pcsx2/plugins/zerogs/dx/targets.cpp

3730 lines
104 KiB
C++

/* ZeroGS
* Copyright (C) 2005-2006 zerofrog@gmail.com
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#if defined(_WIN32) || defined(__WIN32__)
#include <d3dx9.h>
#include <dxerr9.h>
#endif
#include <stdio.h>
#include <malloc.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <tchar.h>
#include "GS.h"
#include "Mem.h"
#include "x86.h"
#include "Regs.h"
#include "zerogs.h"
#include "resource.h"
#include "targets.h"
const float g_filog32 = 0.999f / (32.0f * logf(2.0f));
extern int g_GameSettings;
using namespace ZeroGS;
extern int g_TransferredToGPU;
extern BOOL g_bIsLost;
extern LPD3DTEX ptexConv16to32;
#ifdef RELEASE_TO_PUBLIC
#define INC_RESOLVE()
#else
#define INC_RESOLVE() ++g_nResolve
extern u32 g_nResolve;
extern BOOL g_bSaveTrans;
#endif
namespace ZeroGS {
CRenderTargetMngr s_RTs, s_DepthRTs;
CBitwiseTextureMngr s_BitwiseTextures;
CMemoryTargetMngr g_MemTargs;
extern BYTE s_AAx, s_AAy;
extern BYTE bIndepWriteMasks;
extern BOOL s_bBeginScene;
extern D3DFORMAT g_RenderFormat;
extern DXVEC4 g_vdepth;
extern int icurctx;
extern LPD3DVS pvsBitBlt;
extern LPD3DPS ppsBitBlt[2], ppsBitBltDepth[2], ppsBitBltDepthTex[2], ppsOne;
extern LPD3DPS ppsBaseTexture, ppsConvert16to32, ppsConvert32to16;
extern LPD3DVB pvbRect;
}
extern LPD3DTEX s_ptexCurSet[2];
extern LPD3DTEX ptexBilinearBlocks;
extern IDirect3DVolumeTexture9* ptexConv32to16;
BOOL g_bSaveZUpdate = 0;
////////////////////
// Render Targets //
////////////////////
ZeroGS::CRenderTarget::CRenderTarget() : psurf(NULL), psys(NULL), ptex(NULL), ptexFeedback(NULL), psurfFeedback(NULL)
{
nUpdateTarg = 0;
targoffx = targoffy = 0;
}
ZeroGS::CRenderTarget::~CRenderTarget()
{
Destroy();
}
CRenderTarget::CRenderTarget(const frameInfo& frame, CRenderTarget& r)
{
lastused = timeGetTime();
fbp = frame.fbp;
fbw = frame.fbw;
fbh = frame.fbh;
psm = (u8)frame.psm;
fbm = frame.fbm;
// find the xy offset
int blockheight = (frame.psm&2) ? 64 : 32;
int scanlinewidth = 0x2000*(fbw>>6);
// round down to nearest block and scanline
int startheight = ((256*(fbp-r.fbp))/scanlinewidth) * blockheight;
int offset = ((256*(fbp-r.fbp))%scanlinewidth) / 0x2000;
targoffx = offset*64;
targoffy = startheight;
targheight = r.targheight;
pmimicparent = &r;
vposxy.x = 2.0f * (32767.0f / 8.0f) / (float)fbw;
vposxy.y = -2.0f * (32767.0f / 8.0f) / (float)targheight;
vposxy.z = -1+(2.0f*(float)targoffx-0.5f)/fbw;
vposxy.w = 1+(-2.0f*(float)targoffy+0.5f)/(float)targheight;
status = 0;
GetRectMemAddress(start, end, psm, 0, 0, fbw, fbh, fbp, fbw);
ptex = r.ptex;
if( ptex != NULL ) ptex->AddRef();
psurf = r.psurf;
if( psurf != NULL ) psurf->AddRef();
psys = r.psys;
if( psys != NULL ) psys->AddRef();
nUpdateTarg = 0;
ptexFeedback = NULL;
psurfFeedback = NULL;
}
BOOL ZeroGS::CRenderTarget::Create(const frameInfo& frame)
{
Resolve();
Destroy();
lastused = timeGetTime();
fbp = frame.fbp;
fbw = frame.fbw;
fbh = frame.fbh;
psm = (u8)frame.psm;
fbm = frame.fbm;
pmimicparent = NULL;
vposxy.x = 2.0f * (32767.0f / 8.0f) / (float)fbw;
vposxy.y = -2.0f * (32767.0f / 8.0f) / (float)fbh;
vposxy.z = -1+((float)targoffx-0.5f)/fbw;
vposxy.w = 1+((float)targoffy+0.5f)/fbh;
status = 0;
if( fbw > 0 && fbh > 0 ) {
GetRectMemAddress(start, end, psm, 0, 0, fbw, fbh, fbp, fbw);
HRESULT hr;
V(pd3dDevice->CreateTexture(fbw<<s_AAx, fbh<<s_AAy, 1, D3DUSAGE_RENDERTARGET, g_RenderFormat, D3DPOOL_DEFAULT, &ptex, NULL));
if( SUCCEEDED(hr) ) {
V(pd3dDevice->CreateOffscreenPlainSurface(fbw<<s_AAx, fbh<<s_AAy, g_RenderFormat, D3DPOOL_SYSTEMMEM, &psys, NULL));
}
if( SUCCEEDED(hr) ) {
V(ptex->GetSurfaceLevel(0, &psurf));
}
if( FAILED(hr) ) {
Destroy();
return FALSE;
}
targheight = fbh;
status = TS_NeedUpdate;
}
else {
start = end = 0;
}
return TRUE;
}
void ZeroGS::CRenderTarget::Destroy()
{
SAFE_RELEASE(psurf);
SAFE_RELEASE(psys);
SAFE_RELEASE(ptex);
SAFE_RELEASE(ptexFeedback);
SAFE_RELEASE(psurfFeedback);
}
void ZeroGS::CRenderTarget::SetTarget(int fbplocal, const Rect2& scissor, int context)
{
int dy = 0;
if( fbplocal != fbp ) {
DXVEC4 v;
// will be rendering to a subregion
u32 bpp = (psm&2) ? 2 : 4;
assert( ((256/bpp)*(fbplocal-fbp)) % fbw == 0 );
assert( fbplocal >= fbp );
dy = ((256/bpp)*(fbplocal-fbp)) / fbw;
v.x = vposxy.x;
v.y = vposxy.y;
v.z = vposxy.z;
v.w = vposxy.w - dy*2.0f/(float)fbh;
SETCONSTF(GPU_POSXY0+context, v);
}
else
SETCONSTF(GPU_POSXY0+context, vposxy);
RECT rc;
// set render states
rc.left = scissor.x0>>3;
rc.top = (scissor.y0>>3) + dy;
rc.right = (scissor.x1>>3)+1;
rc.bottom = (scissor.y1>>3)+1+dy;
rc.right = min(rc.right, fbw);
rc.bottom = min(rc.bottom, fbh);
rc.left += targoffx; rc.right += targoffx;
rc.top += targoffy; rc.bottom += targoffy;
rc.left <<= s_AAx;
rc.top <<= s_AAy;
rc.right <<= s_AAx;
rc.bottom <<= s_AAy;
// rc.right--;
// rc.bottom--;
scissorrect = rc;
}
void ZeroGS::CRenderTarget::SetViewport()
{
D3DVIEWPORT9 view;
view.Width = fbw<<s_AAx;
view.Height = targheight<<s_AAy;
view.X = 0;
view.Y = 0;
view.MinZ = 0;
view.MaxZ = 1.0f;
pd3dDevice->SetViewport(&view);
}
static int g_bSaveResolved = 0;
extern int s_nResolved;
void ZeroGS::CRenderTarget::Resolve()
{
if( psurf != NULL && !(status&TS_Resolved) && !(status&TS_NeedUpdate) ) {
// flush if necessary
if( vb[0].prndr == this || vb[0].pdepth == this ) Flush(0);
if( vb[1].prndr == this || vb[1].pdepth == this ) Flush(1);
if( (IsDepth() && !ZeroGS::IsWriteDepth()) || s_nResolved > 10 || (g_GameSettings&GAME_NOTARGETRESOLVE) || targoffx != 0 || targoffy != 0) {
// don't resolve if depths aren't used
status = TS_Resolved;
return;
}
D3DLOCKED_RECT locksrc;
pd3dDevice->GetRenderTargetData(psurf, psys);
#if !defined(RELEASE_TO_PUBLIC) && defined(_DEBUG)
if( g_bSaveResolved ) {
D3DXSaveSurfaceToFile("resolved.tga", D3DXIFF_TGA, psys, NULL, NULL);
g_bSaveResolved = 0;
}
#endif
psys->LockRect(&locksrc, NULL, D3DLOCK_READONLY);
_Resolve(locksrc, fbp, fbw, fbh, psm, fbm);
psys->UnlockRect();
status = TS_Resolved;
}
}
void ZeroGS::CRenderTarget::Resolve(int startrange, int endrange)
{
assert( startrange < end && endrange > start ); // make sure it at least intersects
if( psurf != NULL && !(status&TS_Resolved) && !(status&TS_NeedUpdate) ) {
// flush if necessary
if( vb[0].prndr == this || vb[0].pdepth == this ) Flush(0);
if( vb[1].prndr == this || vb[1].pdepth == this ) Flush(1);
#if !defined(RELEASE_TO_PUBLIC) && defined(_DEBUG)
if( g_bSaveResolved ) {
D3DXSaveSurfaceToFile("resolved.tga", D3DXIFF_TGA, psys, NULL, NULL);
g_bSaveResolved = 0;
}
#endif
if((g_GameSettings&GAME_NOTARGETRESOLVE) || targoffx != 0 || targoffy != 0) {
status = TS_Resolved;
return;
}
int blockheight = (psm&2) ? 64 : 32;
int resolvefbp = fbp, resolveheight = fbh;
int scanlinewidth = 0x2000*(fbw>>6);
// in now way should data be overwritten!, instead resolve less
if( endrange < end ) {
// round down to nearest block and scanline
resolveheight = ((endrange-start)/(0x2000*(fbw>>6))) * blockheight;
if( resolveheight <= 32 ) {
status = TS_Resolved;
return;
}
}
else if( startrange > start ) {
// round up to nearest block and scanline
resolvefbp = startrange + scanlinewidth - 1;
resolvefbp -= resolvefbp % scanlinewidth;
resolveheight = fbh-((resolvefbp-fbp)*blockheight/scanlinewidth);
if( resolveheight <= 64 ) { // this is a total hack, but kh doesn't resolve now
status = TS_Resolved;
return;
}
resolvefbp >>= 8;
}
D3DLOCKED_RECT locksrc;
pd3dDevice->GetRenderTargetData(psurf, psys);
psys->LockRect(&locksrc, NULL, D3DLOCK_READONLY);
if( fbp != resolvefbp )
locksrc.pBits = (u8*)locksrc.pBits + ((resolvefbp-fbp)*256/scanlinewidth)*blockheight*locksrc.Pitch;
_Resolve(locksrc, resolvefbp, fbw, resolveheight, psm, fbm);
psys->UnlockRect();
status = TS_Resolved;
}
}
void ZeroGS::CRenderTarget::Update(int context, ZeroGS::CRenderTarget* pdepth)
{
if( !s_bBeginScene ) {
pd3dDevice->BeginScene();
s_bBeginScene = TRUE;
}
assert( targoffx == 0 && targoffy == 0 );
SETRS(D3DRS_SCISSORTESTENABLE, FALSE);
SETRS(D3DRS_ALPHABLENDENABLE, FALSE);
SETRS(D3DRS_ALPHATESTENABLE, FALSE);
SETRS(D3DRS_ZENABLE, FALSE);
SETRS(D3DRS_ZWRITEENABLE, FALSE);
SETRS(D3DRS_COLORWRITEENABLE, 0xf);
pd3dDevice->SetVertexShader(pvsBitBlt);
pd3dDevice->SetStreamSource(0, pvbRect, 0, sizeof(VertexGPU));
// assume depth already set
//pd3dDevice->SetDepthStencilSurface(psurfDepth);
// if( conf.mrtdepth && bIndepWriteMasks ) SETRS(D3DRS_COLORWRITEENABLE1, 0);
// else
pd3dDevice->SetRenderTarget(1, NULL);
pd3dDevice->SetRenderTarget(0, psurf);
DXVEC4 v = DXVEC4(1,1,-0.5f/(float)(fbw<<s_AAx),0.5f/(float)(targheight<<s_AAy));
SETCONSTF(GPU_BITBLTPOS, v);
CRenderTargetMngr::MAPTARGETS::iterator ittarg;
if( nUpdateTarg ) {
ittarg = s_RTs.mapTargets.find(nUpdateTarg);
if( ittarg == s_RTs.mapTargets.end() ) {
ittarg = s_DepthRTs.mapTargets.find(nUpdateTarg);
if( ittarg == s_DepthRTs.mapTargets.end() )
nUpdateTarg = 0;
else if( ittarg->second == this ) {
DEBUG_LOG("zerogs: updating self");
nUpdateTarg = 0;
}
}
else if( ittarg->second == this ) {
DEBUG_LOG("zerogs: updating self");
nUpdateTarg = 0;
}
}
if( nUpdateTarg ) {
pd3dDevice->SetTexture(SAMP_FINAL, ittarg->second->ptex);
//assert( ittarg->second->fbw == fbw );
int offset = (fbp-ittarg->second->fbp)*64/fbw;
if( psm & 2 ) // 16 bit
offset *= 2;
v.x = 1;
v.y = (float)targheight / ittarg->second->fbh;
v.z = 0.25f / (fbw << s_AAx);
v.w = (float)offset / ittarg->second->fbh + 0.25f / (ittarg->second->fbh << s_AAy);
SETCONSTF(GPU_BITBLTTEX, v);
v.x = v.y = v.z = v.w = 1;
SETCONSTF(GPU_ONECOLOR, v);
pd3dDevice->SetPixelShader(ppsBaseTexture);
nUpdateTarg = 0;
}
else {
// align the rect to the nearest page
// note that fbp is always aligned on page boundaries
tex0Info texframe;
texframe.tbp0 = fbp;
texframe.tbw = fbw;
texframe.tw = fbw;
texframe.th = fbh;
texframe.psm = psm;
CMemoryTarget* pmemtarg = g_MemTargs.GetMemoryTarget(texframe, 1);
// write color and zero out stencil buf, always 0 context!
