pcsx2/plugins/zzogl-pg-cg/opengl/Regs.cpp

1081 lines
28 KiB
C++

/* ZZ Open GL graphics plugin
* Copyright (c)2009-2010 zeydlitz@gmail.com, arcum42@gmail.com
* Based on Zerofrog's ZeroGS KOSMOS (c)2005-2008
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "GS.h"
#include "Mem.h"
#include "Regs.h"
#include "PS2Etypes.h"
#include "targets.h"
#include "ZZoglVB.h"
#include "ZZoglDrawing.h"
#ifdef USE_OLD_REGS
#ifdef _MSC_VER
#pragma warning(disable:4244)
#endif
GIFRegHandler g_GIFPackedRegHandlers[16];
GIFRegHandler g_GIFRegHandlers[256];
GIFRegHandler g_GIFTempRegHandlers[16] = {0};
// values for keeping track of changes
u32 s_uTex1Data[2][2] = {{0, }};
u32 s_uClampData[2] = {0, };
//u32 results[65535] = {0, };
// Note that not all the registers are currently handled, even if they write values out.
// For reference, I'm starting a list of unhandled flags here. I'm sure I missed some,
// so feel free to add to this, or remove ones that are handled that I missed.
// Cases where these values are set would be useful, too.
//
// In GIFRegHandlerFOG, I don't see gs.vertexregs.f being used anywhere afterwards.
// GIFRegHandlerTEX1 doesn't look like anything other then mmag and mmin are handled.
// This includes:
// lcm - the lod (level of detail) calculation method. If 0, it's (log2(1/|Q|)<<L)+K), whereas if it is one, it's just K.
// mxl - This is what MIPMAP level we use. The default is 0, and any other level uses miptbp0 & 1 to get the texture width.
// mtba - this is the base address specification for MIPMAP level 1+.
// l - Yeah, this is for the LOD calculation.
// k - This too.
// This largely sums up as that we don't support MIPMAP level 1+ (much like GSdx), and LOD.
//
// In GIFRegHandlerSCANMSK, it doesn't look like gs.smask is used, though it may have been in the old resolve code.
// Lets see: 00 is normal drawing, 01 is reserved, 10 prohibits drawing to even y coords, and 11 prohibits drawing to odd y coords.
//
// In GIFRegHandlerMIPTBP1 & 2, both miptbp0 & miptbp1 look unused, which isn't suprising, given mxl not being checked.
//
// GIFRegHandlerDIMX doesn't even have any code in it!
// This is supposed to read in the matrix for dithering.
//
// In GIFRegHandlerDTHE, nothing is done with gs.dthe.
// This goes right with the last one, because dthe is set to 1 when dithering with the dthe matrix.
// In GIFRegHandlerCOLCLAMP, gs.colclamp is not used.
// This is color clamping on the RGB value. If it's 0, it is set to mask, the lower 8 bits are enabled, and it wraps around. At 1, it is clamped from 0-255.
//#define SPAM_UNUSED_REGISTERS
#ifdef SPAM_UNUSED_REGISTERS
#define REG_LOG ZZLog::Error_Log
#else
#define REG_LOG 0 &&
#endif
void __gifCall GIFPackedRegHandlerNull(const u32* data)
{
FUNCLOG
ZZLog::Debug_Log("Unexpected packed reg handler %8.8lx_%8.8lx %x.", data[0], data[1], data[2]);
}
// All these just call their non-packed equivalent.
void __gifCall GIFPackedRegHandlerPRIM(const u32* data) { GIFRegHandlerPRIM(data); }
template <u32 ctxt>
void __gifCall GIFPackedRegHandlerTEX0(const u32* data) { GIFRegHandlerTEX0<ctxt>(data); }
template <u32 ctxt>
void __gifCall GIFPackedRegHandlerCLAMP(const u32* data) { GIFRegHandlerCLAMP<ctxt>(data); }
void __gifCall GIFPackedRegHandlerXYZF3(const u32* data) { GIFRegHandlerXYZF3(data); }
void __gifCall GIFPackedRegHandlerXYZ3(const u32* data) { GIFRegHandlerXYZ3(data); }
void __gifCall GIFPackedRegHandlerRGBA(const u32* data)
{
FUNCLOG
GIFPackedRGBA* r = (GIFPackedRGBA*)(data);
gs.rgba = (r->R | (r->G << 8) | (r->B << 16) | (r->A << 24));
gs.vertexregs.rgba = gs.rgba;
gs.vertexregs.q = gs.q;
}
void __gifCall GIFPackedRegHandlerSTQ(const u32* data)
{
FUNCLOG
// GIFPackedSTQ* r = (GIFPackedSTQ*)(data);
// gs.vertexregs.s = r->S;
// gs.vertexregs.t = r->T;
// gs.q = r->Q;
// Despite this code generating a warning, it's correct. float -> float reduction. S and Y are missed mantissas.
