex)
{
ASSERT(0);
return;
}
m_dev->StretchRect(*(GSTexture9*)sTex, r, *(GSTexture9*)dTex, r, D3DTEXF_NONE);
}
void GSDevice9::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, int shader, bool linear)
{
StretchRect(sTex, sRect, dTex, dRect, m_convert.ps[shader], NULL, 0, linear);
}
void GSDevice9::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, IDirect3DPixelShader9* ps, const float* ps_cb, int ps_cb_len, bool linear)
{
StretchRect(sTex, sRect, dTex, dRect, ps, ps_cb, ps_cb_len, &m_convert.bs, linear);
}
void GSDevice9::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, IDirect3DPixelShader9* ps, const float* ps_cb, int ps_cb_len, Direct3DBlendState9* bs, bool linear)
{
if(!sTex || !dTex)
{
ASSERT(0);
return;
}
BeginScene();
GSVector2i ds = dTex->GetSize();
// om
OMSetDepthStencilState(&m_convert.dss);
OMSetBlendState(bs, 0);
OMSetRenderTargets(dTex, NULL);
// ia
float left = dRect.x * 2 / ds.x - 1.0f;
float top = 1.0f - dRect.y * 2 / ds.y;
float right = dRect.z * 2 / ds.x - 1.0f;
float bottom = 1.0f - dRect.w * 2 / ds.y;
GSVertexPT1 vertices[] =
{
{GSVector4(left, top, 0.5f, 1.0f), GSVector2(sRect.x, sRect.y)},
{GSVector4(right, top, 0.5f, 1.0f), GSVector2(sRect.z, sRect.y)},
{GSVector4(left, bottom, 0.5f, 1.0f), GSVector2(sRect.x, sRect.w)},
{GSVector4(right, bottom, 0.5f, 1.0f), GSVector2(sRect.z, sRect.w)},
};
for(size_t i = 0; i < countof(vertices); i++)
{
vertices[i].p.x -= 1.0f / ds.x;
vertices[i].p.y += 1.0f / ds.y;
}
IASetVertexBuffer(vertices, sizeof(vertices[0]), countof(vertices));
IASetPrimitiveTopology(D3DPT_TRIANGLESTRIP);
IASetInputLayout(m_convert.il);
// vs
VSSetShader(m_convert.vs, NULL, 0);
// ps
PSSetSamplerState(linear ? &m_convert.ln : &m_convert.pt);
PSSetShaderResources(sTex, NULL);
PSSetShader(ps, ps_cb, ps_cb_len);
//
DrawPrimitive();
//
EndScene();
}
void GSDevice9::DoMerge(GSTexture* sTex[3], GSVector4* sRect, GSTexture* dTex, GSVector4* dRect, const GSRegPMODE& PMODE, const GSRegEXTBUF& EXTBUF, const GSVector4& c)
{
bool slbg = PMODE.SLBG;
bool mmod = PMODE.MMOD;
ClearRenderTarget(dTex, c);
if(sTex[1] && !slbg)
{
StretchRect(sTex[1], sRect[1], dTex, dRect[1], m_merge.ps[0], NULL, true);
}
if(sTex[0])
{
MergeConstantBuffer cb;
cb.BGColor = c;
StretchRect(sTex[0], sRect[0], dTex, dRect[0], m_merge.ps[mmod ? 1 : 0], (const float*)&cb, 1, &m_merge.bs, true);
}
}
void GSDevice9::DoInterlace(GSTexture* sTex, GSTexture* dTex, int shader, bool linear, float yoffset)
{
GSVector4 s = GSVector4(dTex->GetSize());
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0.0f, yoffset, s.x, s.y + yoffset);
InterlaceConstantBuffer cb;
cb.ZrH = GSVector2(0, 1.0f / s.y);
cb.hH = (float)s.y / 2;
StretchRect(sTex, sRect, dTex, dRect, m_interlace.ps[shader], (const float*)&cb, 1, linear);
}
void GSDevice9::InitExternalFX()
{
if (!ExShader_Compiled)
{
try {
std::string config_name(theApp.GetConfigS("shaderfx_conf"));
std::ifstream fconfig(config_name);
std::stringstream shader;
if (fconfig.good())
shader << fconfig.rdbuf() << "\n";
else
fprintf(stderr, "GSdx: External shader config '%s' not loaded.\n", config_name.c_str());
std::string shader_name(theApp.GetConfigS("shaderfx_glsl"));
std::ifstream fshader(shader_name);
if (fshader.good())
{
shader << fshader.rdbuf();
CompileShader(shader.str().c_str(), shader.str().length(), shader_name.c_str(), "ps_main", nullptr, &m_shaderfx.ps);