// force bilinear if using AA
SetTexVariablesInt(0, (s_AAx || s_AAy)?2:0, texframe, pmemtarg, 1);
v = DXVEC4(1,1,0,0);
SETCONSTF(GPU_BITBLTTEX, v);
v.x = 1;
v.y = 2;
SETCONSTF(GPU_ONECOLOR, v);
assert( psurf != NULL );
SetViewport();
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_SOLID);
if( ZeroGS::IsWriteDestAlphaTest() ) {
SETRS(D3DRS_STENCILENABLE, TRUE);
SETRS(D3DRS_STENCILWRITEMASK, 0xff);
SETRS(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
SETRS(D3DRS_STENCILPASS, D3DSTENCILOP_ZERO);
}
// render with an AA shader if possible (bilinearly interpolates data)
pd3dDevice->SetPixelShader(ppsBitBlt[s_AAx]);
}
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
// fill stencil buf only
if( ZeroGS::IsWriteDestAlphaTest() && !(g_GameSettings&GAME_NOSTENCIL) ) {
SETRS(D3DRS_COLORWRITEENABLE, 0);
SETRS(D3DRS_ALPHATESTENABLE, TRUE);
SETRS(D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL);
SETRS(D3DRS_ALPHAREF, 0xff);
SETRS(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);
SETRS(D3DRS_STENCILREF, 1);
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
SETRS(D3DRS_COLORWRITEENABLE, 0xf);
}
SETRS(D3DRS_SCISSORTESTENABLE, TRUE);
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
// if( conf.mrtdepth && bIndepWriteMasks ) SETRS(D3DRS_COLORWRITEENABLE1, 0xf);
// else
if( conf.mrtdepth && pdepth != NULL && ZeroGS::IsWriteDepth() )
pd3dDevice->SetRenderTarget(1, pdepth->psurf);
status = TS_Resolved;
// reset since settings changed
vb[0].bVarsTexSync = 0;
ZeroGS::ResetAlphaVariables();
}
void ZeroGS::CRenderTarget::ConvertTo32()
{
LPD3DTEX ptexConv;
LPD3DSURF psurfConv;
s_RTs.DestroyChildren(this);
// create
HRESULT hr;
V(pd3dDevice->CreateTexture(fbw<<s_AAx, (fbh<<s_AAy)/2, 1, D3DUSAGE_RENDERTARGET, g_RenderFormat, D3DPOOL_DEFAULT, &ptexConv, NULL));
if( FAILED(hr) ) {
DEBUG_LOG("Failed to create feedback\n");
return;
}
V(ptexConv->GetSurfaceLevel(0, &psurfConv));
if( !s_bBeginScene ) {
pd3dDevice->BeginScene();
s_bBeginScene = TRUE;
}
SETRS(D3DRS_SCISSORTESTENABLE, FALSE);
SETRS(D3DRS_ALPHABLENDENABLE, FALSE);
SETRS(D3DRS_ALPHATESTENABLE, FALSE);
SETRS(D3DRS_ZENABLE, FALSE);
SETRS(D3DRS_ZWRITEENABLE, FALSE);
SETRS(D3DRS_STENCILENABLE, FALSE);
SETRS(D3DRS_COLORWRITEENABLE, 0xf);
// tex coords, test ffx bikanel island when changing these
float dx = 0.5f / (fbw << s_AAx);
float dy = 0.5f / (fbh << s_AAy);
DXVEC4 v = DXVEC4(1, 1, -dx, dy);
SETCONSTF(GPU_BITBLTPOS, v);
v.z = 0.5f*dx;
v.w = 0.5f*dy;
SETCONSTF(GPU_BITBLTTEX, v);
v.x = v.y = v.z = 1;
v.w = 1; // since all alpha is mult by 2
SETCONSTF(GPU_ONECOLOR, v);
v.x = 16.0f / (float)fbw;
v.y = 64.0f / (float)fbh;
v.z = 0.5f * v.x;
v.w = 0.5f * v.y;
SETCONSTF(GPU_TEXOFFSET0, v);
v.x = 8.0f / (float)fbw;
v.y = 0;
v.z = 0;
v.w = 0.25f;
SETCONSTF(GPU_PAGEOFFSET0, v);
v.x = 1;
v.y = -0.5f;
v.z = 0;
v.w = 0.0001f;
SETCONSTF(GPU_TEXDIMS0, v);
v.x = 0;
SETCONSTF(GPU_TEXBLOCK0, v);
pd3dDevice->SetVertexShader(pvsBitBlt);
pd3dDevice->SetStreamSource(0, pvbRect, 0, sizeof(VertexGPU));
// assume depth already set !?
pd3dDevice->SetRenderTarget(1, NULL);
pd3dDevice->SetRenderTarget(0, psurfConv);
pd3dDevice->SetTexture(SAMP_BILINEARBLOCKS, ptexConv32to16);
pd3dDevice->SetTexture(SAMP_FINAL, ptex);
pd3dDevice->SetSamplerState(SAMP_BILINEARBLOCKS, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
pd3dDevice->SetSamplerState(SAMP_BILINEARBLOCKS, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
pd3dDevice->SetSamplerState(SAMP_FINAL, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
pd3dDevice->SetSamplerState(SAMP_FINAL, D3DSAMP_MINFILTER, D3DTEXF_POINT);
if( s_ptexCurSet[0] == ptex ) {
s_ptexCurSet[0] = NULL;
pd3dDevice->SetTexture(SAMP_MEMORY0, NULL);
}
if( s_ptexCurSet[1] == ptex ) {
s_ptexCurSet[1] = NULL;
pd3dDevice->SetTexture(SAMP_MEMORY1, NULL);
}
fbh /= 2; // have 16 bit surfaces are usually 2x higher
targheight /= 2;
SetViewport();
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_SOLID);
// render with an AA shader if possible (bilinearly interpolates data)
pd3dDevice->SetPixelShader(ppsConvert16to32);
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
#ifdef _DEBUG
//g_bSaveZUpdate = 1;
//D3DXSaveSurfaceToFile("tex3.tga", D3DXIFF_TGA, psurfConv, NULL, NULL);
if( g_bSaveZUpdate ) {
// buggy
D3DXSaveSurfaceToFile("tex3.tga", D3DXIFF_TGA, psurfConv, NULL, NULL);
D3DXSaveSurfaceToFile("tex1.tga", D3DXIFF_TGA, psurf, NULL, NULL);
//LPD3DTEX ptemp;
//pd3dDevice->CreateTexture(fbw, fbh, 1, 0, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, &ptemp, NULL);
LPD3DSURF ptempsys;
V(pd3dDevice->CreateOffscreenPlainSurface(fbw<<s_AAx, fbh<<s_AAy, g_RenderFormat, D3DPOOL_SYSTEMMEM, &ptempsys, NULL));
D3DLOCKED_RECT srclock, dstlock;
pd3dDevice->GetRenderTargetData(psurf, psys);
psys->LockRect(&srclock, NULL, D3DLOCK_READONLY);
ptempsys->LockRect(&dstlock, NULL, 0);
DWORD cols[2];
float tempf[4];
for(int i = 0; i < fbh; ++i) {
for(int j = 0; j < fbw; ++j) {
D3DXVECTOR4_16F* pdst = (D3DXVECTOR4_16F*)dstlock.pBits + fbw*i + j;
int jj = 2*j - (j%16);
if( (j%16) >=8 ) jj += 8;
int ii = 2*i - (i%8);
if( j >= fbw/2 ) { ii += 8; jj -= fbw; }
D3DXVECTOR4_16F* psrc = (D3DXVECTOR4_16F*)srclock.pBits + fbw*ii + jj;
//D3DXFloat16To32Array(out, (D3DXFLOAT16*)psrc, 4);
cols[0] = Float16ToARGB(psrc[0]);
cols[1] = Float16ToARGB(psrc[8]);
//cols[0] = (cols[0]&0xff00ff00)|((cols[0]&0xff)<<16)|((cols[0]&0xff0000)>>16);
//cols[1] = (cols[1]&0xff00ff00)|((cols[1]&0xff)<<16)|((cols[1]&0xff0000)>>16);
DWORD col = RGBA32to16(cols[0])|(RGBA32to16(cols[1])<<16);
tempf[2] = (col&0xff)/255.0f;
tempf[1] = ((col>>8)&0xff)/255.0f;
tempf[0] = ((col>>16)&0xff)/255.0f;
tempf[3] = 2*(((col>>24)&0xff)/255.0f);
D3DXFloat32To16Array((D3DXFLOAT16*)pdst, tempf, 4);
}
}
psys->UnlockRect();
ptempsys->UnlockRect();
D3DXSaveSurfaceToFile("tex2.tga", D3DXIFF_TGA, ptempsys, NULL, NULL);
// SAFE_RELEASE(psys);
// psys = ptempsys;
//
// pd3dDevice->UpdateSurface(ptempsys, NULL, psurfConv, NULL);
}
#endif
vposxy.y = -2.0f * (32767.0f / 8.0f) / (float)fbh;
vposxy.w = 1+0.5f/fbh;
// restore
SAFE_RELEASE(ptex);
SAFE_RELEASE(psurf);
SAFE_RELEASE(psys);
SAFE_RELEASE(ptexFeedback);
SAFE_RELEASE(psurfFeedback);
ptex = ptexConv;
psurf = psurfConv;
V(pd3dDevice->CreateOffscreenPlainSurface(fbw<<s_AAx, fbh<<s_AAy, g_RenderFormat, D3DPOOL_SYSTEMMEM, &psys, NULL));
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
pd3dDevice->SetTexture(SAMP_FINAL, NULL);
pd3dDevice->SetTexture(SAMP_BILINEARBLOCKS, ptexBilinearBlocks); // restore
pd3dDevice->SetSamplerState(SAMP_BILINEARBLOCKS, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
pd3dDevice->SetSamplerState(SAMP_BILINEARBLOCKS, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
pd3dDevice->SetSamplerState(SAMP_FINAL, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
pd3dDevice->SetSamplerState(SAMP_FINAL, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
SETRS(D3DRS_SCISSORTESTENABLE, TRUE);
status = TS_Resolved;
// TODO, reset depth?
if( ZeroGS::icurctx >= 0 ) {
// reset since settings changed
vb[icurctx].bVarsTexSync = 0;
vb[icurctx].bVarsSetTarg = 0;
}
vb[0].bVarsTexSync = 0;
}
// use when texture is not tiled and converting from 32bit to 16bit
// one condition is that the converted texture has to keep the same block configuration
// every 16 32bit horz pixels gets converted to 16x2 16bit horz pixels.
// the first row is the first 8 pixels, the second row is the last 8 pixels
// the last 8 columns are the upper bits
void ZeroGS::CRenderTarget::ConvertTo16()
{
LPD3DTEX ptexConv;
LPD3DSURF psurfConv;
s_RTs.DestroyChildren(this);
// create
HRESULT hr;
V(pd3dDevice->CreateTexture(fbw<<s_AAx, (fbh<<s_AAy)*2, 1, D3DUSAGE_RENDERTARGET, g_RenderFormat, D3DPOOL_DEFAULT, &ptexConv, NULL));
if( FAILED(hr) ) {
DEBUG_LOG("Failed to create feedback\n");
return;
}
V(ptexConv->GetSurfaceLevel(0, &psurfConv));
if( !s_bBeginScene ) {
pd3dDevice->BeginScene();
s_bBeginScene = TRUE;
}
SETRS(D3DRS_SCISSORTESTENABLE, FALSE);
SETRS(D3DRS_ALPHABLENDENABLE, FALSE);
SETRS(D3DRS_ALPHATESTENABLE, FALSE);
SETRS(D3DRS_ZENABLE, FALSE);
SETRS(D3DRS_ZWRITEENABLE, FALSE);
SETRS(D3DRS_STENCILENABLE, FALSE);
SETRS(D3DRS_COLORWRITEENABLE, 0xf);
// tex coords, test ffx bikanel island when changing these
float dx = 0.5f / (fbw << s_AAx);
float dy = 0.5f / (fbh << s_AAy);
DXVEC4 v = DXVEC4(1, 1, -dx, dy);
SETCONSTF(GPU_BITBLTPOS, v);
v.z = 0.5f*dx;
v.w = 0.5f*dy;
SETCONSTF(GPU_BITBLTTEX, v);
v.x = v.y = v.z = 1;
v.w = 2; // since all alpha is mult by 2
SETCONSTF(GPU_ONECOLOR, v);
v.x = 16.0f / (float)fbw;
v.y = 32.0f / (float)fbh;
v.z = 0.5f * v.x;
v.w = 0.5f * v.y;
SETCONSTF(GPU_TEXOFFSET0, v);
v.x = 256.0f / 255.0f;
v.y = 256.0f / 255.0f;
v.z = 0.05f / 256.0f;
v.w = -0.001f / 256.0f;
SETCONSTF(GPU_PAGEOFFSET0, v);
v.x = -0.5f;
v.y = 1;
v.z = 0;
v.w = -0.1f/fbh;
SETCONSTF(GPU_TEXDIMS0, v);
pd3dDevice->SetVertexShader(pvsBitBlt);
pd3dDevice->SetStreamSource(0, pvbRect, 0, sizeof(VertexGPU));
// assume depth already set !?
pd3dDevice->SetRenderTarget(1, NULL);
pd3dDevice->SetRenderTarget(0, psurfConv);
pd3dDevice->SetTexture(SAMP_BILINEARBLOCKS, ptexConv16to32);
pd3dDevice->SetTexture(SAMP_FINAL, ptex);
pd3dDevice->SetSamplerState(SAMP_BILINEARBLOCKS, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
pd3dDevice->SetSamplerState(SAMP_BILINEARBLOCKS, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
pd3dDevice->SetSamplerState(SAMP_FINAL, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
pd3dDevice->SetSamplerState(SAMP_FINAL, D3DSAMP_MINFILTER, D3DTEXF_POINT);
if( s_ptexCurSet[0] == ptex ) {
s_ptexCurSet[0] = NULL;
pd3dDevice->SetTexture(SAMP_MEMORY0, NULL);
}
if( s_ptexCurSet[1] == ptex ) {
s_ptexCurSet[1] = NULL;
pd3dDevice->SetTexture(SAMP_MEMORY1, NULL);
}
fbh *= 2; // have 16 bit surfaces are usually 2x higher
targheight *= 2;
// need to set a dummy target!
// CRenderTargetMngr::MAPTARGETS::iterator itdepth = s_DepthRTs.mapDummyTargs.find( (fbw<<16)|fbh );
// CDepthTarget* pnewdepth = NULL;
// if( itdepth == s_DepthRTs.mapDummyTargs.end() ) {
// frameInfo frame;
// frame.fbh = fbh;
// frame.fbw = fbw;
// frame.psm = 0x30; //?
// frame.fbw = fbw;
// frame.fbm = 0;
// pnewdepth = new CDepthTarget();
// pnewdepth->Create(frame);
// s_DepthRTs.mapDummyTargs[(fbw<<16)|fbh] = pnewdepth;
// }
// else pnewdepth = (CDepthTarget*)itdepth->second;
//
// assert( pnewdepth != NULL );
// pd3dDevice->SetDepthStencilSurface(pnewdepth->pdepth);
SetViewport();
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_SOLID);
// render with an AA shader if possible (bilinearly interpolates data)
pd3dDevice->SetPixelShader(ppsConvert32to16);
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
#ifdef _DEBUG
//g_bSaveZUpdate = 1;
if( g_bSaveZUpdate ) {
pd3dDevice->GetRenderTargetData(psurf, psys);
D3DXSaveSurfaceToFile("tex1.tga", D3DXIFF_TGA, psurfConv, NULL, NULL);
LPD3DSURF ptempsys;
V(pd3dDevice->CreateOffscreenPlainSurface(fbw<<s_AAx, fbh<<s_AAy, g_RenderFormat, D3DPOOL_SYSTEMMEM, &ptempsys, NULL));
D3DLOCKED_RECT srclock, dstlock;
psys->LockRect(&srclock, NULL, D3DLOCK_READONLY);
ptempsys->LockRect(&dstlock, NULL, 0);
DWORD col;
float temp[4];
for(int i = 0; i < fbh; ++i) {
for(int j = 0; j < fbw; ++j) {
D3DXVECTOR4_16F* pdst = (D3DXVECTOR4_16F*)dstlock.pBits + fbw*i + j;
int jj = j;
int upper = 0;
if( (j%16) >=8 ) {
jj -= 8;
upper = 1;
}
int ii = (i - (i%64))/2 + (i%64);
if( (i%64) >= 32 ) {
ii -= 32;
jj += 8;
}
D3DXVECTOR4_16F* psrc = (D3DXVECTOR4_16F*)srclock.pBits + fbw*ii + jj;
//D3DXFloat16To32Array(out, (D3DXFLOAT16*)psrc, 4);
col = Float16ToARGB(psrc[0]);
if( upper ) col >>= 16;
else col &= 0xffff;
col = RGBA16to32(col);
temp[2] = (col&0xff)/255.0f;
temp[1] = ((col>>8)&0xff)/255.0f;
temp[0] = ((col>>16)&0xff)/255.0f;
temp[3] = 2*(((col>>24)&0xff)/255.0f);
D3DXFloat32To16Array((D3DXFLOAT16*)pdst, temp, 4);
}
}
psys->UnlockRect();
ptempsys->UnlockRect();
D3DXSaveSurfaceToFile("tex2.tga", D3DXIFF_TGA, ptempsys, NULL, NULL);
SAFE_RELEASE(psys);
psys = ptempsys;
pd3dDevice->UpdateSurface(ptempsys, NULL, psurfConv, NULL);
}
#endif
vposxy.y = -2.0f * (32767.0f / 8.0f) / (float)fbh;
vposxy.w = 1+0.5f/fbh;
// restore
SAFE_RELEASE(ptex);
SAFE_RELEASE(psurf);
SAFE_RELEASE(psys);
SAFE_RELEASE(ptexFeedback);
SAFE_RELEASE(psurfFeedback);
ptex = ptexConv;
psurf = psurfConv;
V(pd3dDevice->CreateOffscreenPlainSurface(fbw<<s_AAx, fbh<<s_AAy, g_RenderFormat, D3DPOOL_SYSTEMMEM, &psys, NULL));
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
pd3dDevice->SetTexture(SAMP_FINAL, NULL);
pd3dDevice->SetTexture(SAMP_BILINEARBLOCKS, ptexBilinearBlocks); // restore
pd3dDevice->SetSamplerState(SAMP_BILINEARBLOCKS, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
pd3dDevice->SetSamplerState(SAMP_BILINEARBLOCKS, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
pd3dDevice->SetSamplerState(SAMP_FINAL, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
pd3dDevice->SetSamplerState(SAMP_FINAL, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
SETRS(D3DRS_SCISSORTESTENABLE, TRUE);
status = TS_Resolved;
// TODO, reset depth?