*(u32*)&gs.vertexregs.s = data[0] & 0xffffff00;
*(u32*)&gs.vertexregs.t = data[1] & 0xffffff00;
*(u32*)&gs.q = data[2];
}
void __gifCall GIFPackedRegHandlerUV(const u32* data)
{
FUNCLOG
GIFPackedUV* r = (GIFPackedUV*)(data);
gs.vertexregs.u = r->U;
gs.vertexregs.v = r->V;
}
void __gifCall GIFPackedRegHandlerXYZF2(const u32* data)
{
FUNCLOG
GIFPackedXYZF2* r = (GIFPackedXYZF2*)(data);
gs.add_vertex(r->X, r->Y,r->Z, r->F);
ZZKick->KickVertex(!!(r->ADC));
}
void __gifCall GIFPackedRegHandlerXYZ2(const u32* data)
{
FUNCLOG
GIFPackedXYZ2* r = (GIFPackedXYZ2*)(data);
gs.add_vertex(r->X, r->Y,r->Z);
ZZKick->KickVertex(!!(r->ADC));
}
void __gifCall GIFPackedRegHandlerFOG(const u32* data)
{
FUNCLOG
GIFPackedFOG* r = (GIFPackedFOG*)(data);
gs.vertexregs.f = r->F;
// gs.vertexregs.f = (data[3] & 0xff0) >> 4;
if (gs.vertexregs.f != 0) REG_LOG("GIFPackedRegHandlerFOG == %d", gs.vertexregs.f);
}
void __gifCall GIFPackedRegHandlerA_D(const u32* data)
{
FUNCLOG
if ((data[2] & 0xff) < 100)
g_GIFRegHandlers[data[2] & 0xff](data);
else
GIFRegHandlerNull(data);
}
void __gifCall GIFPackedRegHandlerNOP(const u32* data)
{
FUNCLOG
}
void __gifCall GIFRegHandlerNull(const u32* data)
{
FUNCLOG
#ifdef _DEBUG
if ((((uptr)&data[2])&0xffff) == 0) return;
// 0x7f happens on a lot of games
if (data[2] != 0x7f && (data[0] || data[1]))
{
ZZLog::Debug_Log("Unexpected reg handler %x %x %x.", data[0], data[1], data[2]);
}
#endif
}
void __gifCall GIFRegHandlerPRIM(const u32 *data)
{
FUNCLOG
//if (data[0] & ~0x3ff)
//{
//ZZLog::Warn_Log("Warning: unknown bits in prim %8.8lx_%8.8lx", data[1], data[0]);
//}
gs.primC = 0;
u16 prim_type = (data[0]) & 0x7;
prim->prim = prim_type;
gs._prim[0].prim = prim_type;
gs._prim[1].prim = prim_type;
gs._prim[1]._val = (data[0] >> 3) & 0xff;
gs.new_tri_fan = !(prim_type ^ PRIM_TRIANGLE_FAN);
ZZKick->DirtyValidPrevPrim();
Prim();
}
void __gifCall GIFRegHandlerRGBAQ(const u32* data)
{
FUNCLOG
gs.rgba = data[0];
gs.vertexregs.rgba = data[0];
*(u32*)&gs.vertexregs.q = data[1];
}
void __gifCall GIFRegHandlerST(const u32* data)
{
FUNCLOG
*(u32*)&gs.vertexregs.s = data[0] & 0xffffff00;
*(u32*)&gs.vertexregs.t = data[1] & 0xffffff00;
//*(u32*)&gs.q = data[2];
}
void __gifCall GIFRegHandlerUV(const u32* data)
{
// Baroque breaks if u&v are 16 bits instead of 14.
