pcsx2/pcsx2/VUmicro.h

289 lines
8.8 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "VU.h"
#include "VUops.h"
#include "R5900.h"
static const uint VU0_MEMSIZE = 0x1000; // 4kb
static const uint VU0_PROGSIZE = 0x1000; // 4kb
static const uint VU1_MEMSIZE = 0x4000; // 16kb
static const uint VU1_PROGSIZE = 0x4000; // 16kb
static const uint VU0_MEMMASK = VU0_MEMSIZE-1;
static const uint VU0_PROGMASK = VU0_PROGSIZE-1;
static const uint VU1_MEMMASK = VU1_MEMSIZE-1;
static const uint VU1_PROGMASK = VU1_PROGSIZE-1;
#define vu1RunCycles (3000000) // mVU1 uses this for inf loop detection on dev builds
// --------------------------------------------------------------------------------------
// BaseCpuProvider
// --------------------------------------------------------------------------------------
//
// Design Note: This class is only partial C++ style. It still relies on Alloc and Shutdown
// calls for memory and resource management. This is because the underlying implementations
// of our CPU emulators don't have properly encapsulated objects yet -- if we allocate ram
// in a constructor, it won't get free'd if an exception occurs during object construction.
// Once we've resolved all the 'dangling pointers' and stuff in the recompilers, Alloc
// and Shutdown can be removed in favor of constructor/destructor syntax.
//
class BaseCpuProvider
{
protected:
// allocation counter for multiple calls to Reserve. Most implementations should utilize
// this variable for sake of robustness.
std::atomic<int> m_Reserved;
public:
// this boolean indicates to some generic logging facilities if the VU's registers
// are valid for logging or not. (see DisVU1Micro.cpp, etc) [kinda hacky, might
// be removed in the future]
bool IsInterpreter;
public:
BaseCpuProvider()
{
m_Reserved = 0;
IsInterpreter = false;
}
virtual ~BaseCpuProvider()
{
try {
if( m_Reserved != 0 )
Console.Warning( "Cleanup miscount detected on CPU provider. Count=%d", m_Reserved.load() );
}
DESTRUCTOR_CATCHALL
}
virtual const char* GetShortName() const=0;
virtual wxString GetLongName() const=0;
// returns the number of bytes committed to the working caches for this CPU
// provider (typically this refers to recompiled code caches, but could also refer
// to other optional growable allocations).
virtual size_t GetCommittedCache() const
{
return 0;
}
virtual void Reserve()=0;
virtual void Shutdown()=0;
virtual void Reset()=0;
virtual void SetStartPC(u32 startPC)=0;
virtual void Execute(u32 cycles)=0;
virtual void ExecuteBlock(bool startUp)=0;
virtual void Step()=0;
virtual void Clear(u32 Addr, u32 Size)=0;
// C++ Calling Conventions are unstable, and some compilers don't even allow us to take the
// address of C++ methods. We need to use a wrapper function to invoke the ExecuteBlock from
// recompiled code.
static void __fastcall ExecuteBlockJIT( BaseCpuProvider* cpu )
{
cpu->Execute(1024);
}
// Gets the current cache reserve allocated to this CPU (value returned in megabytes)
virtual uint GetCacheReserve() const=0;
// Specifies the maximum cache reserve amount for this CPU (value in megabytes).
// CPU providers are allowed to reset their reserves (recompiler resets, etc) if such is
// needed to conform to the new amount requested.
virtual void SetCacheReserve( uint reserveInMegs ) const=0;
};
// --------------------------------------------------------------------------------------
// BaseVUmicroCPU
// --------------------------------------------------------------------------------------
// Layer class for possible future implementation (currently is nothing more than a type-safe
// type define).
//
class BaseVUmicroCPU : public BaseCpuProvider {
public:
int m_Idx;
BaseVUmicroCPU() {
m_Idx = 0;
}
virtual ~BaseVUmicroCPU() = default;
// Called by the PS2 VM's event manager for every internal vertical sync (occurs at either
// 50hz (pal) or 59.94hz (NTSC).
//
// Exceptions:
// This method is not allowed to throw exceptions, since exceptions may not propagate
// safely from the context of recompiled code stackframes.
//
// Thread Affinity:
// Called from the EEcore thread. No locking is performed, so any necessary locks must
// be implemented by the CPU provider manually.
//
virtual void Vsync() noexcept { }
virtual void Step() {
// Ideally this would fall back on interpretation for executing single instructions
// for all CPU types, but due to VU complexities and large discrepancies between
// clamping in recs and ints, it's not really worth bothering with yet.