if( ZeroGS::icurctx >= 0 ) {
// reset since settings changed
vb[icurctx].bVarsTexSync = 0;
vb[icurctx].bVarsSetTarg = 0;
}
vb[0].bVarsTexSync = 0;
}
void ZeroGS::CRenderTarget::_CreateFeedback()
{
if( ptexFeedback == NULL ) {
// create
assert( pmimicparent == NULL );
HRESULT hr;
V(pd3dDevice->CreateTexture(fbw<<s_AAx, fbh<<s_AAy, 1, D3DUSAGE_RENDERTARGET, g_RenderFormat, D3DPOOL_DEFAULT, &ptexFeedback, NULL));
if( FAILED(hr) ) {
DEBUG_LOG("Failed to create feedback\n");
return;
}
V(ptexFeedback->GetSurfaceLevel(0, &psurfFeedback));
}
if( !s_bBeginScene ) {
pd3dDevice->BeginScene();
s_bBeginScene = TRUE;
}
SETRS(D3DRS_SCISSORTESTENABLE, FALSE);
SETRS(D3DRS_ALPHABLENDENABLE, FALSE);
SETRS(D3DRS_ALPHATESTENABLE, FALSE);
SETRS(D3DRS_ZENABLE, FALSE);
SETRS(D3DRS_ZWRITEENABLE, FALSE);
SETRS(D3DRS_STENCILENABLE, FALSE);
SETRS(D3DRS_COLORWRITEENABLE, 0xf);
// assume depth already set
// if( conf.mrtdepth && bIndepWriteMasks ) SETRS(D3DRS_COLORWRITEENABLE1, 0);
// else
pd3dDevice->SetRenderTarget(1, NULL);
// tex coords, test ffx bikanel island when changing these
float dx = 0.5f / (fbw << s_AAx);
float dy = 0.5f / (fbh << s_AAy);
DXVEC4 v = DXVEC4(1, 1, -dx, dy);
SETCONSTF(GPU_BITBLTPOS, v);
v.z = 0.5f*dx;
v.w = 0.5f*dy;
SETCONSTF(GPU_BITBLTTEX, v);
v.x = v.y = v.z = 1;
v.w = 1; // since all alpha is mult by 2
SETCONSTF(GPU_ONECOLOR, v);
pd3dDevice->SetVertexShader(pvsBitBlt);
pd3dDevice->SetStreamSource(0, pvbRect, 0, sizeof(VertexGPU));
pd3dDevice->SetRenderTarget(0, psurfFeedback);
pd3dDevice->SetTexture(SAMP_FINAL, ptex);
if( s_ptexCurSet[0] == ptexFeedback ) {
s_ptexCurSet[0] = NULL;
pd3dDevice->SetTexture(SAMP_MEMORY0, NULL);
}
if( s_ptexCurSet[1] == ptexFeedback ) {
s_ptexCurSet[1] = NULL;
pd3dDevice->SetTexture(SAMP_MEMORY1, NULL);
}
SetViewport();
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_SOLID);
// render with an AA shader if possible (bilinearly interpolates data)
pd3dDevice->SetPixelShader(ppsBaseTexture);
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
// restore
swap(ptex, ptexFeedback);
swap(psurf, psurfFeedback);
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
pd3dDevice->SetTexture(SAMP_FINAL, NULL);
SETRS(D3DRS_SCISSORTESTENABLE, TRUE);
status |= TS_FeedbackReady;
// TODO, reset depth?
if( ZeroGS::icurctx >= 0 ) {
// reset since settings changed
vb[icurctx].bVarsTexSync = 0;
}
}
ZeroGS::CDepthTarget::CDepthTarget() : CRenderTarget(), pdepth(NULL) {}
ZeroGS::CDepthTarget::~CDepthTarget()
{
Destroy();
}
BOOL ZeroGS::CDepthTarget::Create(const frameInfo& frame)
{
if( !CRenderTarget::Create(frame) ) return FALSE;
if( psm == 0x31 ) fbm = 0xff000000;
else fbm = 0;
HRESULT hr;
V(pd3dDevice->CreateDepthStencilSurface(fbw<<s_AAx, fbh<<s_AAy, D3DFMT_D24S8, D3DMULTISAMPLE_NONE, 0, FALSE, &pdepth, NULL));
if( FAILED(hr) ) {
V(pd3dDevice->CreateDepthStencilSurface(fbw, fbh, D3DFMT_D24S8, D3DMULTISAMPLE_NONE, 0, FALSE, &pdepth, NULL));
}
if( FAILED(hr) )
return FALSE;
status = TS_NeedUpdate;
return TRUE;
}
void ZeroGS::CDepthTarget::Destroy()
{
if( pd3dDevice != NULL ) {
pd3dDevice->SetRenderTarget(1, NULL);
pd3dDevice->SetDepthStencilSurface(NULL);
vb[0].bVarsSetTarg = 0;
vb[1].bVarsSetTarg = 0;
}
CRenderTarget::Destroy();
SAFE_RELEASE(pdepth);
}
extern int g_nDepthUsed; // > 0 if depth is used
void ZeroGS::CDepthTarget::Resolve()
{
if( g_nDepthUsed > 0 && conf.mrtdepth && !(status&TS_Virtual) && ZeroGS::IsWriteDepth() && !(g_GameSettings&GAME_NODEPTHRESOLVE) )
CRenderTarget::Resolve();
else {
// flush if necessary
if( vb[0].prndr == this || vb[0].pdepth == this ) Flush(0);
if( vb[1].prndr == this || vb[1].pdepth == this ) Flush(1);
if( !(status & TS_Virtual) || targoffx != 0 || targoffy != 0 )
status |= TS_Resolved;
}
if( !(status&TS_Virtual) ) {
ZeroGS::SetWriteDepth();
}
}
void ZeroGS::CDepthTarget::Resolve(int startrange, int endrange)
{
if( g_nDepthUsed > 0 && conf.mrtdepth && !(status&TS_Virtual) && ZeroGS::IsWriteDepth() ) CRenderTarget::Resolve(startrange, endrange);
else {
// flush if necessary
if( vb[0].prndr == this || vb[0].pdepth == this ) Flush(0);
if( vb[1].prndr == this || vb[1].pdepth == this ) Flush(1);
if( !(status & TS_Virtual) )
status |= TS_Resolved;
}
if( !(status&TS_Virtual) ) {
ZeroGS::SetWriteDepth();
}
}
extern int g_nDepthUpdateCount;
void ZeroGS::CDepthTarget::Update(int context, ZeroGS::CRenderTarget* prndr)
{
assert( !(status & TS_Virtual) );
CRenderTarget* pusetarg = NULL;
if( nUpdateTarg ) {
CRenderTargetMngr::MAPTARGETS::iterator ittarg = s_DepthRTs.mapTargets.find(nUpdateTarg);
if( ittarg == s_DepthRTs.mapTargets.end() || ittarg->second == this) {
DEBUG_LOG("zerogs: updating self");
nUpdateTarg = 0;
}
else pusetarg = ittarg->second;
}
tex0Info texframe;
CMemoryTarget* pmemtarg = NULL;
if( pusetarg == NULL ) {
// align the rect to the nearest page
// note that fbp is always aligned on page boundaries
texframe.tbp0 = fbp;
texframe.tbw = fbw;
texframe.tw = fbw;
texframe.th = fbh;
texframe.psm = psm;
pmemtarg = g_MemTargs.GetMemoryTarget(texframe, 1);
}
if( !s_bBeginScene ) {
pd3dDevice->BeginScene();
s_bBeginScene = TRUE;
}
SETRS(D3DRS_SCISSORTESTENABLE, FALSE);
SETRS(D3DRS_ALPHABLENDENABLE, FALSE);
SETRS(D3DRS_ALPHATESTENABLE, FALSE);
SETRS(D3DRS_ZENABLE, TRUE);
SETRS(D3DRS_ZWRITEENABLE, TRUE);
SETRS(D3DRS_STENCILENABLE, FALSE);
SETRS(D3DRS_ZFUNC, D3DCMP_ALWAYS);
DXVEC4 v = DXVEC4(1,1,-0.5f/(float)(fbw<<s_AAx),0.5f/(float)(fbh<<s_AAy));
SETCONSTF(GPU_BITBLTPOS, v);
if( pusetarg != NULL ) {
pd3dDevice->SetTexture(SAMP_FINAL, pusetarg->ptex);
//assert( pusetarg->fbw == fbw );
int offset = (fbp-pusetarg->fbp)*64/fbw;
if( psm & 2 ) // 16 bit
offset *= 2;
v.x = 1;
v.y = (float)fbh / pusetarg->fbh;
v.z = 0.25f / (fbw << s_AAx);
v.w = (float)offset / pusetarg->fbh + 0.25f / (pusetarg->fbh << s_AAy);
SETCONSTF(GPU_BITBLTTEX, v);
}
else {
// write color and zero out stencil buf, always 0 context!
SetTexVariablesInt(0, 0, texframe, pmemtarg, 1);
DXVEC4 v = DXVEC4(1,1,0.5f/(float)fbw,0.5f/(float)fbh);
SETCONSTF(GPU_BITBLTTEX, v);
}
pd3dDevice->SetVertexShader(pvsBitBlt);
pd3dDevice->SetStreamSource(0, pvbRect, 0, sizeof(VertexGPU));
v.x = 1;
v.y = 2;
v.z = (psm&3)==2?1.0f:0.0f;
v.w = g_filog32;
SETCONSTF(GPU_ONECOLOR, v);
assert( psurf != NULL );
DXVEC4 vdepth = ((255.0f/256.0f)*g_vdepth);
if( psm == PSMT24Z ) vdepth.w = 0;
else if( psm != PSMT32Z ) { vdepth.z = vdepth.w = 0; }
SETCONSTF(GPU_BITBLTZ, ((255.0f/256.0f)*vdepth));
assert( pdepth != NULL );
if( ZeroGS::IsWriteDepth() && conf.mrtdepth && bIndepWriteMasks) {
// write in MRT1
pd3dDevice->SetRenderTarget(1, psurf);
pd3dDevice->SetRenderTarget(0, prndr->psurf);
SETRS(D3DRS_COLORWRITEENABLE, 0);
SETRS(D3DRS_COLORWRITEENABLE1, 0xf);
}
else {
// turn off writes?
if( bIndepWriteMasks ) {
pd3dDevice->SetRenderTarget(0, prndr->psurf);
SETRS(D3DRS_COLORWRITEENABLE, 0);
}
else pd3dDevice->SetRenderTarget(0, psurf);
}
SetViewport();
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_SOLID);
pd3dDevice->SetDepthStencilSurface(pdepth);
if( pusetarg != NULL ) {
pd3dDevice->SetPixelShader(ppsBitBltDepthTex[conf.mrtdepth]);
}
else {
pd3dDevice->SetPixelShader(ppsBitBltDepth[conf.mrtdepth]);
}
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
status = TS_Resolved;
if( conf.mrtdepth && bIndepWriteMasks ) {
SETRS(D3DRS_COLORWRITEENABLE, 0xf);
}
if( !ZeroGS::IsWriteDepth() ) {
pd3dDevice->SetRenderTarget(1, NULL);
}
if( conf.options & GSOPTION_WIREFRAME ) SETRS(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
SETRS(D3DRS_SCISSORTESTENABLE, TRUE);
#ifdef _DEBUG
if( g_bSaveZUpdate ) {
if( pusetarg != NULL )
D3DXSaveTextureToFile("tex.tga", D3DXIFF_TGA, pusetarg->ptex, NULL);
else
SaveTex(&texframe, 1);
D3DXSaveSurfaceToFile("frame1.tga", D3DXIFF_TGA, psurf, NULL, NULL);
}
//pd3dDevice->Clear(0, NULL, D3DCLEAR_ZBUFFER, 0, 0, 0);
#endif
}
void ZeroGS::CDepthTarget::SetDepthTarget()
{
pd3dDevice->SetDepthStencilSurface(pdepth);
if( conf.mrtdepth && ZeroGS::IsWriteDepth() )
pd3dDevice->SetRenderTarget(1, psurf);
}
void ZeroGS::CRenderTargetMngr::Destroy()
{
for(MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end(); ++it)
delete it->second;
mapTargets.clear();
for(MAPTARGETS::iterator it = mapDummyTargs.begin(); it != mapDummyTargs.end(); ++it)
delete it->second;
mapDummyTargs.clear();
}
CRenderTarget* ZeroGS::CRenderTargetMngr::GetTarg(const frameInfo& frame, DWORD opts, int maxposheight)
{
if( frame.fbw <= 0 || frame.fbh <= 0 )
return NULL;
u32 key = frame.fbp|(frame.fbw<<16);
MAPTARGETS::iterator it = mapTargets.find(key);
// only enforce height if frame.fbh <= 0x1c0
bool bfound = it != mapTargets.end();
if( bfound ) {
if( opts&TO_StrictHeight ) {
bfound = it->second->fbh == frame.fbh;
if( (g_GameSettings&GAME_PARTIALDEPTH) && !bfound ) {
MAPTARGETS::iterator itnew = mapTargets.find(key+1);
if( itnew != mapTargets.end() && itnew->second->fbh == frame.fbh ) {
// found! delete the previous and restore
delete it->second;
mapTargets.erase(it);
it = mapTargets.insert(MAPTARGETS::value_type(key, itnew->second)).first; // readd
mapTargets.erase(itnew); // delete old
bfound = true;
}
}
}
else {
if( (frame.psm&2)==(it->second->psm&2) && !(g_GameSettings & GAME_FULL16BITRES) )
bfound = (frame.fbh > 0x1c0 || it->second->fbh >= frame.fbh) && it->second->fbh <= maxposheight;
}
}
if( !bfound ) {
// might be a virtual target
it = mapTargets.find(key|TARGET_VIRTUAL_KEY);
bfound = it != mapTargets.end() && ((opts&TO_StrictHeight) ? it->second->fbh == frame.fbh : it->second->fbh >= frame.fbh) && it->second->fbh <= maxposheight;
}
if( bfound && (frame.psm&2) && !(it->second->psm&2) && (g_GameSettings&GAME_FULL16BITRES) ) {
// mgs3
if( frame.fbh > it->second->fbh ) {
bfound = false;
}
}
if( bfound ) {
// can be both 16bit and 32bit
if( (frame.psm&2) != (it->second->psm&2) ) {
// a lot of games do this actually...
#ifdef _DEBUG
WARN_LOG("Really bad formats! %d %d\n", frame.psm, it->second->psm);
#endif
if( !(opts&TO_StrictHeight) ) {
if( !(g_GameSettings & GAME_VSSHACKOFF) ) {
if( it->second->psm & 2 ) {
it->second->status |= CRenderTarget::TS_NeedConvert32;
it->second->fbh /= 2;
it->second->targheight /= 2;
}
else {
it->second->status |= CRenderTarget::TS_NeedConvert16;
it->second->fbh *= 2;
it->second->targheight *= 2;
}
}
}
// recalc extents
GetRectMemAddress(it->second->start, it->second->end, frame.psm, 0, 0, frame.fbw, it->second->fbh, it->second->fbp, frame.fbw);
}
else {
// certain variables have to be reset every time
if( (it->second->psm&~1) != (frame.psm&~1) ) {
#ifndef RELEASE_TO_PUBLIC
WARN_LOG("bad formats 2: %d %d\n", frame.psm, it->second->psm);
#endif
it->second->psm = frame.psm;
// recalc extents
GetRectMemAddress(it->second->start, it->second->end, frame.psm, 0, 0, frame.fbw, it->second->fbh, it->second->fbp, frame.fbw);
}
}
if( it->second->fbm != frame.fbm ) {
//WARN_LOG("bad fbm: 0x%8.8x 0x%8.8x, psm: %d\n", frame.fbm, it->second->fbm, frame.psm);
}
it->second->fbm &= frame.fbm;
it->second->psm = frame.psm; // have to convert (ffx2)
if( (it->first & TARGET_VIRTUAL_KEY) && !(opts&TO_Virtual) ) {
// switch
it->second->lastused = timeGetTime();
return Promote(it->first&~TARGET_VIRTUAL_KEY);
}
// check if there exists a more recent target that this target could update from
// only update if target isn't mirrored
bool bCheckHalfCovering = (g_GameSettings&GAME_FULL16BITRES) && (it->second->psm&2) && it->second->fbh +32 < frame.fbh;
for(MAPTARGETS::iterator itnew = mapTargets.begin(); itnew != mapTargets.end(); ++itnew) {
if( itnew->second != it->second && itnew->second->ptex != it->second->ptex && itnew->second->ptexFeedback != it->second->ptex &&
itnew->second->lastused > it->second->lastused && !(itnew->second->status & CRenderTarget::TS_NeedUpdate) ) {
// if new target totally encompasses the current one
if( itnew->second->start <= it->second->start && itnew->second->end >= it->second->end ) {
it->second->status |= CRenderTarget::TS_NeedUpdate;
it->second->nUpdateTarg = itnew->first;
break;
}
// if 16bit, then check for half encompassing targets
if( bCheckHalfCovering && itnew->second->start > it->second->start && itnew->second->start < it->second->end && itnew->second->end <= it->second->end+0x2000 ) {
it->second->status |= CRenderTarget::TS_NeedUpdate;
it->second->nUpdateTarg = itnew->first;
break;
}
}
}
it->second->lastused = timeGetTime();
return it->second;
}
// NOTE: instead of resolving, if current render targ is completely outside of old, can transfer
// the data like that.