FUNCLOG
// gs.vertexregs.u = (data[0]) & 0x3fff;
// gs.vertexregs.v = (data[0] >> 16) & 0x3fff;
GIFRegUV* r = (GIFRegUV*)(data);
gs.vertexregs.u = r->U;
gs.vertexregs.v = r->V;
}
void __gifCall GIFRegHandlerXYZF2(const u32* data)
{
FUNCLOG
GIFRegXYZF* r = (GIFRegXYZF*)(data);
gs.add_vertex(r->X, r->Y,r->Z, r->F);
ZZKick->KickVertex(false);
}
void __gifCall GIFRegHandlerXYZ2(const u32* data)
{
FUNCLOG
GIFRegXYZ* r = (GIFRegXYZ*)(data);
gs.add_vertex(r->X, r->Y,r->Z);
ZZKick->KickVertex(false);
}
template <u32 ctxt>
void __gifCall GIFRegHandlerTEX0(const u32* data)
{
FUNCLOG
if (!NoHighlights(ctxt)) return;
u32 psm = ZZOglGet_psm_TexBitsFix(data[0]);
if (m_Blocks[psm].bpp == 0)
{
// kh and others
return;
}
vb[ctxt].uNextTex0Data[0] = data[0];
vb[ctxt].uNextTex0Data[1] = data[1];
vb[ctxt].bNeedTexCheck = 1;
// don't update unless necessary
if (PSMT_ISCLUT(psm))
{
if (CheckChangeInClut(data[1], psm))
{
// loading clut, so flush whole texture
vb[ctxt].FlushTexData();
}
// check if csa is the same!! (ffx bisaid island, grass)
else if ((data[1] & CPSM_CSA_BITMASK) != (vb[ctxt].uCurTex0Data[1] & CPSM_CSA_BITMASK))
{
Flush(ctxt); // flush any previous entries
}
}
}
template <u32 ctxt>
void __gifCall GIFRegHandlerCLAMP(const u32* data)
{
FUNCLOG
if (!NoHighlights(ctxt)) return;
clampInfo& clamp = vb[ctxt].clamp;
GIFRegCLAMP* r = (GIFRegCLAMP*)(data);
if ((s_uClampData[ctxt] != data[0]) || (((clamp.minv >> 8) | (clamp.maxv << 2)) != (data[1]&0x0fff)))
{
Flush(ctxt);
s_uClampData[ctxt] = data[0];
clamp.wms = r->WMS;
clamp.wmt = r->WMT;
clamp.minu = r->MINU;
clamp.maxu = r->MAXU;
clamp.minv = r->MINV;
clamp.maxv = r->MAXV;
vb[ctxt].bTexConstsSync = false;
}
}
void __gifCall GIFRegHandlerFOG(const u32* data)
{
FUNCLOG
//gs.gsvertex[gs.primIndex].f = (data[1] >> 24); // shift to upper bits
GIFRegFOG* r = (GIFRegFOG*)(data);
gs.vertexregs.f = r->F;
if (gs.vertexregs.f != 0) REG_LOG("GIFPackedRegHandlerFOG == %d", gs.vertexregs.f);
}
void __gifCall GIFRegHandlerXYZF3(const u32* data)
{
FUNCLOG
GIFRegXYZF* r = (GIFRegXYZF*)(data);
gs.add_vertex(r->X, r->Y,r->Z, r->F);
ZZKick->KickVertex(true);
}
void __gifCall GIFRegHandlerXYZ3(const u32* data)
{
FUNCLOG
GIFRegXYZ* r = (GIFRegXYZ*)(data);
gs.add_vertex(r->X, r->Y,r->Z);
ZZKick->KickVertex(true);
}
void __gifCall GIFRegHandlerNOP(const u32* data)
{
FUNCLOG
}
template <u32 ctxt>
void __gifCall GIFRegHandlerTEX1(const u32* data)
{
FUNCLOG
if (!NoHighlights(ctxt)) return;
GIFRegTEX1* r = (GIFRegTEX1*)(data);
tex1Info& tex1 = vb[ctxt].tex1;
if (conf.bilinear == 1 && (tex1.mmag != ((data[0] >> 5) & 0x1) || tex1.mmin != ((data[0] >> 6) & 0x7)))
{
Flush(ctxt);
vb[ctxt].bVarsTexSync = false;
}
tex1.lcm = r->LCM;
tex1.mxl = r->MXL;
tex1.mmag = r->MMAG;
tex1.mmin = r->MMIN;
tex1.mtba = r->MTBA;
tex1.l = r->L;
tex1.k = r->K;
#ifdef SPAM_UNUSED_REGISTERS
REG_LOG("Lcm = %d, l = %d, k = %d", tex1.lcm, tex1.l, tex1.k);
if (tex1.mxl != 0) REG_LOG("MIPMAP level set to %d, which is unsupported.");
#endif
}
template <u32 ctxt>
void __gifCall GIFRegHandlerTEX2(const u32* data)
{
FUNCLOG
tex0Info& tex0 = vb[ctxt].tex0;
vb[ctxt].FlushTexData();
u32 psm = ZZOglGet_psm_TexBitsFix(data[0]);
u32* s_uTex0Data = vb[ctxt].uCurTex0Data;
// don't update unless necessary
// if( ZZOglGet_psm_TexBitsFix(*s_uTex0Data) == ZZOglGet_psm_TexBitsFix(data[0]) ) { // psm is the same
if (ZZOglAllExceptClutIsSame(s_uTex0Data, data))
{
if (!PSMT_ISCLUT(psm)) return;
// have to write the CLUT again if changed
if (ZZOglClutMinusCLDunchanged(s_uTex0Data, data))
{
tex0.cld = ZZOglGet_cld_TexBits(data[1]);
if (tex0.cld != 0)
{
texClutWrite(ctxt);
// invalidate to make sure target didn't change!