}
else
{
fprintf(stderr, "GSdx: External shader '%s' not loaded and will be disabled!\n", shader_name.c_str());
}
}
catch (GSDXRecoverableError) {
printf("GSdx: failed to compile external post-processing shader. \n");
}
ExShader_Compiled = true;
}
}
void GSDevice9::DoExternalFX(GSTexture* sTex, GSTexture* dTex)
{
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
ExternalFXConstantBuffer cb;
InitExternalFX();
cb.xyFrame = GSVector2((float)s.x, (float)s.y);
cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f);
cb.rcpFrameOpt = GSVector4::zero();
StretchRect(sTex, sRect, dTex, dRect, m_shaderfx.ps, (const float*)&cb, 2, true);
}
void GSDevice9::InitFXAA()
{
if (!FXAA_Compiled)
{
try {
vector<unsigned char> shader;
theApp.LoadResource(IDR_FXAA_FX, shader);
CompileShader((const char *)shader.data(), shader.size(), "fxaa.fx", "ps_main", nullptr, &m_fxaa.ps);
}
catch (GSDXRecoverableError) {
printf("GSdx: Failed to compile fxaa shader.\n");
}
FXAA_Compiled = true;
}
}
void GSDevice9::DoFXAA(GSTexture* sTex, GSTexture* dTex)
{
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
FXAAConstantBuffer cb;
InitFXAA();
cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f);
cb.rcpFrameOpt = GSVector4::zero();
StretchRect(sTex, sRect, dTex, dRect, m_fxaa.ps, (const float*)&cb, 2, true);
}
void GSDevice9::DoShadeBoost(GSTexture* sTex, GSTexture* dTex)
{
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
ShadeBoostConstantBuffer cb;
cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f);
cb.rcpFrameOpt = GSVector4::zero();
StretchRect(sTex, sRect, dTex, dRect, m_shadeboost.ps, (const float*)&cb, 1, true);
}
void GSDevice9::SetupDATE(GSTexture* rt, GSTexture* ds, const GSVertexPT1* vertices, bool datm)
{
const GSVector2i& size = rt->GetSize();
if(GSTexture* t = CreateRenderTarget(size.x, size.y, rt->IsMSAA()))
{
// sfex3 (after the capcom logo), vf4 (first menu fading in), ffxii shadows, rumble roses shadows, persona4 shadows
BeginScene();
ClearStencil(ds, 0);
// om
OMSetDepthStencilState(&m_date.dss);
OMSetBlendState(&m_date.bs, 0);
OMSetRenderTargets(t, ds);
// ia
IASetVertexBuffer(vertices, sizeof(vertices[0]), 4);
IASetPrimitiveTopology(D3DPT_TRIANGLESTRIP);
// vs
VSSetShader(m_convert.vs, NULL, 0);
IASetInputLayout(m_convert.il);
// ps
GSTexture* rt2 = rt->IsMSAA() ? Resolve(rt) : rt;
PSSetShaderResources(rt2, NULL);
PSSetShader(m_convert.ps[datm ? 2 : 3], NULL, 0);
PSSetSamplerState(&m_convert.pt);
//
DrawPrimitive();
//
EndScene();
Recycle(t);
if(rt2 != rt) Recycle(rt2);
}
}
void GSDevice9::IASetVertexBuffer(const void* vertex, size_t stride, size_t count)
{
void* ptr = NULL;
if(IAMapVertexBuffer(&ptr, stride, count))
{
GSVector4i::storent(ptr, vertex, count * stride);
IAUnmapVertexBuffer();
}
}
bool GSDevice9::IAMapVertexBuffer(void** vertex, size_t stride, size_t count)
{
ASSERT(m_vertex.count == 0);
if(count * stride > m_vertex.limit * m_vertex.stride)
{
m_vb_old = m_vb;
m_vb = NULL;
m_vertex.start = 0;
m_vertex.count = 0;
m_vertex.limit = std::max<int>(count * 3 / 2, 10000);
}
if(m_vb == NULL)
{
HRESULT hr;
hr = m_dev->CreateVertexBuffer(m_vertex.limit * stride, D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY, 0, D3DPOOL_DEFAULT, &m_vb, NULL);
if(FAILED(hr)) return false;
}
uint32 flags = D3DLOCK_NOOVERWRITE;