// first search for the target
CRenderTarget* ptarg = NULL;
// have to change, so recreate (find all intersecting targets and Resolve)
u32 besttarg = 0;
if( !(opts & CRenderTargetMngr::TO_Virtual) ) {
int start, end;
GetRectMemAddress(start, end, frame.psm, 0, 0, frame.fbw, frame.fbh, frame.fbp, frame.fbw);
if( !(opts & CRenderTargetMngr::TO_StrictHeight) ) {
if( g_GameSettings&GAME_PARTIALPOINTERS ) {
// if there is a render target that wholly encompasses this one, then use the pointer directly
// this render target also has to be small (mgs3)
if( frame.fbh <= 0x40 ) {
for(MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) {
if( it->second->start < end && start < it->second->end && (it->second->psm&~1) == (frame.psm&~1) && (it->second->fbp&0xff) == 0 ) {
ptarg = new CRenderTarget(frame, *it->second);
besttarg = it->first;
break;
}
}
}
}
}
CRenderTarget* pbesttarg = NULL;
if( besttarg == 0 ) {
// if there is only one intersecting target and it encompasses the current one, update the new render target with
// its data instead of resolving then updating (ffx2). Do not change the original target.
for(MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) {
if( it->second->start < end && start < it->second->end ) {
// if( g_GameSettings&GAME_FASTUPDATE ) {
// besttarg = it->first;
// //break;
// }
// else {
if( (g_GameSettings&GAME_FASTUPDATE) || (it->second->fbw == frame.fbw &&
// check depth targets only if partialdepth option
(it->second->fbp != frame.fbp|| ((g_GameSettings&GAME_PARTIALDEPTH)&&(opts&CRenderTargetMngr::TO_DepthBuffer))) ) ) {
if( besttarg != 0 ) {
besttarg = 0;
break;
}
if( start >= it->second->start && end <= it->second->end ) {
besttarg = it->first;
pbesttarg = it->second;
}
}
// }
}
}
}
if( besttarg == 0 ) {
// if none found, resolve all
DestroyAll(start, end, frame.fbw);
}
else if( key == besttarg && pbesttarg != NULL ) {
// add one and store in a different location until best targ is processed
mapTargets.erase(besttarg);
besttarg++;
mapTargets[besttarg] = pbesttarg;
}
}
if( mapTargets.size() > 8 ) {
// release some resources
it = GetOldestTarg(mapTargets);
// if more than 5s passed since target used, destroy
if( it->second != vb[0].prndr && it->second != vb[1].prndr && it->second != vb[0].pdepth && it->second != vb[1].pdepth &&
timeGetTime()-it->second->lastused > 5000 ) {
DestroyChildren(it->second);
delete it->second;
mapTargets.erase(it);
}
}
if( ptarg == NULL ) {
// not found yet, so create
if( mapDummyTargs.size() > 8 ) {
it = GetOldestTarg(mapDummyTargs);
DestroyChildren(it->second);
delete it->second;
mapDummyTargs.erase(it);
}
it = mapDummyTargs.find( (frame.fbw<<16)|frame.fbh );
if( it != mapDummyTargs.end() ) {
ptarg = it->second;
mapDummyTargs.erase(it);
// restore all setttings
ptarg->psm = frame.psm;
ptarg->fbm = frame.fbm;
ptarg->fbp = frame.fbp;
GetRectMemAddress(ptarg->start, ptarg->end, frame.psm, 0, 0, frame.fbw, frame.fbh, frame.fbp, frame.fbw);
ptarg->status = CRenderTarget::TS_NeedUpdate;
}
else {
// create anew
ptarg = (opts&TO_DepthBuffer) ? new CDepthTarget() : new CRenderTarget();
CRenderTargetMngr* pmngrs[2] = { &s_DepthRTs, this == &s_RTs ? &s_RTs : NULL };
int cur = 0;
while( !ptarg->Create(frame) ) {
// destroy unused targets
if( mapDummyTargs.size() > 0 ) {
it = mapDummyTargs.begin();
delete it->second;
mapDummyTargs.erase(it);
continue;
}
if( g_MemTargs.listClearedTargets.size() > 0 ) {
g_MemTargs.DestroyCleared();
continue;
}
else
if( g_MemTargs.listTargets.size() > 32 ) {
g_MemTargs.DestroyOldest();
continue;
}
if( pmngrs[cur] == NULL ) {
cur = !cur;
if( pmngrs[cur] == NULL ) {
WARN_LOG("Out of memory!\n");
delete ptarg;
return NULL;
}
}
if( pmngrs[cur]->mapTargets.size() == 0 )
{
pmngrs[cur] = NULL;
cur = !cur;
continue;
}
it = GetOldestTarg(pmngrs[cur]->mapTargets);
DestroyTarg(it->second);
pmngrs[cur]->mapTargets.erase(it);
cur = !cur;
}
}
}
if( (opts & CRenderTargetMngr::TO_Virtual) ) {
ptarg->status = CRenderTarget::TS_Virtual;
key |= TARGET_VIRTUAL_KEY;
if( (it = mapTargets.find(key)) != mapTargets.end() ) {
DestroyTarg(it->second);
it->second = ptarg;
ptarg->nUpdateTarg = besttarg;
return ptarg;
}
}
else
assert( mapTargets.find(key) == mapTargets.end());
ptarg->nUpdateTarg = besttarg;
mapTargets[key] = ptarg;
return ptarg;
}
void CRenderTargetMngr::DestroyChildren(CRenderTarget* ptarg)
{
if(ptarg == NULL)
return;
MAPTARGETS::iterator ittarg = mapTargets.begin();
while(ittarg != mapTargets.end()) {
if( ittarg->second->pmimicparent == ptarg ) {
assert( ittarg->second != ptarg );
delete ittarg->second;
ittarg = mapTargets.erase(ittarg);
}
else ++ittarg;
}
}
ZeroGS::CRenderTargetMngr::MAPTARGETS::iterator ZeroGS::CRenderTargetMngr::GetOldestTarg(MAPTARGETS& m)
{
if( m.size() == 0 ) {
return m.end();
}
// release some resources
u32 curtime = timeGetTime();
MAPTARGETS::iterator itmaxtarg = m.begin();
for(MAPTARGETS::iterator it = ++m.begin(); it != m.end(); ++it) {
if( itmaxtarg->second->lastused-curtime < it->second->lastused-curtime ) itmaxtarg = it;
}
return itmaxtarg;
}
void ZeroGS::CRenderTargetMngr::GetTargs(int start, int end, list<ZeroGS::CRenderTarget*>& listTargets) const
{
for(MAPTARGETS::const_iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) {
if( it->second->start < end && start < it->second->end ) listTargets.push_back(it->second);
}
}
void ZeroGS::CRenderTargetMngr::Resolve(int start, int end)
{
for(MAPTARGETS::const_iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) {
if( it->second->start < end && start < it->second->end )
it->second->Resolve();
}
}
void ZeroGS::CMemoryTargetMngr::Destroy()
{
listTargets.clear();
listClearedTargets.clear();
}
int memcmp_clut16(u16* pSavedBuffer, u16* pClutBuffer, int clutsize)
{
assert( (clutsize&31) == 0 );
// left > 0 only when csa < 16
int left = ((u32)pClutBuffer & 2) ? 0 : (((u32)pClutBuffer & 0x3ff)/2) + clutsize - 512;
if( left > 0 ) clutsize -= left;
while(clutsize > 0) {
for(int i = 0; i < 16; ++i) {
if( pSavedBuffer[i] != pClutBuffer[2*i] )
return 1;
}
clutsize -= 32;
pSavedBuffer += 16;
pClutBuffer += 32;
}
if( left > 0 ) {
pClutBuffer = (u16*)(ZeroGS::g_pbyGSClut + 2);
while(left > 0) {
for(int i = 0; i < 16; ++i) {
if( pSavedBuffer[i] != pClutBuffer[2*i] )
return 1;
}
left -= 32;
pSavedBuffer += 16;
pClutBuffer += 32;
}
}
return 0;
}
bool ZeroGS::CMemoryTarget::ValidateClut(const tex0Info& tex0)
{
assert( tex0.psm == psm && PSMT_ISCLUT(psm) && cpsm == tex0.cpsm );
int nClutOffset = 0;
int clutsize = 0;
int entries = (tex0.psm&3)==3 ? 256 : 16;
if( tex0.cpsm <= 1 ) { // 32 bit
nClutOffset = 64 * tex0.csa;
clutsize = min(entries, 256-tex0.csa*16)*4;
}
else {
nClutOffset = 32 * (tex0.csa&15) + (tex0.csa>=16?2:0);
clutsize = min(entries, 512-tex0.csa*16)*2;
}
assert( clutsize == clut.size() );
if( cpsm <= 1 ) {
// memcmp_mmx doesn't work on x86-64
#ifdef __x86_64__
if( memcmp(&clut[0], ZeroGS::g_pbyGSClut+nClutOffset, clutsize) )
#else
if( memcmp_mmx(&clut[0], ZeroGS::g_pbyGSClut+nClutOffset, clutsize) )
#endif
return false;
}
else {
if( memcmp_clut16((u16*)&clut[0], (u16*)(ZeroGS::g_pbyGSClut+nClutOffset), clutsize) )
return false;
}
return true;
}
int VALIDATE_THRESH = 8;
u32 TEXDESTROY_THRESH = 16;
bool ZeroGS::CMemoryTarget::ValidateTex(const tex0Info& tex0, int starttex, int endtex, bool bDeleteBadTex)
{
if( clearmaxy == 0 )
return true;
int checkstarty = max(starttex, clearminy);
int checkendy = min(endtex, clearmaxy);
if( checkstarty >= checkendy )
return true;
if( validatecount++ > VALIDATE_THRESH ) {
height = 0;
return false;
}
// lock and compare
D3DLOCKED_RECT lock;
assert( ptex != NULL );
if( memory != NULL ) {
assert( memory->ptr != NULL );
lock.pBits = memory->ptr;
}
else {
assert( ptexsys != NULL );
ptexsys->LockRect(0, &lock, NULL, D3DLOCK_READONLY);
}
// memcmp_mmx doesn't work on x86_64
#ifdef __x86_64__
int result = memcmp((u8*)lock.pBits + (checkstarty-realy)*4*GPU_TEXWIDTH, ZeroGS::g_pbyGSMemory+checkstarty*4*GPU_TEXWIDTH, (checkendy-checkstarty)*4*GPU_TEXWIDTH);
#else
int result = memcmp_mmx((u8*)lock.pBits + (checkstarty-realy)*4*GPU_TEXWIDTH, ZeroGS::g_pbyGSMemory+checkstarty*4*GPU_TEXWIDTH, (checkendy-checkstarty)*4*GPU_TEXWIDTH);
#endif
if( memory == NULL )
ptexsys->UnlockRect(0);
if( result == 0 || !bDeleteBadTex ) {
if( result == 0 ) clearmaxy = 0;
return result == 0;
}
// delete clearminy, clearmaxy range (not the checkstarty, checkendy range)
int newstarty = 0;
if( clearminy <= starty ) {
if( clearmaxy < starty + height) {
// preserve end
height = starty+height-clearmaxy;
starty = clearmaxy;
assert(height > 0);
}
else {
// destroy
height = 0;
}
}
else {
// beginning can be preserved
height = clearminy-starty;
}
clearmaxy = 0;
assert( starty >= realy && starty+height<=realy+realheight );
return false;
}
// used to build clut textures (note that this is for both 16 and 32 bit cluts)
#define BUILDCLUT() { \
switch(tex0.psm) { \
case PSMT8: \
for(int i = 0; i < targ->height; ++i) { \
for(int j = 0; j < GPU_TEXWIDTH/2; ++j) { \
pdst[0] = pclut[psrc[0]]; \
pdst[1] = pclut[psrc[1]]; \
pdst[2] = pclut[psrc[2]]; \
pdst[3] = pclut[psrc[3]]; \
pdst[4] = pclut[psrc[4]]; \
pdst[5] = pclut[psrc[5]]; \
pdst[6] = pclut[psrc[6]]; \
pdst[7] = pclut[psrc[7]]; \
pdst += 8; \
psrc += 8; \
} \
} \
break; \
case PSMT4: \
for(int i = 0; i < targ->height; ++i) { \
for(int j = 0; j < GPU_TEXWIDTH; ++j) { \
pdst[0] = pclut[psrc[0]&15]; \
pdst[1] = pclut[psrc[0]>>4]; \
pdst[2] = pclut[psrc[1]&15]; \
pdst[3] = pclut[psrc[1]>>4]; \
pdst[4] = pclut[psrc[2]&15]; \
pdst[5] = pclut[psrc[2]>>4]; \
pdst[6] = pclut[psrc[3]&15]; \
pdst[7] = pclut[psrc[3]>>4]; \
\
pdst += 8; \
psrc += 4; \
} \
} \
break; \
case PSMT8H: \
for(int i = 0; i < targ->height; ++i) { \
for(int j = 0; j < GPU_TEXWIDTH/8; ++j) { \
pdst[0] = pclut[psrc[3]]; \
pdst[1] = pclut[psrc[7]]; \
pdst[2] = pclut[psrc[11]]; \
pdst[3] = pclut[psrc[15]]; \
pdst[4] = pclut[psrc[19]]; \
pdst[5] = pclut[psrc[23]]; \
pdst[6] = pclut[psrc[27]]; \
pdst[7] = pclut[psrc[31]]; \
pdst += 8; \
psrc += 32; \
} \
} \
break; \
case PSMT4HH: \
for(int i = 0; i < targ->height; ++i) { \
for(int j = 0; j < GPU_TEXWIDTH/8; ++j) { \
pdst[0] = pclut[psrc[3]>>4]; \
pdst[1] = pclut[psrc[7]>>4]; \
pdst[2] = pclut[psrc[11]>>4]; \
pdst[3] = pclut[psrc[15]>>4]; \
pdst[4] = pclut[psrc[19]>>4]; \
pdst[5] = pclut[psrc[23]>>4]; \
pdst[6] = pclut[psrc[27]>>4]; \
pdst[7] = pclut[psrc[31]>>4]; \
pdst += 8; \
psrc += 32; \
} \
} \
break; \
case PSMT4HL: \
for(int i = 0; i < targ->height; ++i) { \
for(int j = 0; j < GPU_TEXWIDTH/8; ++j) { \
pdst[0] = pclut[psrc[3]&15]; \
pdst[1] = pclut[psrc[7]&15]; \
pdst[2] = pclut[psrc[11]&15]; \
pdst[3] = pclut[psrc[15]&15]; \
pdst[4] = pclut[psrc[19]&15]; \
pdst[5] = pclut[psrc[23]&15]; \
pdst[6] = pclut[psrc[27]&15]; \
pdst[7] = pclut[psrc[31]&15]; \
pdst += 8; \
psrc += 32; \
} \
} \
break; \
default: \
assert(0); \
} \
} \
#define TARGET_THRESH 0x500
extern int g_MaxTexWidth, g_MaxTexHeight;
//#define SORT_TARGETS
inline list<CMemoryTarget>::iterator ZeroGS::CMemoryTargetMngr::DestroyTargetIter(list<CMemoryTarget>::iterator& it)
{
// find the target and destroy
list<CMemoryTarget>::iterator itprev = it; ++it;
listClearedTargets.splice(listClearedTargets.end(), listTargets, itprev);
if( listClearedTargets.size() > TEXDESTROY_THRESH ) {
listClearedTargets.pop_front();
}
return it;
}
#if defined(_MSC_VER) && defined(__x86_64__)
extern "C" void UnswizzleZ16Target(void* dst, void* src, int iters);
#endif
ZeroGS::CMemoryTarget* ZeroGS::CMemoryTargetMngr::GetMemoryTarget(const tex0Info& tex0, int forcevalidate)
{
int nbStart, nbEnd;
GetRectMemAddress(nbStart, nbEnd, tex0.psm, 0, 0, tex0.tw, tex0.th, tex0.tbp0, tex0.tbw);
assert( nbStart < nbEnd );
nbEnd = min(nbEnd, 0x00400000);
int nClutOffset = 0;
int clutsize = 0;
if( PSMT_ISCLUT(tex0.psm) ) {
int entries = (tex0.psm&3)==3 ? 256 : 16;
if( tex0.cpsm <= 1 ) { // 32 bit
nClutOffset = 64 * tex0.csa;
clutsize = min(entries, 256-tex0.csa*16)*4;
}
else {
nClutOffset = 64 * (tex0.csa&15) + (tex0.csa>=16?2:0);
clutsize = min(entries, 512-tex0.csa*16)*2;
}
}
int start = nbStart / (4*GPU_TEXWIDTH);
int end = (nbEnd + GPU_TEXWIDTH*4 - 1) / (4*GPU_TEXWIDTH);
assert( start < end );
for(list<CMemoryTarget>::iterator it = listTargets.begin(); it != listTargets.end();) {
if( it->starty <= start && it->starty+it->height >= end ) {
assert( it->psm != 0xd );
// using clut, validate that same data
if( PSMT_ISCLUT(it->psm) != PSMT_ISCLUT(tex0.psm) ) {
if( it->validatecount++ > VALIDATE_THRESH ) {
it = DestroyTargetIter(it);
if( listTargets.size() == 0 )
break;
}
else
++it;
continue;
}
if( PSMT_ISCLUT(tex0.psm) ) {
assert( it->clut.size() > 0 );
if( it->psm != tex0.psm || it->cpsm != tex0.cpsm || it->clut.size() != clutsize ) {
// wrong clut
list<CMemoryTarget>::iterator itprev = it;
if( it->validatecount++ > VALIDATE_THRESH ) {
it = DestroyTargetIter(it);
if( listTargets.size() == 0 )
break;
}
else
++it;
continue;
}
if( tex0.cpsm <= 1 ) {
#ifdef __x86_64__
if( memcmp(&it->clut[0], ZeroGS::g_pbyGSClut+nClutOffset, clutsize) ) {
#else
if( memcmp_mmx(&it->clut[0], ZeroGS::g_pbyGSClut+nClutOffset, clutsize) ) {
#endif
++it;
continue;
}
}
else {
if( memcmp_clut16((u16*)&it->clut[0], (u16*)(ZeroGS::g_pbyGSClut+nClutOffset), clutsize) ) {
++it;
continue;
}
}
}
else if( PSMT_IS16BIT(tex0.psm) != PSMT_IS16BIT(it->psm) ) {
if( it->validatecount++ > VALIDATE_THRESH ) {
it = DestroyTargetIter(it);
if( listTargets.size() == 0 )
break;
}
else ++it;
continue;
}
if( forcevalidate ) {//&& listTargets.size() < TARGET_THRESH ) {