vb[ctxt].bVarsTexSync = false;
}
return;
}
}
Flush(ctxt);
vb[ctxt].bVarsTexSync = false;
vb[ctxt].bTexConstsSync = false;
s_uTex0Data[0] = (s_uTex0Data[0] & ~0x03f00000) | (psm << 20);
s_uTex0Data[1] = (s_uTex0Data[1] & 0x1f) | (data[1] & ~0x1f);
tex0.psm = ZZOglGet_psm_TexBitsFix(data[0]);
if (PSMT_ISCLUT(tex0.psm)) CluttingForFlushedTex(&tex0, data[1], ctxt);
}
template <u32 ctxt>
void __gifCall GIFRegHandlerXYOFFSET(const u32* data)
{
FUNCLOG
GIFRegXYOFFSET* r = (GIFRegXYOFFSET*)(data);
vb[ctxt].offset.x = r->OFX;
vb[ctxt].offset.y = r->OFY;
// if( !conf.interlace ) {
// vb[1].offset.x &= ~15;
// vb[1].offset.y &= ~15;
// }
}
void __gifCall GIFRegHandlerPRMODECONT(const u32* data)
{
FUNCLOG
gs.prac = data[0] & 0x1;
prim = &gs._prim[gs.prac];
Prim();
}
void __gifCall GIFRegHandlerPRMODE(const u32* data)
{
FUNCLOG
gs._prim[0]._val = (data[0] >> 3) & 0xff;
if (gs.prac == 0) Prim();
}
void __gifCall GIFRegHandlerTEXCLUT(const u32* data)
{
FUNCLOG
// Affects background coloration of initial Mana Khemia dialog.
GIFRegTEXCLUT* r = (GIFRegTEXCLUT*)(data);
vb[0].FlushTexData();
vb[1].FlushTexData();
gs.clut.cbw = r->CBW << 6;
gs.clut.cou = r->COU << 4;
gs.clut.cov = r->COV;
}
void __gifCall GIFRegHandlerSCANMSK(const u32* data)
{
FUNCLOG
GIFRegSCANMSK* r = (GIFRegSCANMSK*)(data);
// FlushBoth();
// ResolveC(&vb[0]);
// ResolveZ(&vb[0]);
gs.smask = r->MSK;
REG_LOG("Scanmsk == %d", gs.smask);
}
template <u32 ctxt>
void __gifCall GIFRegHandlerMIPTBP1(const u32* data)
{
FUNCLOG
GIFRegMIPTBP1* r = (GIFRegMIPTBP1*)(data);
miptbpInfo& miptbp0 = vb[ctxt].miptbp0;
miptbp0.tbp[0] = r->TBP1;
miptbp0.tbw[0] = r->TBW1;
miptbp0.tbp[1] = r->TBP2;
miptbp0.tbw[1] = r->TBW2;
miptbp0.tbp[2] = r->TBP3;
miptbp0.tbw[2] = r->TBW3;
#ifdef SPAM_UNUSED_REGISTERS
if ((miptbp0.tbp[0] != 0) || (miptbp0.tbp[1] != 0) || (miptbp0.tbp[2] != 0))
{
REG_LOG("MIPTBP1: 0:%d(%d) 1:%d(%d) 2:%d(%d).", \
miptbp0.tbp[0], miptbp0.tbw[0], miptbp0.tbp[1], miptbp0.tbw[1], miptbp0.tbp[2], miptbp0.tbw[2]);
}
#endif
}
template <u32 ctxt>
void __gifCall GIFRegHandlerMIPTBP2(const u32* data)
{
FUNCLOG
GIFRegMIPTBP2* r = (GIFRegMIPTBP2*)(data);
miptbpInfo& miptbp1 = vb[ctxt].miptbp1;
miptbp1.tbp[0] = r->TBP4;
miptbp1.tbw[0] = r->TBW4;
miptbp1.tbp[1] = r->TBP5;
miptbp1.tbw[1] = r->TBW5;
miptbp1.tbp[2] = r->TBP6;
miptbp1.tbw[2] = r->TBW6;
#ifdef SPAM_UNUSED_REGISTERS
if ((miptbp1.tbp[0] != 0) || (miptbp1.tbp[1] != 0) || (miptbp1.tbp[2] != 0))
{
REG_LOG("MIPTBP2: 0:%d(%d) 1:%d(%d) 2:%d(%d).", \
miptbp1.tbp[0], miptbp1.tbw[0], miptbp1.tbp[1], miptbp1.tbw[1], miptbp1.tbp[2], miptbp1.tbw[2]);
}
#endif
}
void __gifCall GIFRegHandlerTEXA(const u32* data)
{
FUNCLOG
texaInfo newinfo;
newinfo.aem = (data[0] >> 15) & 0x1;