}
// Executes a Block based on EE delta time (see VUmicro.cpp)
virtual void ExecuteBlock(bool startUp=0);
static void __fastcall ExecuteBlockJIT(BaseVUmicroCPU* cpu);
// VU1 sometimes needs to break execution on XGkick Path1 transfers if
// there is another gif path 2/3 transfer already taking place.
// Use this method to resume execution of VU1.
virtual void ResumeXGkick() {}
};
// --------------------------------------------------------------------------------------
// InterpVU0 / InterpVU1
// --------------------------------------------------------------------------------------
class InterpVU0 : public BaseVUmicroCPU
{
public:
InterpVU0();
virtual ~InterpVU0() { Shutdown(); }
const char* GetShortName() const { return "intVU0"; }
wxString GetLongName() const { return L"VU0 Interpreter"; }
void Reserve() { }
void Shutdown() noexcept { }
void Reset();
void Step();
void SetStartPC(u32 startPC);
void Execute(u32 cycles);
void Clear(u32 addr, u32 size) {}
uint GetCacheReserve() const { return 0; }
void SetCacheReserve( uint reserveInMegs ) const {}
};
class InterpVU1 : public BaseVUmicroCPU
{
public:
InterpVU1();
virtual ~InterpVU1() { Shutdown(); }
const char* GetShortName() const { return "intVU1"; }
wxString GetLongName() const { return L"VU1 Interpreter"; }
void Reserve() { }
void Shutdown() noexcept;
void Reset();
void SetStartPC(u32 startPC);
void Step();
void Execute(u32 cycles);
void Clear(u32 addr, u32 size) {}
void ResumeXGkick() {}
uint GetCacheReserve() const { return 0; }
void SetCacheReserve( uint reserveInMegs ) const {}
};
// --------------------------------------------------------------------------------------
// recMicroVU0 / recMicroVU1
// --------------------------------------------------------------------------------------
class recMicroVU0 : public BaseVUmicroCPU
{
public:
recMicroVU0();
virtual ~recMicroVU0() { Shutdown(); }
const char* GetShortName() const { return "mVU0"; }
wxString GetLongName() const { return L"microVU0 Recompiler"; }
void Reserve();
void Shutdown() noexcept;
void Reset();
void SetStartPC(u32 startPC);
void Execute(u32 cycles);
void Clear(u32 addr, u32 size);
void Vsync() noexcept;
uint GetCacheReserve() const;
void SetCacheReserve( uint reserveInMegs ) const;
};
class recMicroVU1 : public BaseVUmicroCPU
{
public:
recMicroVU1();
virtual ~recMicroVU1() { Shutdown(); }
const char* GetShortName() const { return "mVU1"; }
wxString GetLongName() const { return L"microVU1 Recompiler"; }
void Reserve();
void Shutdown() noexcept;
void Reset();
void SetStartPC(u32 startPC);
void Execute(u32 cycles);
void Clear(u32 addr, u32 size);
void Vsync() noexcept;
void ResumeXGkick();
uint GetCacheReserve() const;
void SetCacheReserve( uint reserveInMegs ) const;
};
extern BaseVUmicroCPU* CpuVU0;
extern BaseVUmicroCPU* CpuVU1;
// VU0
extern void vu0ResetRegs();
extern void __fastcall vu0ExecMicro(u32 addr);
extern void vu0Exec(VURegs* VU);
extern void _vu0FinishMicro();
extern void vu0Finish();
extern void iDumpVU0Registers();
// VU1
extern void vu1Finish(bool add_cycles);
extern void vu1ResetRegs();
extern void __fastcall vu1ExecMicro(u32 addr);
extern void vu1Exec(VURegs* VU);
extern void iDumpVU1Registers();
#ifdef VUM_LOG
#define IdebugUPPER(VU) \
VUM_LOG("(VU%d) %s", VU.IsVU1(), dis##VU##MicroUF(VU.code, VU.VI[REG_TPC].UL));
#define IdebugLOWER(VU) \
VUM_LOG("(VU%d) %s", VU.IsVU1(), dis##VU##MicroLF(VU.code, VU.VI[REG_TPC].UL));
#define _vuExecMicroDebug(VU) \
VUM_LOG("(VU%d) _vuExecMicro: %8.8x", VU.IsVU1(), VU.VI[REG_TPC].UL);
#else
#define IdebugUPPER(VU)
#define IdebugLOWER(VU)
#define _vuExecMicroDebug(VU)
#endif