pcsx2/plugins/GSdx/Renderers/SW/GSSetupPrimCodeGenerator.x8...

358 lines
7.6 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSSetupPrimCodeGenerator.h"
#include "GSVertexSW.h"
#if _M_SSE < 0x501 && !(defined(_M_AMD64) || defined(_WIN64))
using namespace Xbyak;
static const int _args = 0;
static const int _vertex = _args + 4;
static const int _index = _args + 8;
static const int _dscan = _args + 12;
void GSSetupPrimCodeGenerator::Generate_SSE()
{
if((m_en.z || m_en.f) && m_sel.prim != GS_SPRITE_CLASS || m_en.t || m_en.c && m_sel.iip)
{
mov(edx, dword[esp + _dscan]);
for(int i = 0; i < (m_sel.notest ? 2 : 5); i++)
{
movaps(Xmm(3 + i), ptr[g_const->m_shift_128b[i]]);
}
}
Depth_SSE();
Texture_SSE();
Color_SSE();
ret();
}
void GSSetupPrimCodeGenerator::Depth_SSE()
{
if(!m_en.z && !m_en.f)
{
return;
}
if(m_sel.prim != GS_SPRITE_CLASS)
{
// GSVector4 p = dscan.p;
movaps(xmm0, ptr[edx + offsetof(GSVertexSW, p)]);
if(m_en.f)
{
// GSVector4 df = p.wwww();
movaps(xmm1, xmm0);
shufps(xmm1, xmm1, _MM_SHUFFLE(3, 3, 3, 3));
// m_local.d4.f = GSVector4i(df * 4.0f).xxzzlh();
movaps(xmm2, xmm1);
mulps(xmm2, xmm3);
cvttps2dq(xmm2, xmm2);
pshuflw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0));
pshufhw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0));
movdqa(ptr[&m_local.d4.f], xmm2);
for(int i = 0; i < (m_sel.notest ? 1 : 4); i++)
{
// m_local.d[i].f = GSVector4i(df * m_shift[i]).xxzzlh();
movaps(xmm2, xmm1);
mulps(xmm2, Xmm(4 + i));
cvttps2dq(xmm2, xmm2);
pshuflw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0));
pshufhw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0));
movdqa(ptr[&m_local.d[i].f], xmm2);
}
}
if(m_en.z)
{
// GSVector4 dz = p.zzzz();
shufps(xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2));
// m_local.d4.z = dz * 4.0f;
movaps(xmm1, xmm0);
mulps(xmm1, xmm3);
movdqa(ptr[&m_local.d4.z], xmm1);
for(int i = 0; i < (m_sel.notest ? 1 : 4); i++)
{
// m_local.d[i].z = dz * m_shift[i];
movaps(xmm1, xmm0);
mulps(xmm1, Xmm(4 + i));
movdqa(ptr[&m_local.d[i].z], xmm1);
}
}
}
else
{
// GSVector4 p = vertex[index[1]].p;
mov(ecx, ptr[esp + _index]);
mov(ecx, ptr[ecx + sizeof(uint32) * 1]);
shl(ecx, 6); // * sizeof(GSVertexSW)
add(ecx, ptr[esp + _vertex]);
movaps(xmm0, ptr[ecx + offsetof(GSVertexSW, p)]);
if(m_en.f)
{
// m_local.p.f = GSVector4i(p).zzzzh().zzzz();
cvttps2dq(xmm1, xmm0);
pshufhw(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2));
pshufd(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2));
movdqa(ptr[&m_local.p.f], xmm1);
}
if(m_en.z)
{
// uint32 z is bypassed in t.w
movdqa(xmm0, ptr[ecx + offsetof(GSVertexSW, t)]);
pshufd(xmm0, xmm0, _MM_SHUFFLE(3, 3, 3, 3));
movdqa(ptr[&m_local.p.z], xmm0);
}
}
}
void GSSetupPrimCodeGenerator::Texture_SSE()
{
if(!m_en.t)
{
return;
}
// GSVector4 t = dscan.t;
movaps(xmm0, ptr[edx + offsetof(GSVertexSW, t)]);
movaps(xmm1, xmm0);
mulps(xmm1, xmm3);
if(m_sel.fst)
{
// m_local.d4.stq = GSVector4i(t * 4.0f);
cvttps2dq(xmm1, xmm1);
movdqa(ptr[&m_local.d4.stq], xmm1);
}
else
{
// m_local.d4.stq = t * 4.0f;
movaps(ptr[&m_local.d4.stq], xmm1);
}
for(int j = 0, k = m_sel.fst ? 2 : 3; j < k; j++)
{
// GSVector4 ds = t.xxxx();
// GSVector4 dt = t.yyyy();
// GSVector4 dq = t.zzzz();
movaps(xmm1, xmm0);
shufps(xmm1, xmm1, (uint8)_MM_SHUFFLE(j, j, j, j));