newinfo.ta[0] = data[0] & 0xff;
newinfo.ta[1] = data[1] & 0xff;
if (*(u32*)&newinfo != *(u32*)&gs.texa)
{
FlushBoth();
*(u32*)&gs.texa = *(u32*) & newinfo;
gs.texa.fta[0] = newinfo.ta[0] / 255.0f;
gs.texa.fta[1] = newinfo.ta[1] / 255.0f;
vb[0].bTexConstsSync = false;
vb[1].bTexConstsSync = false;
}
}
void __gifCall GIFRegHandlerFOGCOL(const u32* data)
{
FUNCLOG
GIFRegFOGCOL* r = (GIFRegFOGCOL*)(data);
SetFogColor(r);
gs.fogcol = r->ai32[0];
}
void __gifCall GIFRegHandlerTEXFLUSH(const u32* data)
{
FUNCLOG
SetTexFlush();
}
template <u32 ctxt>
void __gifCall GIFRegHandlerSCISSOR(const u32* data)
{
FUNCLOG
GIFRegSCISSOR* r = (GIFRegSCISSOR*)(data);
Rect2& scissor = vb[ctxt].scissor;
Rect2 newscissor;
newscissor.x0 = r->SCAX0 << 3;
newscissor.x1 = r->SCAX1 << 3;
newscissor.y0 = r->SCAY0 << 3;
newscissor.y1 = r->SCAY1 << 3;
if (newscissor.x1 != scissor.x1 || newscissor.y1 != scissor.y1 ||
newscissor.x0 != scissor.x0 || newscissor.y0 != scissor.y0)
{
Flush(ctxt);
scissor = newscissor;
// flush everything
vb[ctxt].bNeedFrameCheck = 1;
}
}
template <u32 ctxt>
void __gifCall GIFRegHandlerALPHA(const u32* data)
{
FUNCLOG
alphaInfo newalpha;
newalpha.abcd = *(u8*)data;
newalpha.fix = *(u8*)(data + 1);
if (*(u16*)&newalpha != *(u16*)&vb[ctxt].alpha)
{
Flush(ctxt);
if (newalpha.a == 3) newalpha.a = 0;
if (newalpha.b == 3) newalpha.b = 0;
if (newalpha.c == 3) newalpha.c = 0;
if (newalpha.d == 3) newalpha.d = 0;
*(u16*)&vb[ctxt].alpha = *(u16*) & newalpha;
}
}
void __gifCall GIFRegHandlerDIMX(const u32* data)
{
FUNCLOG
GIFRegDIMX* r = (GIFRegDIMX*)(data);
gs.dimx.i64 = r->i64;
}
void __gifCall GIFRegHandlerDTHE(const u32* data)
{
FUNCLOG
GIFRegDTHE* r = (GIFRegDTHE*)(data);
gs.dthe = r->DTHE;
if (gs.dthe != 0) REG_LOG("Dithering set. (but not implemented.)");
}
void __gifCall GIFRegHandlerCOLCLAMP(const u32* data)
{
FUNCLOG
GIFRegCOLCLAMP* r = (GIFRegCOLCLAMP*)(data);
gs.colclamp = r->CLAMP;
if (gs.colclamp == 0)
REG_LOG("COLCLAMP == MASK");
else
REG_LOG("COLCLAMP == CLAMP");
}
template <u32 ctxt>
void __gifCall GIFRegHandlerTEST(const u32* data)
{
FUNCLOG
pixTest* test = &vb[ctxt].test;
if ((*(u32*)test & 0x0007ffff) == (data[0] & 0x0007ffff)) return;
Flush(ctxt);
*(u32*)test = data[0];
// test.ate = (data[0] ) & 0x1;
// test.atst = (data[0] >> 1) & 0x7;
// test.aref = (data[0] >> 4) & 0xff;
// test.afail = (data[0] >> 12) & 0x3;
// test.date = (data[0] >> 14) & 0x1;
// test.datm = (data[0] >> 15) & 0x1;
// test.zte = (data[0] >> 16) & 0x1;
// test.ztst = (data[0] >> 17) & 0x3;
}
void __gifCall GIFRegHandlerPABE(const u32* data)
{
FUNCLOG
GIFRegPABE* r = (GIFRegPABE*)(data);
//SetAlphaChanged(0, GPUREG_PABE);
//SetAlphaChanged(1, GPUREG_PABE);