// do more validation checking. delete if not been used for a while
if( !it->ValidateTex(tex0, start, end, curstamp > it->usedstamp + 3) ) {
if( it->height <= 0 ) {
it = DestroyTargetIter(it);
if( listTargets.size() == 0 )
break;
}
else ++it;
continue;
}
}
it->usedstamp = curstamp;
it->validatecount = 0;
return &(*it);
}
#ifdef SORT_TARGETS
else if( it->starty >= end )
break;
#endif
++it;
}
#ifdef _DEBUG
PRIM_LOG("memtarget: tbp: %x tbw: %x th: %x psm: %x\n", tex0.tbp0, tex0.tbw, tex0.th, tex0.psm);
#endif
// couldn't find so create
HRESULT hr;
CMemoryTarget* targ;
D3DFORMAT fmt = D3DFMT_A8R8G8B8;
if( (PSMT_ISCLUT(tex0.psm) && tex0.cpsm > 1) || tex0.psm == PSMCT16 || tex0.psm == PSMCT16S) {
fmt = D3DFMT_A1R5G5B5;
}
int widthmult = 1;
if( g_MaxTexHeight < 4096 ) {
if( end-start > g_MaxTexHeight )
widthmult = 2;
}
int channels = 1;
if( PSMT_ISCLUT(tex0.psm) ) {
if( tex0.psm == PSMT8 ) channels = 4;
else if( tex0.psm == PSMT4 ) channels = 8;
}
else {
if( PSMT_IS16BIT(tex0.psm) ) {
// 16z needs to be a8r8g8b8
channels = 2;
}
}
if( listClearedTargets.size() > 0 ) {
list<CMemoryTarget>::iterator itbest = listClearedTargets.begin();
while(itbest != listClearedTargets.end()) {
if( end-start <= itbest->realheight && itbest->fmt == fmt && itbest->widthmult == widthmult ) {
// check channels
int targchannels = 1;
if( PSMT_ISCLUT(itbest->psm) ) {
if( itbest->psm == PSMT8 ) targchannels = 4;
else if( itbest->psm == PSMT4 ) targchannels = 8;
}
else if( PSMT_IS16BIT(itbest->psm) ) {
targchannels = 2;
}
if( targchannels == channels )
break;
}
++itbest;
}
if( itbest != listClearedTargets.end()) {
listTargets.splice(listTargets.end(), listClearedTargets, itbest);
targ = &listTargets.back();
targ->validatecount = 0;
}
else {
// create a new
listTargets.push_back(CMemoryTarget());
targ = &listTargets.back();
}
}
else {
listTargets.push_back(CMemoryTarget());
targ = &listTargets.back();
}
// fill local clut
if( PSMT_ISCLUT(tex0.psm) ) {
assert( clutsize > 0 );
targ->cpsm = tex0.cpsm;
targ->clut.reserve(256*4); // no matter what
targ->clut.resize(clutsize);
if( tex0.cpsm <= 1 ) { // 32 bit
memcpy_amd(&targ->clut[0], ZeroGS::g_pbyGSClut+nClutOffset, clutsize);
}
else {
u16* pClutBuffer = (u16*)(ZeroGS::g_pbyGSClut + nClutOffset);
u16* pclut = (u16*)&targ->clut[0];
int left = ((u32)nClutOffset & 2) ? 0 : ((nClutOffset&0x3ff)/2)+clutsize-512;
if( left > 0 ) clutsize -= left;
while(clutsize > 0) {
pclut[0] = pClutBuffer[0];
pclut++;
pClutBuffer+=2;
clutsize -= 2;
}
if( left > 0) {
pClutBuffer = (u16*)(ZeroGS::g_pbyGSClut + 2);
while(left > 0) {
pclut[0] = pClutBuffer[0];
left -= 2;
pClutBuffer += 2;
pclut++;
}
}
}
}
if( targ->ptex != NULL ) {
assert( end-start <= targ->realheight && targ->fmt == fmt && targ->widthmult == widthmult );
// good enough, so init
targ->realy = targ->starty = start;
targ->usedstamp = curstamp;
targ->psm = tex0.psm;
targ->cpsm = tex0.cpsm;
targ->height = end-start;
}
if( targ->ptex == NULL ) {
// not initialized yet
targ->fmt = fmt;
targ->realy = targ->starty = start;
targ->realheight = targ->height = end-start;
targ->usedstamp = curstamp;
targ->psm = tex0.psm;
targ->cpsm = tex0.cpsm;
targ->widthmult = widthmult;
// alloc the mem
while( FAILED(pd3dDevice->CreateTexture(GPU_TEXWIDTH*channels*widthmult, (targ->realheight+widthmult-1)/widthmult, 1, 0, fmt, D3DPOOL_DEFAULT, &targ->ptex, NULL)) ) {
if( listClearedTargets.size() > 0 )
listClearedTargets.pop_front();
else {
if( listTargets.size() == 0 ) {
DEBUG_LOG("Failed to create %dx%x texture\n", GPU_TEXWIDTH*channels*widthmult, (targ->realheight+widthmult-1)/widthmult);
channels = 1;
}
DestroyOldest();
}
}
// lock
V(pd3dDevice->CreateTexture(GPU_TEXWIDTH*channels*widthmult, (targ->realheight+widthmult-1)/widthmult, 1, 0, fmt, D3DPOOL_SYSTEMMEM, &targ->ptexsys, NULL));
assert( targ->ptexsys != NULL );
}
#ifndef RELEASE_TO_PUBLIC
g_TransferredToGPU += GPU_TEXWIDTH * channels * 4 * targ->height;
#endif
D3DLOCKED_RECT lock;
targ->ptexsys->LockRect(0, &lock, NULL, 0);
// fill with data
if( PSMT_ISCLUT(tex0.psm) ) {
if( targ->memory == NULL ) {
targ->memory = new CMemoryTarget::MEMORY();
targ->memory->ptr = (BYTE*)_aligned_malloc(4 * GPU_TEXWIDTH * targ->realheight, 16);
targ->memory->ref = 1;
}
memcpy_amd(targ->memory->ptr, ZeroGS::g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy, 4 * GPU_TEXWIDTH * targ->height);
u8* psrc = (u8*)(ZeroGS::g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy);
if( tex0.cpsm <= 1 ) { // 32bit
u32* pclut = (u32*)&targ->clut[0];
u32* pdst = (u32*)lock.pBits;
BUILDCLUT();
}
else {
u16* pclut = (u16*)&targ->clut[0];
u16* pdst = (u16*)lock.pBits;
BUILDCLUT();
}
}
else {
if( tex0.psm == PSMT16Z || tex0.psm == PSMT16SZ ) {
if( targ->memory == NULL ) {
targ->memory = new CMemoryTarget::MEMORY();
targ->memory->ptr = (BYTE*)_aligned_malloc(4 * GPU_TEXWIDTH * targ->realheight, 16);
targ->memory->ref = 1;
}
memcpy_amd(targ->memory->ptr, ZeroGS::g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy, 4 * GPU_TEXWIDTH * targ->height);
// needs to be 8 bit, use xmm for unpacking
u16* dst = (u16*)lock.pBits;
u16* src = (u16*)(ZeroGS::g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy);
assert( ((u32)dst)%16 == 0 );
#if defined(ZEROGS_SSE2)
int iters = targ->height*GPU_TEXWIDTH/16;
#if defined(__x86_64__)
UnswizzleZ16Target(dst, src, iters);
#else
__asm {
mov edx, iters
pxor xmm7, xmm7
mov eax, dst
mov ecx, src
Z16Loop:
// unpack 64 bytes at a time
movdqa xmm0, [ecx]
movdqa xmm2, [ecx+16]
movdqa xmm4, [ecx+32]
movdqa xmm6, [ecx+48]
movdqa xmm1, xmm0
movdqa xmm3, xmm2
movdqa xmm5, xmm4
punpcklwd xmm0, xmm7
punpckhwd xmm1, xmm7
punpcklwd xmm2, xmm7
punpckhwd xmm3, xmm7
// start saving
movdqa [eax], xmm0
movdqa [eax+16], xmm1
punpcklwd xmm4, xmm7
punpckhwd xmm5, xmm7
movdqa [eax+32], xmm2
movdqa [eax+48], xmm3
movdqa xmm0, xmm6
punpcklwd xmm6, xmm7
movdqa [eax+64], xmm4
movdqa [eax+80], xmm5
punpckhwd xmm0, xmm7
movdqa [eax+96], xmm6
movdqa [eax+112], xmm0
add ecx, 64
add eax, 128
sub edx, 1
jne Z16Loop
}
#endif // __x86_64__
#else
for(int i = 0; i < targ->height; ++i) {
for(int j = 0; j < GPU_TEXWIDTH; ++j) {
dst[0] = src[0]; dst[1] = 0;
dst[2] = src[1]; dst[3] = 0;
dst += 4;
src += 2;
}
}
#endif
}
else {
if( targ->memory != NULL ) {
// release
if( targ->memory->ref > 0 && --targ->memory->ref <= 0 ) {
SAFE_DELETE(targ->memory);
}
targ->memory = NULL;
}
memcpy_amd(lock.pBits, ZeroGS::g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy, 4 * GPU_TEXWIDTH * targ->height );
}
}
targ->ptexsys->UnlockRect(0);
V(pd3dDevice->UpdateTexture(targ->ptexsys, targ->ptex));
assert( tex0.psm != 0xd );
if( PSMT_ISCLUT(tex0.psm) )
assert( targ->clut.size() > 0 );
return targ;
}
void ZeroGS::CMemoryTargetMngr::ClearRange(int nbStartY, int nbEndY)
{
int starty = nbStartY / (4*GPU_TEXWIDTH);
int endy = (nbEndY+4*GPU_TEXWIDTH-1) / (4*GPU_TEXWIDTH);
//int endy = (nbEndY+4096-1) / 4096;
//if( listTargets.size() < TARGET_THRESH ) {
for(list<CMemoryTarget>::iterator it = listTargets.begin(); it != listTargets.end(); ) {
if( it->starty < endy && (it->starty+it->height) > starty ) {
// intersects, reduce valid texture mem (or totally delete texture)
// there are 4 cases
int miny = max(it->starty, starty);
int maxy = min(it->starty+it->height, endy);
assert(miny < maxy);
if( it->clearmaxy == 0 ) {
it->clearminy = miny;
it->clearmaxy = maxy;
}
else {
if( it->clearminy > miny ) it->clearminy = miny;
if( it->clearmaxy < maxy ) it->clearmaxy = maxy;
}
}
++it;
}
// }
// else {
// for(list<CMemoryTarget>::iterator it = listTargets.begin(); it != listTargets.end(); ) {
//
// if( it->starty < endy && (it->starty+it->height) > starty ) {
// int newstarty = 0;
// if( starty <= it->starty ) {
// if( endy < it->starty + it->height) {
// // preserve end
// it->height = it->starty+it->height-endy;
// it->starty = endy;
// assert(it->height > 0);
// }
// else {
// // destroy
// it->height = 0;
// }
// }
// else {
// // beginning can be preserved
// it->height = starty-it->starty;
// }
//
// assert( it->starty >= it->realy && it->starty+it->height<=it->realy+it->realheight );
// if( it->height <= 0 ) {
// list<CMemoryTarget>::iterator itprev = it; ++it;
// listClearedTargets.splice(listClearedTargets.end(), listTargets, itprev);
// continue;
// }
// }
//
// ++it;
// }
// }
}
void ZeroGS::CMemoryTargetMngr::DestroyCleared()
{
for(list<CMemoryTarget>::iterator it = listClearedTargets.begin(); it != listClearedTargets.end(); ) {
if( it->usedstamp < curstamp - 2 ) {
it = listClearedTargets.erase(it);
continue;
}
++it;
}
if( (curstamp % 3) == 0 ) {
// purge old targets every 3 frames
for(list<CMemoryTarget>::iterator it = listTargets.begin(); it != listTargets.end(); ) {
if( it->usedstamp < curstamp - 3 ) {
it = listTargets.erase(it);
continue;
}
++it;
}
}
++curstamp;
}
void ZeroGS::CMemoryTargetMngr::DestroyOldest()
{
if( listTargets.size() == 0 )
return;
list<CMemoryTarget>::iterator it, itbest;
it = itbest = listTargets.begin();
while(it != listTargets.end()) {
if( it->usedstamp < itbest->usedstamp )
itbest = it;
++it;
}
listTargets.erase(itbest);
}
//////////////////////////////////////
// Texture Mngr For Bitwise AND Ops //
//////////////////////////////////////
void ZeroGS::CBitwiseTextureMngr::Destroy()
{
for(map<u32, LPD3DTEX>::iterator it = mapTextures.begin(); it != mapTextures.end(); ++it)
it->second->Release();
mapTextures.clear();
}
LPD3DTEX ZeroGS::CBitwiseTextureMngr::GetTexInt(u32 bitvalue, LPD3DTEX ptexDoNotDelete)
{
if( mapTextures.size() > 32 ) {
// randomly delete 8
for(map<u32, LPD3DTEX>::iterator it = mapTextures.begin(); it != mapTextures.end();) {
if( !(rand()&3) && it->second != ptexDoNotDelete) {
it->second->Release();
it = mapTextures.erase(it);
}
else ++it;
}
}
// create a new tex
LPD3DTEX ptex;
HRESULT hr = S_OK;
V(pd3dDevice->CreateTexture(GPU_TEXMASKWIDTH, 1, 1, 0, D3DFMT_L16, D3DPOOL_MANAGED, &ptex, NULL));
D3DLOCKED_RECT lock;
ptex->LockRect(0, &lock, NULL, 0);
for(u32 i = 0; i < GPU_TEXMASKWIDTH; ++i) ((u16*)lock.pBits)[i] = ((i&bitvalue)<<6)|0x1f; // add the 1/2 offset so that
ptex->UnlockRect(0);
mapTextures[bitvalue] = ptex;
return ptex;
}
void ZeroGS::CRangeManager::Insert(int start, int end)
{
int imin = 0, imax = (int)ranges.size(), imid;
#ifdef _DEBUG
// sanity check
for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start );
#endif
switch( ranges.size() ) {
case 0:
ranges.push_back(RANGE(start, end));
return;
case 1:
if( end < ranges.front().start ) {
ranges.insert(ranges.begin(), RANGE(start, end));
}
else if( start > ranges.front().end ) {
ranges.push_back(RANGE(start, end));
}
else {
if( start < ranges.front().start ) ranges.front().start = start;
if( end > ranges.front().end ) ranges.front().end = end;
}
return;
}
// find where start is
while(imin < imax) {
imid = (imin+imax)>>1;
assert( imid < (int)ranges.size() );
if( ranges[imid].end >= start && (imid == 0 || ranges[imid-1].end < start) ) {
imin = imid;
break;
}
else if( ranges[imid].start > start ) imax = imid;
else imin = imid+1;
}
int startindex = imin;
if( startindex >= (int)ranges.size() ) {
// non intersecting
assert( start > ranges.back().end );
ranges.push_back(RANGE(start, end));
return;
}
if( startindex == 0 && end < ranges.front().start ) {
ranges.insert(ranges.begin(), RANGE(start, end));
#ifdef _DEBUG
// sanity check
for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start );
#endif
return;
}
imin = 0; imax = (int)ranges.size();
// find where end is
while(imin < imax) {
imid = (imin+imax)>>1;
assert( imid < (int)ranges.size() );
if( ranges[imid].end <= end && (imid == ranges.size()-1 || ranges[imid+1].start > end ) ) {
imin = imid;
break;
}
else if( ranges[imid].start >= end ) imax = imid;
else imin = imid+1;
}
int endindex = imin;
if( startindex > endindex ) {
// create a new range
ranges.insert(ranges.begin()+startindex, RANGE(start, end));
#ifdef _DEBUG
// sanity check
for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start );
#endif
return;
}
if( endindex >= (int)ranges.size()-1 ) {
// pop until startindex is reached
int lastend = ranges.back().end;
int numpop = (int)ranges.size() - startindex - 1;
while(numpop-- > 0 ) ranges.pop_back();
assert( start <= ranges.back().end );
if( start < ranges.back().start ) ranges.back().start = start;
if( lastend > ranges.back().end ) ranges.back().end = lastend;
if( end > ranges.back().end ) ranges.back().end = end;
#ifdef _DEBUG
// sanity check
for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start );
#endif
return;
}
if( endindex == 0 ) {
assert( end >= ranges.front().start );
if( start < ranges.front().start ) ranges.front().start = start;
if( end > ranges.front().end ) ranges.front().end = end;
#ifdef _DEBUG
// sanity check
for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start );
#endif
}
// somewhere in the middle
if( ranges[startindex].start < start ) start = ranges[startindex].start;
if( startindex < endindex ) {
ranges.erase(ranges.begin() + startindex, ranges.begin() + endindex );
}
if( start < ranges[startindex].start ) ranges[startindex].start = start;
if( end > ranges[startindex].end ) ranges[startindex].end = end;
#ifdef _DEBUG
// sanity check
for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start );
#endif
}
namespace ZeroGS {
CRangeManager s_RangeMngr; // manages overwritten memory
static int gs_imageEnd = 0;
void ResolveInRange(int start, int end)
{
list<CRenderTarget*> listTargs;
s_DepthRTs.GetTargs(start, end, listTargs);
s_RTs.GetTargs(start, end, listTargs);
if( listTargs.size() > 0 ) {
// flushes can delete targets!