if(m_vertex.start + count > m_vertex.limit || stride != m_vertex.stride)
{
m_vertex.start = 0;
flags = D3DLOCK_DISCARD;
}
if(FAILED(m_vb->Lock(m_vertex.start * stride, count * stride, vertex, flags)))
{
return false;
}
m_vertex.count = count;
m_vertex.stride = stride;
return true;
}
void GSDevice9::IAUnmapVertexBuffer()
{
m_vb->Unlock();
IASetVertexBuffer(m_vb, m_vertex.stride);
}
void GSDevice9::IASetVertexBuffer(IDirect3DVertexBuffer9* vb, size_t stride)
{
if(m_state.vb != vb || m_state.vb_stride != stride)
{
m_state.vb = vb;
m_state.vb_stride = stride;
m_dev->SetStreamSource(0, vb, 0, stride);
}
}
void GSDevice9::IASetIndexBuffer(const void* index, size_t count)
{
ASSERT(m_index.count == 0);
if(count > m_index.limit)
{
m_ib_old = m_ib;
m_ib = NULL;
m_index.count = 0;
m_index.limit = std::max<int>(count * 3 / 2, 11000);
}
if(m_ib == NULL)
{
HRESULT hr;
hr = m_dev->CreateIndexBuffer(m_index.limit * sizeof(uint32), D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY, D3DFMT_INDEX32, D3DPOOL_DEFAULT, &m_ib, NULL);
if(FAILED(hr)) return;
}
uint32 flags = D3DLOCK_NOOVERWRITE;
if(m_index.start + count > m_index.limit)
{
m_index.start = 0;
flags = D3DLOCK_DISCARD;
}
void* ptr = NULL;
if(SUCCEEDED(m_ib->Lock(m_index.start * sizeof(uint32), count * sizeof(uint32), &ptr, flags)))
{
memcpy(ptr, index, count * sizeof(uint32));
m_ib->Unlock();
}
m_index.count = count;
IASetIndexBuffer(m_ib);
}
void GSDevice9::IASetIndexBuffer(IDirect3DIndexBuffer9* ib)
{
if(m_state.ib != ib)
{
m_state.ib = ib;
m_dev->SetIndices(ib);
}
}
void GSDevice9::IASetInputLayout(IDirect3DVertexDeclaration9* layout)
{
if(m_state.layout != layout)
{
m_state.layout = layout;
m_dev->SetVertexDeclaration(layout);
}
}
void GSDevice9::IASetPrimitiveTopology(D3DPRIMITIVETYPE topology)
{
m_state.topology = topology;
}
void GSDevice9::VSSetShader(IDirect3DVertexShader9* vs, const float* vs_cb, int vs_cb_len)
{
if(m_state.vs != vs)
{
m_state.vs = vs;
m_dev->SetVertexShader(vs);
}
if(vs_cb && vs_cb_len > 0)
{
int size = vs_cb_len * sizeof(float) * 4;
if(m_state.vs_cb_len != vs_cb_len || m_state.vs_cb == NULL || memcmp(m_state.vs_cb, vs_cb, size))
{
if(m_state.vs_cb == NULL || m_state.vs_cb_len < vs_cb_len)
{
if(m_state.vs_cb) _aligned_free(m_state.vs_cb);
m_state.vs_cb = (float*)_aligned_malloc(size, 32);
}
m_state.vs_cb_len = vs_cb_len;
memcpy(m_state.vs_cb, vs_cb, size);
m_dev->SetVertexShaderConstantF(0, vs_cb, vs_cb_len);
}
}
}
void GSDevice9::PSSetShaderResources(GSTexture* sr0, GSTexture* sr1)
{
PSSetShaderResource(0, sr0);
PSSetShaderResource(1, sr1);
PSSetShaderResource(2, NULL);
}
void GSDevice9::PSSetShaderResource(int i, GSTexture* sr)
{
IDirect3DTexture9* srv = NULL;
if(sr) srv = *(GSTexture9*)sr;
if(m_state.ps_srvs[i] != srv)
{
m_state.ps_srvs[i] = srv;
m_dev->SetTexture(i, srv);
}
}
void GSDevice9::PSSetShader(IDirect3DPixelShader9* ps, const float* ps_cb, int ps_cb_len)
{
if(m_state.ps != ps)
{
m_state.ps = ps;
m_dev->SetPixelShader(ps);
}
if(ps_cb && ps_cb_len > 0)
{
int size = ps_cb_len * sizeof(float) * 4;
if(m_state.ps_cb_len != ps_cb_len || m_state.ps_cb == NULL || memcmp(m_state.ps_cb, ps_cb, size))
{
if(m_state.ps_cb == NULL || m_state.ps_cb_len < ps_cb_len)
{
if(m_state.ps_cb) _aligned_free(m_state.ps_cb);
m_state.ps_cb = (float*)_aligned_malloc(size, 32);
}
m_state.ps_cb_len = ps_cb_len;
memcpy(m_state.ps_cb, ps_cb, size);