FlushBoth();
gs.pabe = r->PABE;
}
template <u32 ctxt>
void __gifCall GIFRegHandlerFBA(const u32* data)
{
FUNCLOG
GIFRegFBA* r = (GIFRegFBA*)(data);
FlushBoth();
vb[ctxt].fba.fba = r->FBA;
}
template <u32 ctxt>
void __gifCall GIFRegHandlerFRAME(const u32* data)
{
FUNCLOG
frameInfo& gsfb = vb[ctxt].gsfb;
if ((gsfb.fbp == ZZOglGet_fbp_FrameBitsMult(data[0])) &&
(gsfb.fbw == ZZOglGet_fbw_FrameBitsMult(data[0])) &&
(gsfb.psm == ZZOglGet_psm_FrameBits(data[0])) &&
(gsfb.fbm == ZZOglGet_fbm_FrameBits(data[0])))
{
return;
}
FlushBoth();
gsfb.fbp = ZZOglGet_fbp_FrameBitsMult(data[0]);
gsfb.fbw = ZZOglGet_fbw_FrameBitsMult(data[0]);
gsfb.psm = ZZOglGet_psm_FrameBits(data[0]);
gsfb.fbm = ZZOglGet_fbm_FrameBitsFix(data[0], data[1]);
gsfb.fbh = ZZOglGet_fbh_FrameBitsCalc(data[0]);
// gsfb.fbhCalc = gsfb.fbh;
vb[ctxt].bNeedFrameCheck = 1;
}
template <u32 ctxt>
void __gifCall GIFRegHandlerZBUF(const u32* data)
{
FUNCLOG
zbufInfo& zbuf = vb[ctxt].zbuf;
int psm = (0x30 | ((data[0] >> 24) & 0xf));
if (zbuf.zbp == (data[0] & 0x1ff) * 32 &&
zbuf.psm == psm &&
zbuf.zmsk == (data[1] & 0x1))
{
return;
}
// error detection
if (m_Blocks[psm].bpp == 0) return;
FlushBoth();
zbuf.zbp = (data[0] & 0x1ff) * 32;
zbuf.psm = 0x30 | ((data[0] >> 24) & 0xf);
zbuf.zmsk = data[1] & 0x1;
vb[ctxt].bNeedZCheck = 1;
vb[ctxt].zprimmask = 0xffffffff;
if (zbuf.psm > 0x31) vb[ctxt].zprimmask = 0xffff;
}
void __gifCall GIFRegHandlerBITBLTBUF(const u32* data)
{
FUNCLOG
GIFRegBITBLTBUF* r = (GIFRegBITBLTBUF*)(data);
gs.srcbufnew.bp = r->SBP;
gs.srcbufnew.bw = r->SBW << 6;
gs.srcbufnew.psm = r->SPSM;
gs.dstbufnew.bp = r->DBP;
gs.dstbufnew.bw = r->DBW << 6;
gs.dstbufnew.psm = r->DPSM;
if (gs.dstbufnew.bw == 0) gs.dstbufnew.bw = 64;
}
void __gifCall GIFRegHandlerTRXPOS(const u32* data)
{
FUNCLOG
GIFRegTRXPOS* r = (GIFRegTRXPOS*)(data);
gs.trxposnew.sx = r->SSAX;
gs.trxposnew.sy = r->SSAY;
gs.trxposnew.dx = r->DSAX;
gs.trxposnew.dy = r->DSAY;
gs.trxposnew.dirx = r->DIRX;
gs.trxposnew.diry = r->DIRY;
}
void __gifCall GIFRegHandlerTRXREG(const u32* data)
{
FUNCLOG
GIFRegTRXREG* r = (GIFRegTRXREG*)(data);
gs.imageWtemp = r->RRW;
gs.imageHtemp = r->RRH;
}
void __gifCall GIFRegHandlerTRXDIR(const u32* data)
{
FUNCLOG
// terminate any previous transfers
switch (gs.imageTransfer)
{
case 0: // host->loc
TerminateHostLocal();
break;
case 1: // loc->host
TerminateLocalHost();
break;
}
gs.srcbuf = gs.srcbufnew;
gs.dstbuf = gs.dstbufnew;
gs.trxpos = gs.trxposnew;
gs.imageTransfer = data[0] & 0x3;
gs.imageWnew = gs.imageWtemp;
gs.imageHnew = gs.imageHtemp;
if (gs.imageWnew > 0 && gs.imageHnew > 0)
{
switch (gs.imageTransfer)
{
case 0: // host->loc
InitTransferHostLocal();
break;
case 1: // loc->host