Flush(0);
Flush(1);
listTargs.clear();
s_DepthRTs.GetTargs(start, end, listTargs);
s_RTs.GetTargs(start, end, listTargs);
for(list<CRenderTarget*>::iterator it = listTargs.begin(); it != listTargs.end(); ++it) {
// only resolve if not completely covered
(*it)->Resolve();
}
}
}
//////////////////
// Transferring //
//////////////////
void FlushTransferRanges(const tex0Info* ptex)
{
assert( s_RangeMngr.ranges.size() > 0 );
bool bHasFlushed = false;
list<CRenderTarget*> listTransmissionUpdateTargs;
int texstart = -1, texend = -1;
if( ptex != NULL ) {
GetRectMemAddress(texstart, texend, ptex->psm, 0, 0, ptex->tw, ptex->th, ptex->tbp0, ptex->tbw);
}
for(vector<CRangeManager::RANGE>::iterator itrange = s_RangeMngr.ranges.begin(); itrange != s_RangeMngr.ranges.end(); ++itrange ) {
int start = itrange->start;
int end = itrange->end;
listTransmissionUpdateTargs.clear();
s_DepthRTs.GetTargs(start, end, listTransmissionUpdateTargs);
s_RTs.GetTargs(start, end, listTransmissionUpdateTargs);
// if( !bHasFlushed && listTransmissionUpdateTargs.size() > 0 ) {
// Flush(0);
// Flush(1);
//
//#ifdef _DEBUG
// // make sure targets are still the same
// list<CRenderTarget*>::iterator it;
// FORIT(it, listTransmissionUpdateTargs) {
// CRenderTargetMngr::MAPTARGETS::iterator itmap;
// for(itmap = s_RTs.mapTargets.begin(); itmap != s_RTs.mapTargets.end(); ++itmap) {
// if( itmap->second == *it )
// break;
// }
//
// if( itmap == s_RTs.mapTargets.end() ) {
//
// for(itmap = s_DepthRTs.mapTargets.begin(); itmap != s_DepthRTs.mapTargets.end(); ++itmap) {
// if( itmap->second == *it )
// break;
// }
//
// assert( itmap != s_DepthRTs.mapTargets.end() );
// }
// }
//#endif
// }
for(list<CRenderTarget*>::iterator it = listTransmissionUpdateTargs.begin(); it != listTransmissionUpdateTargs.end(); ++it) {
CRenderTarget* ptarg = *it;
if( (ptarg->status & CRenderTarget::TS_Virtual) || ptarg->targoffx != 0 || ptarg->targoffy != 0)
continue;
if( !(ptarg->start < texend && ptarg->end > texstart) ) {
// chekc if target is currently being used
if( !(g_GameSettings & GAME_NOQUICKRESOLVE) ) {
if( ptarg->fbp != vb[0].gsfb.fbp ) {//&& (vb[0].prndr == NULL || ptarg->fbp != vb[0].prndr->fbp) ) {
if( ptarg->fbp != vb[1].gsfb.fbp ) { //&& (vb[1].prndr == NULL || ptarg->fbp != vb[1].prndr->fbp) ) {
// this render target currently isn't used and is not in the texture's way, so can safely ignore
// resolving it. Also the range has to be big enough compared to the target to really call it resolved
// (ffx changing screens, shadowhearts)
// start == ptarg->start, used for kh to transfer text
if( ptarg->IsDepth() || end-start > 0x50000 || ((g_GameSettings&GAME_QUICKRESOLVE1)&&start == ptarg->start) )
ptarg->status |= CRenderTarget::TS_NeedUpdate|CRenderTarget::TS_Resolved;
continue;
}
}
}
}
else {
// if( start <= texstart && end >= texend ) {
// // texture taken care of so can skip!?
// continue;
// }
}
// the first range check was very rough; some games (dragonball z) have the zbuf in the same page as textures (but not overlapping)
// so detect that condition
if( ptarg->fbh % m_Blocks[ptarg->psm].height ) {
// get start of left-most boundry page
int targstart, targend;
ZeroGS::GetRectMemAddress(targstart, targend, ptarg->psm, 0, 0, ptarg->fbw, ptarg->fbh & ~(m_Blocks[ptarg->psm].height-1), ptarg->fbp, ptarg->fbw);
if( start >= targend ) {
// don't bother
if( (ptarg->fbh % m_Blocks[ptarg->psm].height) <= 2 )
continue;
// calc how many bytes of the block that the page spans
}
}
if( !(ptarg->status & CRenderTarget::TS_Virtual) ) {
if( start < ptarg->end && end > ptarg->start ) {
// suikoden5 is faster with check, but too big of a value and kh screens mess up
if( end - start > 0x8000 ) {
// intersects, do only one sided resolves
if( end-start > 4*ptarg->fbw ) { // at least it be greater than one scanline (spiro is faster)
if( start > ptarg->start ) {
ptarg->Resolve(ptarg->start, start);
}
else if( end < ptarg->end ) {
ptarg->Resolve(end, ptarg->end);
}
}
}
ptarg->status |= CRenderTarget::TS_Resolved;
if( !ptarg->IsDepth() || (!(g_GameSettings & GAME_NODEPTHUPDATE) || end-start > 0x1000) )
ptarg->status |= CRenderTarget::TS_NeedUpdate;
}
}
}
ZeroGS::g_MemTargs.ClearRange(start, end);
}
s_RangeMngr.Clear();
}
// need to take into account left over data of 24bit transfers (always <= 5)
static vector<u8> s_vTempBuffer, s_vTransferCache;
void InitTransferHostLocal()
{
if( g_bIsLost )
return;
#ifndef RELEASE_TO_PUBLIC
if( gs.trxpos.dx+gs.imageWnew > gs.dstbuf.bw )
WARN_LOG("Transfer error, width exceeds\n");
#endif
bool bHasFlushed = false;
gs.imageX = gs.trxpos.dx;
gs.imageY = gs.trxpos.dy;
gs.imageEndX = gs.imageX + gs.imageWnew;
gs.imageEndY = gs.imageY + gs.imageHnew;
s_vTransferCache.resize(0);
assert( gs.imageEndX < 2048 && gs.imageEndY < 2048 );
// hack! viewful joe
if( gs.dstbuf.psm == 63 )
gs.dstbuf.psm = 0;
int start, end;
GetRectMemAddress(start, end, gs.dstbuf.psm, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw);
if( end > 0x00400000 ) {
WARN_LOG("host local out of bounds!\n");
//gs.imageTransfer = -1;
end = 0x00400000;
}
gs_imageEnd = end;
if( vb[0].dwCount > 0 )
Flush(0);
if( vb[1].dwCount > 0 )
Flush(1);
//PRIM_LOG("trans: bp:%x x:%x y:%x w:%x h:%x\n", gs.dstbuf.bp, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew);
// if( !bHasFlushed && (vb[0].bNeedFrameCheck || vb[0].bNeedZCheck || vb[1].bNeedFrameCheck || vb[1].bNeedZCheck)) {
// Flush(0);
// Flush(1);
// bHasFlushed = 1;
// }
//
// // for all ranges, flush the targets
// // check if new rect intersects with current rendering texture, if so, flush
// if( vb[0].dwCount > 0 && vb[0].curprim.tme ) {
// int tstart, tend;
// GetRectMemAddress(tstart, tend, vb[0].tex0.psm, 0, 0, vb[0].tex0.tw, vb[0].tex0.th, vb[0].tex0.tbp0, vb[0].tex0.tbw);
//
// if( start < tend && end > tstart ) {
// Flush(0);
// Flush(1);
// bHasFlushed = 1;
// }
// }
//
// if( !bHasFlushed && vb[1].dwCount > 0 && vb[1].curprim.tme ) {
// int tstart, tend;
// GetRectMemAddress(tstart, tend, vb[1].tex0.psm, 0, 0, vb[1].tex0.tw, vb[1].tex0.th, vb[1].tex0.tbp0, vb[1].tex0.tbw);
//
// if( start < tend && end > tstart ) {
// Flush(0);
// Flush(1);
// bHasFlushed = 1;
// }
// }
//ZeroGS::g_MemTargs.ClearRange(start, end);
//s_RangeMngr.Insert(start, end);
}
void TransferHostLocal(const void* pbyMem, u32 nQWordSize)
{
if( g_bIsLost )
return;
int start, end;
GetRectMemAddress(start, end, gs.dstbuf.psm, gs.imageX, gs.imageY, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw);
assert( start < gs_imageEnd );
end = gs_imageEnd;
// sometimes games can decompress to alpha channel of render target only, in this case
// do a resolve right away. wolverine x2
if( gs.dstbuf.psm == PSMT8H || gs.dstbuf.psm == PSMT4HL || gs.dstbuf.psm == PSMT4HH ) {
list<CRenderTarget*> listTransmissionUpdateTargs;
s_RTs.GetTargs(start, end, listTransmissionUpdateTargs);
for(list<CRenderTarget*>::iterator it = listTransmissionUpdateTargs.begin(); it != listTransmissionUpdateTargs.end(); ++it) {
CRenderTarget* ptarg = *it;
if( (ptarg->status & CRenderTarget::TS_Virtual) )
continue;
//DEBUG_LOG("zerogs: resolving to alpha channel\n");
ptarg->Resolve();
}
}
s_RangeMngr.Insert(start, min(end, start+(int)nQWordSize*16));
const u8* porgend = (const u8*)pbyMem + 4 * nQWordSize;
if( s_vTransferCache.size() > 0 ) {
int imagecache = s_vTransferCache.size();
s_vTempBuffer.resize(imagecache + nQWordSize*4);
memcpy(&s_vTempBuffer[0], &s_vTransferCache[0], imagecache);
memcpy(&s_vTempBuffer[imagecache], pbyMem, nQWordSize*4);
pbyMem = (const void*)&s_vTempBuffer[0];
porgend = &s_vTempBuffer[0]+s_vTempBuffer.size();
int wordinc = imagecache / 4;
if( (nQWordSize * 4 + imagecache)/3 == ((nQWordSize+wordinc) * 4) / 3 ) {
// can use the data
nQWordSize += wordinc;
}
}
int leftover = m_Blocks[gs.dstbuf.psm].TransferHostLocal(pbyMem, nQWordSize);
if( leftover > 0 ) {
// copy the last gs.image24bitOffset to the cache
s_vTransferCache.resize(leftover);
memcpy(&s_vTransferCache[0], porgend - leftover, leftover);
}
else s_vTransferCache.resize(0);
#if !defined(RELEASE_TO_PUBLIC) && defined(_DEBUG)
if( g_bSaveTrans ) {
tex0Info t;
t.tbp0 = gs.dstbuf.bp;
t.tw = gs.imageWnew;
t.th = gs.imageHnew;
t.tbw = gs.dstbuf.bw;
t.psm = gs.dstbuf.psm;
SaveTex(&t, 0);
}
#endif
}
// left/right, top/down
//void TransferHostLocal(const void* pbyMem, u32 nQWordSize)
//{
// assert( gs.imageTransfer == 0 );
// u8* pstart = g_pbyGSMemory + gs.dstbuf.bp*256;
//
// const u8* pendbuf = (const u8*)pbyMem + nQWordSize*4;
// int i = gs.imageY, j = gs.imageX;
//
//#define DSTPSM gs.dstbuf.psm
//
//#define TRANSFERHOSTLOCAL(psm, T, widthlimit) { \
// const T* pbuf = (const T*)pbyMem; \
// u32 nSize = nQWordSize*(4/sizeof(T)); \
// assert( (nSize%widthlimit) == 0 && widthlimit <= 4 ); \
// if( ((gs.imageEndX-gs.trxpos.dx)%widthlimit) ) DEBUG_LOG("Bad Transmission! %d %d, psm: %d\n", gs.trxpos.dx, gs.imageEndX, DSTPSM); \
// for(; i < gs.imageEndY; ++i) { \
// for(; j < gs.imageEndX && nSize > 0; j += widthlimit, nSize -= widthlimit, pbuf += widthlimit) { \
// /* write as many pixel at one time as possible */ \
// writePixel##psm##_0(pstart, j%2048, i%2048, pbuf[0], gs.dstbuf.bw); \
// \
// if( widthlimit > 1 ) { \
// writePixel##psm##_0(pstart, (j+1)%2048, i%2048, pbuf[1], gs.dstbuf.bw); \
// \
// if( widthlimit > 2 ) { \
// writePixel##psm##_0(pstart, (j+2)%2048, i%2048, pbuf[2], gs.dstbuf.bw); \
// \
// if( widthlimit > 3 ) { \
// writePixel##psm##_0(pstart, (j+3)%2048, i%2048, pbuf[3], gs.dstbuf.bw); \
// } \
// } \
// } \
// } \
// \
// if( j >= gs.imageEndX ) { assert(j == gs.imageEndX); j = gs.trxpos.dx; } \
// else { assert( nSize == 0 ); goto End; } \
// } \
//} \
//
//#define TRANSFERHOSTLOCAL_4(psm) { \
// const u8* pbuf = (const u8*)pbyMem; \
// u32 nSize = nQWordSize*8; \
// for(; i < gs.imageEndY; ++i) { \
// for(; j < gs.imageEndX && nSize > 0; j += 8, nSize -= 8) { \
// /* write as many pixel at one time as possible */ \
// writePixel##psm##_0(pstart, j%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \
// writePixel##psm##_0(pstart, (j+1)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \
// pbuf++; \
// writePixel##psm##_0(pstart, (j+2)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \
// writePixel##psm##_0(pstart, (j+3)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \
// pbuf++; \
// writePixel##psm##_0(pstart, (j+4)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \
// writePixel##psm##_0(pstart, (j+5)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \
// pbuf++; \
// writePixel##psm##_0(pstart, (j+6)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \
// writePixel##psm##_0(pstart, (j+7)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \
// pbuf++; \
// } \
// \
// if( j >= gs.imageEndX ) { /*assert(j == gs.imageEndX);*/ j = gs.trxpos.dx; } \
// else { assert( nSize == 0 ); goto End; } \
// } \
//} \
//
// switch (gs.dstbuf.psm) {
// case 0x0: TRANSFERHOSTLOCAL(32, u32, 2); break;
// case 0x1: TRANSFERHOSTLOCAL(24, u32, 4); break;
// case 0x2: TRANSFERHOSTLOCAL(16, u16, 4); break;
// case 0xA: TRANSFERHOSTLOCAL(16S, u16, 4); break;
// case 0x13:
// if( ((gs.imageEndX-gs.trxpos.dx)%4) ) {
// TRANSFERHOSTLOCAL(8, u8, 1);
// }
// else {
// TRANSFERHOSTLOCAL(8, u8, 4);
// }
// break;
//
// case 0x14:
//// if( (gs.imageEndX-gs.trxpos.dx)%8 ) {
//// // hack
//// if( abs((int)nQWordSize*8 - (gs.imageEndY-i)*(gs.imageEndX-gs.trxpos.dx)+(j-gs.trxpos.dx)) <= 8 ) {
//// // don't transfer
//// DEBUG_LOG("bad texture 4: %d %d %d\n", gs.trxpos.dx, gs.imageEndX, nQWordSize);
//// gs.imageEndX = gs.trxpos.dx + (gs.imageEndX-gs.trxpos.dx)&~7;
//// //i = gs.imageEndY;
//// //goto End;