m_dev->SetPixelShaderConstantF(0, ps_cb, ps_cb_len);
}
}
}
void GSDevice9::PSSetSamplerState(Direct3DSamplerState9* ss)
{
if(ss && m_state.ps_ss != ss)
{
m_state.ps_ss = ss;
m_dev->SetSamplerState(0, D3DSAMP_MINFILTER, ss->FilterMin[0]);
m_dev->SetSamplerState(0, D3DSAMP_MAGFILTER, ss->FilterMag[0]);
m_dev->SetSamplerState(0, D3DSAMP_MIPFILTER, ss->FilterMip[0]);
m_dev->SetSamplerState(0, D3DSAMP_ADDRESSU, ss->AddressU);
m_dev->SetSamplerState(0, D3DSAMP_ADDRESSV, ss->AddressV);
m_dev->SetSamplerState(0, D3DSAMP_ADDRESSW, ss->AddressW);
m_dev->SetSamplerState(0, D3DSAMP_MAXANISOTROPY, ss->MaxAnisotropy);
m_dev->SetSamplerState(0, D3DSAMP_MAXMIPLEVEL, ss->MaxLOD);
m_dev->SetSamplerState(1, D3DSAMP_MINFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(1, D3DSAMP_MAGFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(1, D3DSAMP_MIPFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(1, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
m_dev->SetSamplerState(1, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
m_dev->SetSamplerState(1, D3DSAMP_ADDRESSW, D3DTADDRESS_CLAMP);
m_dev->SetSamplerState(1, D3DSAMP_MAXANISOTROPY, ss->MaxAnisotropy);
m_dev->SetSamplerState(1, D3DSAMP_MAXMIPLEVEL, ss->MaxLOD);
m_dev->SetSamplerState(2, D3DSAMP_MINFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(2, D3DSAMP_MAGFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(2, D3DSAMP_MIPFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(2, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
m_dev->SetSamplerState(2, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
m_dev->SetSamplerState(2, D3DSAMP_ADDRESSW, D3DTADDRESS_CLAMP);
m_dev->SetSamplerState(2, D3DSAMP_MAXANISOTROPY, ss->MaxAnisotropy);
m_dev->SetSamplerState(2, D3DSAMP_MAXMIPLEVEL, ss->MaxLOD);
m_dev->SetSamplerState(3, D3DSAMP_MINFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(3, D3DSAMP_MAGFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(3, D3DSAMP_MIPFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(3, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
m_dev->SetSamplerState(3, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
m_dev->SetSamplerState(3, D3DSAMP_ADDRESSW, D3DTADDRESS_CLAMP);
m_dev->SetSamplerState(3, D3DSAMP_MAXANISOTROPY, ss->MaxAnisotropy);
m_dev->SetSamplerState(3, D3DSAMP_MAXMIPLEVEL, ss->MaxLOD);
m_dev->SetSamplerState(4, D3DSAMP_MINFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(4, D3DSAMP_MAGFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(4, D3DSAMP_MIPFILTER, ss->Anisotropic[1]);
m_dev->SetSamplerState(4, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
m_dev->SetSamplerState(4, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
m_dev->SetSamplerState(4, D3DSAMP_ADDRESSW, D3DTADDRESS_CLAMP);
m_dev->SetSamplerState(4, D3DSAMP_MAXANISOTROPY, ss->MaxAnisotropy);
m_dev->SetSamplerState(4, D3DSAMP_MAXMIPLEVEL, ss->MaxLOD);
}
}
void GSDevice9::OMSetDepthStencilState(Direct3DDepthStencilState9* dss)
{
if(m_state.dss != dss)
{
m_state.dss = dss;
m_dev->SetRenderState(D3DRS_ZENABLE, dss->DepthEnable);
m_dev->SetRenderState(D3DRS_ZWRITEENABLE, dss->DepthWriteMask);
if(dss->DepthEnable)
{
m_dev->SetRenderState(D3DRS_ZFUNC, dss->DepthFunc);
}
m_dev->SetRenderState(D3DRS_STENCILENABLE, dss->StencilEnable);
if(dss->StencilEnable)
{