InitTransferLocalHost();
break;
case 2:
TransferLocalLocal();
break;
case 3:
gs.imageTransfer = -1;
break;
default:
assert(0);
}
}
else
{
#if defined(ZEROGS_DEVBUILD)
ZZLog::Warn_Log("Dummy transfer.");
#endif
gs.imageTransfer = -1;
}
}
void __gifCall GIFRegHandlerHWREG(const u32* data)
{
FUNCLOG
if (gs.imageTransfer == 0)
{
TransferHostLocal(data, 2);
}
else
{
#if defined(ZEROGS_DEVBUILD)
ZZLog::Error_Log("ZeroGS: HWREG!? %8.8x_%8.8x", data[0], data[1]);
//assert(0);
#endif
}
}
extern int g_GSMultiThreaded;
void __gifCall GIFRegHandlerSIGNAL(const u32* data)
{
FUNCLOG
if (!g_GSMultiThreaded)
{
SIGLBLID->SIGID = (SIGLBLID->SIGID & ~data[1]) | (data[0] & data[1]);
// if (gs.CSRw & 0x1) CSR->SIGNAL = 1;
// if (!IMR->SIGMSK && GSirq)
// GSirq();
if (gs.CSRw & 0x1)
{
CSR->SIGNAL = 1;
//gs.CSRw &= ~1;
}
if (!IMR->SIGMSK && GSirq) GSirq();
}
}
void __gifCall GIFRegHandlerFINISH(const u32* data)
{
FUNCLOG
if (!g_GSMultiThreaded)
{
if (gs.CSRw & 0x2) CSR->FINISH = 1;
if (!IMR->FINISHMSK && GSirq) GSirq();
// if( gs.CSRw & 2 ) {
// //gs.CSRw &= ~2;
// //CSR->FINISH = 0;
//
//
// }
// CSR->FINISH = 1;
//
// if( !IMR->FINISHMSK && GSirq )
// GSirq();
}
}
void __gifCall GIFRegHandlerLABEL(const u32* data)
{
FUNCLOG
if (!g_GSMultiThreaded)
{
SIGLBLID->LBLID = (SIGLBLID->LBLID & ~data[1]) | (data[0] & data[1]);
}
}
void SetMultithreaded()
{
// Some older versions of PCSX2 didn't properly set the irq callback to NULL
// in multithreaded mode (possibly because ZeroGS itself would assert in such
// cases), and didn't bind them to a dummy callback either. PCSX2 handles all
// IRQs internally when multithreaded anyway -- so let's ignore them here:
if (g_GSMultiThreaded)
{
g_GIFRegHandlers[GIF_A_D_REG_SIGNAL] = &GIFRegHandlerNull;
g_GIFRegHandlers[GIF_A_D_REG_FINISH] = &GIFRegHandlerNull;
g_GIFRegHandlers[GIF_A_D_REG_LABEL] = &GIFRegHandlerNull;
}
else
{
g_GIFRegHandlers[GIF_A_D_REG_SIGNAL] = &GIFRegHandlerSIGNAL;
g_GIFRegHandlers[GIF_A_D_REG_FINISH] = &GIFRegHandlerFINISH;
g_GIFRegHandlers[GIF_A_D_REG_LABEL] = &GIFRegHandlerLABEL;
}
}
void ResetRegs()
{
for (int i = 0; i < 16; i++)
{
g_GIFPackedRegHandlers[i] = &GIFPackedRegHandlerNull;
}
g_GIFPackedRegHandlers[GIF_REG_PRIM] = &GIFPackedRegHandlerPRIM;
g_GIFPackedRegHandlers[GIF_REG_RGBA] = &GIFPackedRegHandlerRGBA;
g_GIFPackedRegHandlers[GIF_REG_STQ] = &GIFPackedRegHandlerSTQ;
g_GIFPackedRegHandlers[GIF_REG_UV] = &GIFPackedRegHandlerUV;
g_GIFPackedRegHandlers[GIF_REG_XYZF2] = &GIFPackedRegHandlerXYZF2;
g_GIFPackedRegHandlers[GIF_REG_XYZ2] = &GIFPackedRegHandlerXYZ2;
g_GIFPackedRegHandlers[GIF_REG_TEX0_1] = &GIFPackedRegHandlerTEX0<0>;