//// gs.imageTransfer = -1;
//// }
//// }
// TRANSFERHOSTLOCAL_4(4);
// break;
// case 0x1B: TRANSFERHOSTLOCAL(8H, u8, 4); break;
// case 0x24: TRANSFERHOSTLOCAL_4(4HL); break;
// case 0x2C: TRANSFERHOSTLOCAL_4(4HH); break;
// case 0x30: TRANSFERHOSTLOCAL(32Z, u32, 2); break;
// case 0x31: TRANSFERHOSTLOCAL(24Z, u32, 4); break;
// case 0x32: TRANSFERHOSTLOCAL(16Z, u16, 4); break;
// case 0x3A: TRANSFERHOSTLOCAL(16SZ, u16, 4); break;
// }
//
//End:
// if( i >= gs.imageEndY ) {
// assert( i == gs.imageEndY );
// gs.imageTransfer = -1;
//
// if( g_bSaveTrans ) {
// tex0Info t;
// t.tbp0 = gs.dstbuf.bp;
// t.tw = gs.imageWnew;
// t.th = gs.imageHnew;
// t.tbw = gs.dstbuf.bw;
// t.psm = gs.dstbuf.psm;
// SaveTex(&t, 0);
// }
// }
// else {
// /* update new params */
// gs.imageY = i;
// gs.imageX = j;
// }
//}
void InitTransferLocalHost()
{
assert( gs.trxpos.sx+gs.imageWnew <= 2048 && gs.trxpos.sy+gs.imageHnew <= 2048 );
#ifndef RELEASE_TO_PUBLIC
if( gs.trxpos.sx+gs.imageWnew > gs.srcbuf.bw )
WARN_LOG("Transfer error, width exceeds\n");
#endif
gs.imageX = gs.trxpos.sx;
gs.imageY = gs.trxpos.sy;
gs.imageEndX = gs.imageX + gs.imageWnew;
gs.imageEndY = gs.imageY + gs.imageHnew;
int start, end;
GetRectMemAddress(start, end, gs.srcbuf.psm, gs.trxpos.sx, gs.trxpos.sy, gs.imageWnew, gs.imageHnew, gs.srcbuf.bp, gs.srcbuf.bw);
ResolveInRange(start, end);
}
// left/right, top/down
void TransferLocalHost(void* pbyMem, u32 nQWordSize)
{
assert( gs.imageTransfer == 1 );
u8* pstart = g_pbyGSMemory + 256*gs.srcbuf.bp;
int i = gs.imageY, j = gs.imageX;
#define TRANSFERLOCALHOST(psm, T) { \
T* pbuf = (T*)pbyMem; \
u32 nSize = nQWordSize*16/sizeof(T); \
for(; i < gs.imageEndY; ++i) { \
for(; j < gs.imageEndX && nSize > 0; ++j, --nSize) { \
*pbuf++ = readPixel##psm##_0(pstart, j%2048, i%2048, gs.srcbuf.bw); \
} \
\
if( j >= gs.imageEndX ) { assert( j == gs.imageEndX); j = gs.trxpos.sx; } \
else { assert( nSize == 0 ); break; } \
} \
} \
#define TRANSFERLOCALHOST_24(psm) { \
u8* pbuf = (u8*)pbyMem; \
u32 nSize = nQWordSize*16/3; \
for(; i < gs.imageEndY; ++i) { \
for(; j < gs.imageEndX && nSize > 0; ++j, --nSize) { \
u32 p = readPixel##psm##_0(pstart, j%2048, i%2048, gs.srcbuf.bw); \
pbuf[0] = (u8)p; \
pbuf[1] = (u8)(p>>8); \
pbuf[2] = (u8)(p>>16); \
pbuf += 3; \
} \
\
if( j >= gs.imageEndX ) { assert( j == gs.imageEndX); j = gs.trxpos.sx; } \
else { assert( nSize == 0 ); break; } \
} \
} \
switch (gs.srcbuf.psm) {
case 0x0: TRANSFERLOCALHOST(32, u32); break;
case 0x1: TRANSFERLOCALHOST_24(24); break;
case 0x2: TRANSFERLOCALHOST(16, u16); break;
case 0xA: TRANSFERLOCALHOST(16S, u16); break;
case 0x13: TRANSFERLOCALHOST(8, u8); break;
case 0x1B: TRANSFERLOCALHOST(8H, u8); break;
case 0x30: TRANSFERLOCALHOST(32Z, u32); break;
case 0x31: TRANSFERLOCALHOST_24(24Z); break;
case 0x32: TRANSFERLOCALHOST(16Z, u16); break;
case 0x3A: TRANSFERLOCALHOST(16SZ, u16); break;
default: assert(0);
}
gs.imageY = i;
gs.imageX = j;
if( gs.imageY >= gs.imageEndY ) {
assert( gs.imageY == gs.imageEndY );
gs.imageTransfer = -1;
}
}
// dir depends on trxpos.dir
void TransferLocalLocal()
{
assert( gs.imageTransfer == 2 );
assert( gs.trxpos.sx+gs.imageWnew < 2048 && gs.trxpos.sy+gs.imageHnew < 2048 );
assert( gs.trxpos.dx+gs.imageWnew < 2048 && gs.trxpos.dy+gs.imageHnew < 2048 );
assert( (gs.srcbuf.psm&0x7) == (gs.dstbuf.psm&0x7) );
if( gs.trxpos.sx+gs.imageWnew > gs.srcbuf.bw )
WARN_LOG("Transfer error, src width exceeds\n");
if( gs.trxpos.dx+gs.imageWnew > gs.dstbuf.bw )
WARN_LOG("Transfer error, dst width exceeds\n");
int srcstart, srcend, dststart, dstend;
GetRectMemAddress(srcstart, srcend, gs.srcbuf.psm, gs.trxpos.sx, gs.trxpos.sy, gs.imageWnew, gs.imageHnew, gs.srcbuf.bp, gs.srcbuf.bw);
GetRectMemAddress(dststart, dstend, gs.dstbuf.psm, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw);
// resolve the targs
ResolveInRange(srcstart, srcend);
list<CRenderTarget*> listTargs;
s_RTs.GetTargs(dststart, dstend, listTargs);
for(list<CRenderTarget*>::iterator it = listTargs.begin(); it != listTargs.end(); ++it) {
if( !((*it)->status & CRenderTarget::TS_Virtual) ) {
(*it)->Resolve();
(*it)->status |= CRenderTarget::TS_NeedUpdate;
}
}
u8* pSrcBuf = g_pbyGSMemory + gs.srcbuf.bp*256;
u8* pDstBuf = g_pbyGSMemory + gs.dstbuf.bp*256;
#define TRANSFERLOCALLOCAL(srcpsm, dstpsm, widthlimit) { \
if( (gs.imageWnew&widthlimit)!=0 ) break; \
assert( (gs.imageWnew&widthlimit)==0 && widthlimit <= 4); \
for(int i = gs.trxpos.sy, i2 = gs.trxpos.dy; i < gs.trxpos.sy+gs.imageHnew; i++, i2++) { \
for(int j = gs.trxpos.sx, j2 = gs.trxpos.dx; j < gs.trxpos.sx+gs.imageWnew; j+=widthlimit, j2+=widthlimit) { \
\
writePixel##dstpsm##_0(pDstBuf, j2%2048, i2%2048, \
readPixel##srcpsm##_0(pSrcBuf, j%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \
\
if( widthlimit > 1 ) { \
writePixel##dstpsm##_0(pDstBuf, (j2+1)%2048, i2%2048, \
readPixel##srcpsm##_0(pSrcBuf, (j+1)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \
\
if( widthlimit > 2 ) { \
writePixel##dstpsm##_0(pDstBuf, (j2+2)%2048, i2%2048, \
readPixel##srcpsm##_0(pSrcBuf, (j+2)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \
\
if( widthlimit > 3 ) { \
writePixel##dstpsm##_0(pDstBuf, (j2+3)%2048, i2%2048, \
readPixel##srcpsm##_0(pSrcBuf, (j+3)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \
} \
} \
} \
} \
} \
} \
#define TRANSFERLOCALLOCAL_4(srcpsm, dstpsm) { \
assert( (gs.imageWnew%8) == 0 ); \
for(int i = gs.trxpos.sy, i2 = gs.trxpos.dy; i < gs.trxpos.sy+gs.imageHnew; ++i, ++i2) { \
for(int j = gs.trxpos.sx, j2 = gs.trxpos.dx; j < gs.trxpos.sx+gs.imageWnew; j+=8, j2+=8) { \
/* NOTE: the 2 conseq 4bit values are in NOT in the same byte */ \
u32 read = getPixelAddress##srcpsm##_0(j%2048, i%2048, gs.srcbuf.bw); \
u32 write = getPixelAddress##dstpsm##_0(j2%2048, i2%2048, gs.dstbuf.bw); \
pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \
\
read = getPixelAddress##srcpsm##_0((j+1)%2048, i%2048, gs.srcbuf.bw); \
write = getPixelAddress##dstpsm##_0((j2+1)%2048, i2%2048, gs.dstbuf.bw); \
pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \
\
read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \
write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \
pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \
\
read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \
write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \
pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \
\
read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \
write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \
pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \
\
read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \
write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \
pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \
\
read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \
write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \
pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \
\
read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \
write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \
pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \
} \
} \
} \
switch (gs.srcbuf.psm) {
case PSMCT32:
if( gs.dstbuf.psm == PSMCT32 ) {
TRANSFERLOCALLOCAL(32, 32, 2);
}
else {
TRANSFERLOCALLOCAL(32, 32Z, 2);
}
break;
case PSMCT24:
if( gs.dstbuf.psm == PSMCT24 ) {
TRANSFERLOCALLOCAL(24, 24, 4);
}
else {
TRANSFERLOCALLOCAL(24, 24Z, 4);
}
break;
case PSMCT16:
switch(gs.dstbuf.psm) {
case PSMCT16: TRANSFERLOCALLOCAL(16, 16, 4); break;
case PSMCT16S: TRANSFERLOCALLOCAL(16, 16S, 4); break;
case PSMT16Z: TRANSFERLOCALLOCAL(16, 16Z, 4); break;
case PSMT16SZ: TRANSFERLOCALLOCAL(16, 16SZ, 4); break;
}
break;
case PSMCT16S:
switch(gs.dstbuf.psm) {
case PSMCT16: TRANSFERLOCALLOCAL(16S, 16, 4); break;
case PSMCT16S: TRANSFERLOCALLOCAL(16S, 16S, 4); break;
case PSMT16Z: TRANSFERLOCALLOCAL(16S, 16Z, 4); break;
case PSMT16SZ: TRANSFERLOCALLOCAL(16S, 16SZ, 4); break;
}
break;
case PSMT8:
if( gs.dstbuf.psm == PSMT8 ) {
TRANSFERLOCALLOCAL(8, 8, 4);
}
else {
TRANSFERLOCALLOCAL(8, 8H, 4);
}
break;
case PSMT4:
switch(gs.dstbuf.psm ) {
case PSMT4: TRANSFERLOCALLOCAL_4(4, 4); break;
case PSMT4HL: TRANSFERLOCALLOCAL_4(4, 4HL); break;
case PSMT4HH: TRANSFERLOCALLOCAL_4(4, 4HH); break;
}
break;
case PSMT8H:
if( gs.dstbuf.psm == PSMT8 ) {
TRANSFERLOCALLOCAL(8H, 8, 4);
}
else {
TRANSFERLOCALLOCAL(8H, 8H, 4);
}
break;
case PSMT4HL:
switch(gs.dstbuf.psm ) {
case PSMT4: TRANSFERLOCALLOCAL_4(4HL, 4); break;
case PSMT4HL: TRANSFERLOCALLOCAL_4(4HL, 4HL); break;
case PSMT4HH: TRANSFERLOCALLOCAL_4(4HL, 4HH); break;
}
break;
case PSMT4HH:
switch(gs.dstbuf.psm ) {
case PSMT4: TRANSFERLOCALLOCAL_4(4HH, 4); break;
case PSMT4HL: TRANSFERLOCALLOCAL_4(4HH, 4HL); break;
case PSMT4HH: TRANSFERLOCALLOCAL_4(4HH, 4HH); break;
}
break;
case PSMT32Z:
if( gs.dstbuf.psm == PSMCT32 ) {
TRANSFERLOCALLOCAL(32Z, 32, 2);
}
else {
TRANSFERLOCALLOCAL(32Z, 32Z, 2);
}
break;
case PSMT24Z:
if( gs.dstbuf.psm == PSMCT24 ) {
TRANSFERLOCALLOCAL(24Z, 24, 4);
}
else {
TRANSFERLOCALLOCAL(24Z, 24Z, 4);
}
break;
case PSMT16Z:
switch(gs.dstbuf.psm) {
case PSMCT16: TRANSFERLOCALLOCAL(16Z, 16, 4); break;
case PSMCT16S: TRANSFERLOCALLOCAL(16Z, 16S, 4); break;
case PSMT16Z: TRANSFERLOCALLOCAL(16Z, 16Z, 4); break;
case PSMT16SZ: TRANSFERLOCALLOCAL(16Z, 16SZ, 4); break;
}
break;
case PSMT16SZ:
switch(gs.dstbuf.psm) {
case PSMCT16: TRANSFERLOCALLOCAL(16SZ, 16, 4); break;
case PSMCT16S: TRANSFERLOCALLOCAL(16SZ, 16S, 4); break;
case PSMT16Z: TRANSFERLOCALLOCAL(16SZ, 16Z, 4); break;
case PSMT16SZ: TRANSFERLOCALLOCAL(16SZ, 16SZ, 4); break;
}
break;
}
g_MemTargs.ClearRange(dststart, dstend);
#if !defined(RELEASE_TO_PUBLIC) && defined(_DEBUG)
if( g_bSaveTrans ) {
tex0Info t;
t.tbp0 = gs.dstbuf.bp;
t.tw = gs.imageWnew;
t.th = gs.imageHnew;
t.tbw = gs.dstbuf.bw;
t.psm = gs.dstbuf.psm;
SaveTex(&t, 0);
t.tbp0 = gs.srcbuf.bp;
t.tw = gs.imageWnew;
t.th = gs.imageHnew;
t.tbw = gs.srcbuf.bw;
t.psm = gs.srcbuf.psm;
SaveTex(&t, 0);
}
#endif
}
void GetRectMemAddress(int& start, int& end, int psm, int x, int y, int w, int h, int bp, int bw)
{
if( m_Blocks[psm].bpp == 0 ) {
ERROR_LOG("ZeroGS: Bad psm 0x%x\n", psm);
start = 0;
end = 0x00400000;
return;
}
if( (psm&0x30) == 0x30 || psm == 0xa ) {
const BLOCK& b = m_Blocks[psm];
bw = (bw + b.width -1)/b.width;
start = bp*256 + ((y/b.height) * bw + (x/b.width) )*0x2000;
end = bp*256 + (((y+h-1)/b.height) * bw + (x + w + b.width - 1)/b.width)*0x2000;
}
else {
// just take the addresses
switch(psm) {
case 0x00:
case 0x01:
case 0x1b:
case 0x24:
case 0x2c:
start = 4*getPixelAddress32(x, y, bp, bw);
end = 4*getPixelAddress32(x+w-1, y+h-1, bp, bw) + 4;
break;
case 0x02:
start = 2*getPixelAddress16(x, y, bp, bw);
end = 2*getPixelAddress16(x+w-1, y+h-1, bp, bw)+2;
break;
case 0x13:
start = getPixelAddress8(x, y, bp, bw);
end = getPixelAddress8(x+w-1, y+h-1, bp, bw)+1;
break;
case 0x14:
{
start = getPixelAddress4(x, y, bp, bw)/2;
int newx = ((x+w-1+31)&~31)-1;
int newy = ((y+h-1+15)&~15)-1;
end = (getPixelAddress4(max(newx,x), max(newy,y), bp, bw)+2)/2;
break;
}
}
}
}
void _Resolve(const D3DLOCKED_RECT& locksrc, int fbp, int fbw, int fbh, int psm, u32 fbm)
{
s_nResolved += 2;
// align the rect to the nearest page
// note that fbp is always aligned on page boundaries
int start, end;
GetRectMemAddress(start, end, psm, 0, 0, fbw, fbh, fbp, fbw);
PRIM_LOG("resolve: %x %x %x (%x-%x)\n", fbp, fbw, fbh, start, end);
int i, j;
short smask1 = gs.smask&1;
short smask2 = gs.smask&2;
u32 mask, imask;
if( psm&2 ) { // 16 bit
// mask is shifted
imask = RGBA32to16(fbm);
mask = (~imask)&0xffff;
}
else {
mask = ~fbm;
imask = fbm;
if( (psm&0xf)>0 ) {
// preserve the alpha?