for(int i = 0; i < (m_sel.notest ? 1 : 4); i++)
{
// GSVector4 v = ds/dt * m_shift[i];
movaps(xmm2, xmm1);
mulps(xmm2, Xmm(4 + i));
if(m_sel.fst)
{
// m_local.d[i].s/t = GSVector4i(v);
cvttps2dq(xmm2, xmm2);
switch(j)
{
case 0: movdqa(ptr[&m_local.d[i].s], xmm2); break;
case 1: movdqa(ptr[&m_local.d[i].t], xmm2); break;
}
}
else
{
// m_local.d[i].s/t/q = v;
switch(j)
{
case 0: movaps(ptr[&m_local.d[i].s], xmm2); break;
case 1: movaps(ptr[&m_local.d[i].t], xmm2); break;
case 2: movaps(ptr[&m_local.d[i].q], xmm2); break;
}
}
}
}
}
void GSSetupPrimCodeGenerator::Color_SSE()
{
if(!m_en.c)
{
return;
}
if(m_sel.iip)
{
// GSVector4 c = dscan.c;
movaps(xmm0, ptr[edx + offsetof(GSVertexSW, c)]);
movaps(xmm1, xmm0);
// m_local.d4.c = GSVector4i(c * 4.0f).xzyw().ps32();
movaps(xmm2, xmm0);
mulps(xmm2, xmm3);
cvttps2dq(xmm2, xmm2);
pshufd(xmm2, xmm2, _MM_SHUFFLE(3, 1, 2, 0));
packssdw(xmm2, xmm2);
movdqa(ptr[&m_local.d4.c], xmm2);
// xmm3 is not needed anymore
// GSVector4 dr = c.xxxx();
// GSVector4 db = c.zzzz();
shufps(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
shufps(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2));
for(int i = 0; i < (m_sel.notest ? 1 : 4); i++)
{
// GSVector4i r = GSVector4i(dr * m_shift[i]).ps32();
movaps(xmm2, xmm0);
mulps(xmm2, Xmm(4 + i));
cvttps2dq(xmm2, xmm2);
packssdw(xmm2, xmm2);
// GSVector4i b = GSVector4i(db * m_shift[i]).ps32();
movaps(xmm3, xmm1);
mulps(xmm3, Xmm(4 + i));
cvttps2dq(xmm3, xmm3);
packssdw(xmm3, xmm3);
// m_local.d[i].rb = r.upl16(b);
punpcklwd(xmm2, xmm3);
movdqa(ptr[&m_local.d[i].rb], xmm2);
}
// GSVector4 c = dscan.c;
movaps(xmm0, ptr[edx + offsetof(GSVertexSW, c)]); // not enough regs, have to reload it
movaps(xmm1, xmm0);
// GSVector4 dg = c.yyyy();
// GSVector4 da = c.wwww();
shufps(xmm0, xmm0, _MM_SHUFFLE(1, 1, 1, 1));
shufps(xmm1, xmm1, _MM_SHUFFLE(3, 3, 3, 3));
for(int i = 0; i < (m_sel.notest ? 1 : 4); i++)
{
// GSVector4i g = GSVector4i(dg * m_shift[i]).ps32();
movaps(xmm2, xmm0);
mulps(xmm2, Xmm(4 + i));
cvttps2dq(xmm2, xmm2);
packssdw(xmm2, xmm2);
// GSVector4i a = GSVector4i(da * m_shift[i]).ps32();
movaps(xmm3, xmm1);
mulps(xmm3, Xmm(4 + i));
cvttps2dq(xmm3, xmm3);
packssdw(xmm3, xmm3);
// m_local.d[i].ga = g.upl16(a);
punpcklwd(xmm2, xmm3);
movdqa(ptr[&m_local.d[i].ga], xmm2);
}
}
else
{
// GSVector4i c = GSVector4i(vertex[index[last].c);
int last = 0;
switch(m_sel.prim)
{
case GS_POINT_CLASS: last = 0; break;
case GS_LINE_CLASS: last = 1; break;
case GS_TRIANGLE_CLASS: last = 2; break;
case GS_SPRITE_CLASS: last = 1; break;
}
if(!(m_sel.prim == GS_SPRITE_CLASS && (m_en.z || m_en.f))) // if this is a sprite, the last vertex was already loaded in Depth()
{
mov(ecx, ptr[esp + _index]);
mov(ecx, ptr[ecx + sizeof(uint32) * last]);
shl(ecx, 6); // * sizeof(GSVertexSW)
add(ecx, ptr[esp + _vertex]);
}
cvttps2dq(xmm0, ptr[ecx + offsetof(GSVertexSW, c)]);
// c = c.upl16(c.zwxy());
pshufd(xmm1, xmm0, _MM_SHUFFLE(1, 0, 3, 2));
punpcklwd(xmm0, xmm1);
// if(!tme) c = c.srl16(7);
if(m_sel.tfx == TFX_NONE)
{
psrlw(xmm0, 7);
}
// m_local.c.rb = c.xxxx();
// m_local.c.ga = c.zzzz();
pshufd(xmm1, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
pshufd(xmm2, xmm0, _MM_SHUFFLE(2, 2, 2, 2));
movdqa(ptr[&m_local.c.rb], xmm1);
movdqa(ptr[&m_local.c.ga], xmm2);
}
}
#endif