m_dev->SetRenderState(D3DRS_STENCILMASK, dss->StencilReadMask);
m_dev->SetRenderState(D3DRS_STENCILWRITEMASK, dss->StencilWriteMask);
m_dev->SetRenderState(D3DRS_STENCILFUNC, dss->StencilFunc);
m_dev->SetRenderState(D3DRS_STENCILPASS, dss->StencilPassOp);
m_dev->SetRenderState(D3DRS_STENCILFAIL, dss->StencilFailOp);
m_dev->SetRenderState(D3DRS_STENCILZFAIL, dss->StencilDepthFailOp);
m_dev->SetRenderState(D3DRS_STENCILREF, dss->StencilRef);
}
}
}
void GSDevice9::OMSetBlendState(Direct3DBlendState9* bs, uint32 bf)
{
if(m_state.bs != bs || m_state.bf != bf)
{
m_state.bs = bs;
m_state.bf = bf;
m_dev->SetRenderState(D3DRS_ALPHABLENDENABLE, bs->BlendEnable);
if(bs->BlendEnable)
{
m_dev->SetRenderState(D3DRS_BLENDOP, bs->BlendOp);
m_dev->SetRenderState(D3DRS_SRCBLEND, bs->SrcBlend);
m_dev->SetRenderState(D3DRS_DESTBLEND, bs->DestBlend);
m_dev->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
m_dev->SetRenderState(D3DRS_BLENDOPALPHA, bs->BlendOpAlpha);
m_dev->SetRenderState(D3DRS_SRCBLENDALPHA, bs->SrcBlendAlpha);
m_dev->SetRenderState(D3DRS_DESTBLENDALPHA, bs->DestBlendAlpha);
m_dev->SetRenderState(D3DRS_BLENDFACTOR, bf);
}
m_dev->SetRenderState(D3DRS_COLORWRITEENABLE, bs->RenderTargetWriteMask);
}
}
void GSDevice9::OMSetRenderTargets(GSTexture* rt, GSTexture* ds, const GSVector4i* scissor)
{
IDirect3DSurface9* rtv = NULL;
IDirect3DSurface9* dsv = NULL;
if(rt) rtv = *(GSTexture9*)rt;
if(ds) dsv = *(GSTexture9*)ds;
if(m_state.rtv != rtv)
{
m_state.rtv = rtv;
m_dev->SetRenderTarget(0, rtv);
}
if(m_state.dsv != dsv)
{
m_state.dsv = dsv;
m_dev->SetDepthStencilSurface(dsv);
}
GSVector4i r = scissor ? *scissor : GSVector4i(rt->GetSize()).zwxy();
if(!m_state.scissor.eq(r))
{
m_state.scissor = r;
m_dev->SetScissorRect(r);
}
}
void GSDevice9::CompileShader(const char *source, size_t size, const char *filename, const string& entry, const D3D_SHADER_MACRO* macro, IDirect3DVertexShader9** vs, const D3DVERTEXELEMENT9* layout, int count, IDirect3DVertexDeclaration9** il)
{
vector<D3D_SHADER_MACRO> m;
PrepareShaderMacro(m, macro);
HRESULT hr;
CComPtr<ID3DBlob> shader, error;
hr = s_pD3DCompile(source, size, nullptr, &m[0], nullptr, entry.c_str(), m_shader.vs.c_str(), 0, 0, &shader, &error);
if(SUCCEEDED(hr))
{
hr = m_dev->CreateVertexShader((DWORD*)shader->GetBufferPointer(), vs);
}
else if(error)
{
printf("%s\n", (const char*)error->GetBufferPointer());
}
ASSERT(SUCCEEDED(hr));
if(FAILED(hr))
{
throw GSDXRecoverableError();
}
hr = m_dev->CreateVertexDeclaration(layout, il);
if(FAILED(hr))
{
throw GSDXRecoverableError();
}
}
void GSDevice9::CompileShader(const char *source, size_t size, const char *filename, const string& entry, const D3D_SHADER_MACRO* macro, IDirect3DPixelShader9** ps)
{
uint32 flags = 0;
if(m_shader.level >= D3D_FEATURE_LEVEL_9_3)
{
flags |= D3DCOMPILE_AVOID_FLOW_CONTROL;
}
else
{
flags |= D3DCOMPILE_SKIP_VALIDATION;
}
vector<D3D_SHADER_MACRO> m;
PrepareShaderMacro(m, macro);
HRESULT hr;
CComPtr<ID3DBlob> shader, error;
hr = s_pD3DCompile(source, size, filename, &m[0], nullptr, entry.c_str(), m_shader.ps.c_str(), flags, 0, &shader, &error);
if(SUCCEEDED(hr))
{
hr = m_dev->CreatePixelShader((DWORD*)shader->GetBufferPointer(), ps);
}
else if(error)
{
printf("%s\n", (const char*)error->GetBufferPointer());
}
ASSERT(SUCCEEDED(hr));
if(FAILED(hr))
{
throw GSDXRecoverableError();
}
}