mask &= 0x00ffffff;
imask |= 0xff000000;
}
}
#define RESOLVE_32BIT(psm, T, Tsrc, blockbits, blockwidth, blockheight, convfn, frame, aax, aay) \
{ \
Tsrc* src = (Tsrc*)locksrc.pBits; \
T* pPageOffset = (T*)g_pbyGSMemory + fbp*(256/sizeof(T)), *dst; \
int srcpitch = locksrc.Pitch * blockheight/sizeof(Tsrc); \
int maxfbh = (0x00400000-fbp*256) / (sizeof(T) * fbw); \
if( maxfbh > fbh ) maxfbh = fbh; \
for(i = 0; i < (maxfbh&~(blockheight-1)); i += blockheight) { \
/*if( smask2 && (i&1) == smask1 ) continue; */ \
for(j = 0; j < fbw; j += blockwidth) { \
/* have to write in the tiled format*/ \
##frame##SwizzleBlock##blockbits##(pPageOffset + getPixelAddress##psm##_0(j, i, fbw), \
src+(j<<aax), locksrc.Pitch/sizeof(Tsrc), mask); \
} \
src += (srcpitch<<aay); \
} \
for(; i < maxfbh; ++i) { \
for(j = 0; j < fbw; ++j) { \
T dsrc = convfn(src[j<<aax]); \
dst = pPageOffset + getPixelAddress##psm##_0(j, i, fbw); \
*dst = (dsrc & mask) | (*dst & imask); \
} \
src += (locksrc.Pitch<<aay)/sizeof(Tsrc); \
} \
} \
if( g_RenderFormat == D3DFMT_A8R8G8B8 ) {
// start the conversion process A8R8G8B8 -> psm
switch(psm) {
case PSMCT32:
case PSMCT24:
if( s_AAy ) {
RESOLVE_32BIT(32, u32, u32, 32A4, 8, 8, (u32), Frame, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(32, u32, u32, 32A2, 8, 8, (u32), Frame, 1, 0);
}
else {
RESOLVE_32BIT(32, u32, u32, 32, 8, 8, (u32), Frame, 0, 0);
}
break;
case PSMCT16:
if( s_AAy ) {
RESOLVE_32BIT(16, u16, u32, 16A4, 16, 8, RGBA32to16, Frame, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(16, u16, u32, 16A2, 16, 8, RGBA32to16, Frame, 1, 0);
}
else {
RESOLVE_32BIT(16, u16, u32, 16, 16, 8, RGBA32to16, Frame, 0, 0);
}
break;
case PSMCT16S:
if( s_AAy ) {
RESOLVE_32BIT(16S, u16, u32, 16A4, 16, 8, RGBA32to16, Frame, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(16S, u16, u32, 16A2, 16, 8, RGBA32to16, Frame, 1, 0);
}
else {
RESOLVE_32BIT(16S, u16, u32, 16, 16, 8, RGBA32to16, Frame, 0, 0);
}
break;
case PSMT32Z:
case PSMT24Z:
if( s_AAy ) {
RESOLVE_32BIT(32Z, u32, u32, 32A4, 8, 8, (u32), Frame, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(32Z, u32, u32, 32A2, 8, 8, (u32), Frame, 1, 0);
}
else {
RESOLVE_32BIT(32Z, u32, u32, 32, 8, 8, (u32), Frame, 0, 0);
}
break;
case PSMT16Z:
if( s_AAy ) {
RESOLVE_32BIT(16Z, u16, u32, 16A4, 16, 8, (u16), Frame, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(16Z, u16, u32, 16A2, 16, 8, (u16), Frame, 1, 0);
}
else {
RESOLVE_32BIT(16Z, u16, u32, 16, 16, 8, (u16), Frame, 0, 0);
}
break;
case PSMT16SZ:
if( s_AAy ) {
RESOLVE_32BIT(16SZ, u16, u32, 16A4, 16, 8, (u16), Frame, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(16SZ, u16, u32, 16A2, 16, 8, (u16), Frame, 1, 0);
}
else {
RESOLVE_32BIT(16SZ, u16, u32, 16, 16, 8, (u16), Frame, 0, 0);
}
break;
}
}
else {
switch(psm) {
case PSMCT32:
case PSMCT24:
if( s_AAy ) {
RESOLVE_32BIT(32, u32, Vector_16F, 32A4, 8, 8, Float16ToARGB, Frame16, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(32, u32, Vector_16F, 32A2, 8, 8, Float16ToARGB, Frame16, 1, 0);
}
else {
RESOLVE_32BIT(32, u32, Vector_16F, 32, 8, 8, Float16ToARGB, Frame16, 0, 0);
}
break;
case PSMCT16:
if( s_AAy ) {
RESOLVE_32BIT(16, u16, Vector_16F, 16A4, 16, 8, Float16ToARGB16, Frame16, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(16, u16, Vector_16F, 16A2, 16, 8, Float16ToARGB16, Frame16, 1, 0);
}
else {
RESOLVE_32BIT(16, u16, Vector_16F, 16, 16, 8, Float16ToARGB16, Frame16, 0, 0);
}
break;
case PSMCT16S:
if( s_AAy ) {
RESOLVE_32BIT(16S, u16, Vector_16F, 16A4, 16, 8, Float16ToARGB16, Frame16, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(16S, u16, Vector_16F, 16A2, 16, 8, Float16ToARGB16, Frame16, 1, 0);
}
else {
RESOLVE_32BIT(16S, u16, Vector_16F, 16, 16, 8, Float16ToARGB16, Frame16, 0, 0);
}
break;
case PSMT32Z:
case PSMT24Z:
if( s_AAy ) {
RESOLVE_32BIT(32Z, u32, Vector_16F, 32ZA4, 8, 8, Float16ToARGB_Z, Frame16, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(32Z, u32, Vector_16F, 32ZA2, 8, 8, Float16ToARGB_Z, Frame16, 1, 0);
}
else {
RESOLVE_32BIT(32Z, u32, Vector_16F, 32Z, 8, 8, Float16ToARGB_Z, Frame16, 0, 0);
}
break;
case PSMT16Z:
if( s_AAy ) {
RESOLVE_32BIT(16Z, u16, Vector_16F, 16ZA4, 16, 8, Float16ToARGB16_Z, Frame16, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(16Z, u16, Vector_16F, 16ZA2, 16, 8, Float16ToARGB16_Z, Frame16, 1, 0);
}
else {
RESOLVE_32BIT(16Z, u16, Vector_16F, 16Z, 16, 8, Float16ToARGB16_Z, Frame16, 0, 0);
}
break;
case PSMT16SZ:
if( s_AAy ) {
RESOLVE_32BIT(16SZ, u16, Vector_16F, 16ZA4, 16, 8, Float16ToARGB16_Z, Frame16, 1, 1);
}
else if( s_AAx ) {
RESOLVE_32BIT(16SZ, u16, Vector_16F, 16ZA2, 16, 8, Float16ToARGB16_Z, Frame16, 1, 0);
}
else {
RESOLVE_32BIT(16SZ, u16, Vector_16F, 16Z, 16, 8, Float16ToARGB16_Z, Frame16, 0, 0);
}
break;
}
}
g_MemTargs.ClearRange(start, end);
INC_RESOLVE();
}
////////////
// Saving //
////////////
void SaveTex(tex0Info* ptex, int usevid)
{
LPD3DTEX pTexture;
pd3dDevice->CreateTexture(ptex->tw, ptex->th, 1, 0, D3DFMT_A8R8G8B8, D3DPOOL_SYSTEMMEM, &pTexture, NULL);
D3DLOCKED_RECT lockdst;
pTexture->LockRect(0, &lockdst, NULL, 0);
DWORD* dst = (DWORD*)lockdst.pBits;
u8* psrc = g_pbyGSMemory;
CMemoryTarget* pmemtarg = NULL;
if( usevid ) {
pmemtarg = g_MemTargs.GetMemoryTarget(*ptex, 1);
assert( pmemtarg != NULL );
D3DLOCKED_RECT lock;
HRESULT hr = pmemtarg->ptexsys->LockRect(0, &lock, NULL, D3DLOCK_READONLY);
if( FAILED(hr) )
return;
u32 offset = pmemtarg->realy * 4 * GPU_TEXWIDTH;
if( ptex->psm == PSMT8 ) offset *= ptex->cpsm <= 1 ? 4 : 2;
else if( ptex->psm == PSMT4 ) offset *= ptex->cpsm <= 1 ? 8 : 4;
psrc = (u8*)lock.pBits - offset;
}
for(int i = 0; i < ptex->th; ++i) {
for(int j = 0; j < ptex->tw; ++j) {
u32 u, addr;
switch(ptex->psm) {
case PSMCT32:
addr = getPixelAddress32(j, i, ptex->tbp0, ptex->tbw);
if( addr*4 < 0x00400000 )
u = readPixel32(psrc, j, i, ptex->tbp0, ptex->tbw);
else u = 0;
break;
case PSMCT24:
addr = getPixelAddress24(j, i, ptex->tbp0, ptex->tbw);
if( addr*4 < 0x00400000 )
u = readPixel24(psrc, j, i, ptex->tbp0, ptex->tbw);
else u = 0;
break;
case PSMCT16:
addr = getPixelAddress16(j, i, ptex->tbp0, ptex->tbw);
if( addr*2 < 0x00400000 ) {
u = readPixel16(psrc, j, i, ptex->tbp0, ptex->tbw);
u = RGBA16to32(u);
}
else u = 0;
break;
case PSMCT16S:
addr = getPixelAddress16(j, i, ptex->tbp0, ptex->tbw);
if( addr*2 < 0x00400000 ) {
u = readPixel16S(psrc, j, i, ptex->tbp0, ptex->tbw);
u = RGBA16to32(u);
}
else u = 0;
break;
case PSMT8:
addr = getPixelAddress8(j, i, ptex->tbp0, ptex->tbw);
if( addr < 0x00400000 ) {
if( usevid ) {
if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr);
else u = RGBA16to32(*(u16*)(psrc+2*addr));
}
else
u = readPixel8(psrc, j, i, ptex->tbp0, ptex->tbw);
}
else u = 0;
break;
case PSMT4:
addr = getPixelAddress4(j, i, ptex->tbp0, ptex->tbw);
if( addr < 2*0x00400000 ) {
if( usevid ) {
if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr);
else u = RGBA16to32(*(u16*)(psrc+2*addr));
}
else
u = readPixel4(psrc, j, i, ptex->tbp0, ptex->tbw);
}
else u = 0;
break;
case PSMT8H:
addr = getPixelAddress8H(j, i, ptex->tbp0, ptex->tbw);
if( 4*addr < 0x00400000 ) {
if( usevid ) {
if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr);
else u = RGBA16to32(*(u16*)(psrc+2*addr));
}
else
u = readPixel8H(psrc, j, i, ptex->tbp0, ptex->tbw);
}
else u = 0;
break;
case PSMT4HL:
addr = getPixelAddress4HL(j, i, ptex->tbp0, ptex->tbw);
if( 4*addr < 0x00400000 ) {
if( usevid ) {
if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr);
else u = RGBA16to32(*(u16*)(psrc+2*addr));
}
else
u = readPixel4HL(psrc, j, i, ptex->tbp0, ptex->tbw);
}
else u = 0;
break;
case PSMT4HH:
addr = getPixelAddress4HH(j, i, ptex->tbp0, ptex->tbw);
if( 4*addr < 0x00400000 ) {
if( usevid ) {
if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr);
else u = RGBA16to32(*(u16*)(psrc+2*addr));
}
else
u = readPixel4HH(psrc, j, i, ptex->tbp0, ptex->tbw);
}
else u = 0;
break;
case PSMT32Z:
addr = getPixelAddress32Z(j, i, ptex->tbp0, ptex->tbw);
if( 4*addr < 0x00400000 )
u = readPixel32Z(psrc, j, i, ptex->tbp0, ptex->tbw);
else u = 0;
break;
case PSMT24Z:
addr = getPixelAddress24Z(j, i, ptex->tbp0, ptex->tbw);
if( 4*addr < 0x00400000 )
u = readPixel24Z(psrc, j, i, ptex->tbp0, ptex->tbw);
else u = 0;
break;
case PSMT16Z:
addr = getPixelAddress16Z(j, i, ptex->tbp0, ptex->tbw);
if( 2*addr < 0x00400000 )
u = readPixel16Z(psrc, j, i, ptex->tbp0, ptex->tbw);
else u = 0;
break;
case PSMT16SZ:
addr = getPixelAddress16SZ(j, i, ptex->tbp0, ptex->tbw);
if( 2*addr < 0x00400000 )
u = readPixel16SZ(psrc, j, i, ptex->tbp0, ptex->tbw);
else u = 0;
break;
default:
assert(0);
}
*dst++ = u;
}
dst += lockdst.Pitch/4 - ptex->tw;
}
pTexture->UnlockRect(0);
if( usevid ) {
pmemtarg->ptexsys->UnlockRect(0);
}
D3DXSaveTextureToFile("tex.tga", D3DXIFF_TGA, pTexture, NULL);
SAFE_RELEASE(pTexture);
}
}