g_GIFPackedRegHandlers[GIF_REG_TEX0_2] = &GIFPackedRegHandlerTEX0<1>;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_1] = &GIFPackedRegHandlerCLAMP<0>;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_2] = &GIFPackedRegHandlerCLAMP<1>;
g_GIFPackedRegHandlers[GIF_REG_FOG] = &GIFPackedRegHandlerFOG;
g_GIFPackedRegHandlers[GIF_REG_XYZF3] = &GIFPackedRegHandlerXYZF3;
g_GIFPackedRegHandlers[GIF_REG_XYZ3] = &GIFPackedRegHandlerXYZ3;
g_GIFPackedRegHandlers[GIF_REG_A_D] = &GIFPackedRegHandlerA_D;
g_GIFPackedRegHandlers[GIF_REG_NOP] = &GIFPackedRegHandlerNOP;
for (int i = 0; i < 256; i++)
{
g_GIFRegHandlers[i] = &GIFPackedRegHandlerNull;
}
g_GIFRegHandlers[GIF_A_D_REG_PRIM] = &GIFRegHandlerPRIM;
g_GIFRegHandlers[GIF_A_D_REG_RGBAQ] = &GIFRegHandlerRGBAQ;
g_GIFRegHandlers[GIF_A_D_REG_ST] = &GIFRegHandlerST;
g_GIFRegHandlers[GIF_A_D_REG_UV] = &GIFRegHandlerUV;
g_GIFRegHandlers[GIF_A_D_REG_XYZF2] = &GIFRegHandlerXYZF2;
g_GIFRegHandlers[GIF_A_D_REG_XYZ2] = &GIFRegHandlerXYZ2;
g_GIFRegHandlers[GIF_A_D_REG_TEX0_1] = &GIFRegHandlerTEX0<0>;
g_GIFRegHandlers[GIF_A_D_REG_TEX0_2] = &GIFRegHandlerTEX0<1>;
g_GIFRegHandlers[GIF_A_D_REG_CLAMP_1] = &GIFRegHandlerCLAMP<0>;
g_GIFRegHandlers[GIF_A_D_REG_CLAMP_2] = &GIFRegHandlerCLAMP<1>;
g_GIFRegHandlers[GIF_A_D_REG_FOG] = &GIFRegHandlerFOG;
g_GIFRegHandlers[GIF_A_D_REG_XYZF3] = &GIFRegHandlerXYZF3;
g_GIFRegHandlers[GIF_A_D_REG_XYZ3] = &GIFRegHandlerXYZ3;
g_GIFRegHandlers[GIF_A_D_REG_NOP] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_TEX1_1] = &GIFRegHandlerTEX1<0>;
g_GIFRegHandlers[GIF_A_D_REG_TEX1_2] = &GIFRegHandlerTEX1<1>;
g_GIFRegHandlers[GIF_A_D_REG_TEX2_1] = &GIFRegHandlerTEX2<0>;
g_GIFRegHandlers[GIF_A_D_REG_TEX2_2] = &GIFRegHandlerTEX2<1>;
g_GIFRegHandlers[GIF_A_D_REG_XYOFFSET_1] = &GIFRegHandlerXYOFFSET<0>;
g_GIFRegHandlers[GIF_A_D_REG_XYOFFSET_2] = &GIFRegHandlerXYOFFSET<1>;
g_GIFRegHandlers[GIF_A_D_REG_PRMODECONT] = &GIFRegHandlerPRMODECONT;
g_GIFRegHandlers[GIF_A_D_REG_PRMODE] = &GIFRegHandlerPRMODE;
g_GIFRegHandlers[GIF_A_D_REG_TEXCLUT] = &GIFRegHandlerTEXCLUT;
g_GIFRegHandlers[GIF_A_D_REG_SCANMSK] = &GIFRegHandlerSCANMSK;
g_GIFRegHandlers[GIF_A_D_REG_MIPTBP1_1] = &GIFRegHandlerMIPTBP1<0>;
g_GIFRegHandlers[GIF_A_D_REG_MIPTBP1_2] = &GIFRegHandlerMIPTBP1<1>;
g_GIFRegHandlers[GIF_A_D_REG_MIPTBP2_1] = &GIFRegHandlerMIPTBP2<0>;
g_GIFRegHandlers[GIF_A_D_REG_MIPTBP2_2] = &GIFRegHandlerMIPTBP2<1>;
g_GIFRegHandlers[GIF_A_D_REG_TEXA] = &GIFRegHandlerTEXA;
g_GIFRegHandlers[GIF_A_D_REG_FOGCOL] = &GIFRegHandlerFOGCOL;
g_GIFRegHandlers[GIF_A_D_REG_TEXFLUSH] = &GIFRegHandlerTEXFLUSH;
g_GIFRegHandlers[GIF_A_D_REG_SCISSOR_1] = &GIFRegHandlerSCISSOR<0>;
g_GIFRegHandlers[GIF_A_D_REG_SCISSOR_2] = &GIFRegHandlerSCISSOR<1>;
g_GIFRegHandlers[GIF_A_D_REG_ALPHA_1] = &GIFRegHandlerALPHA<0>;
g_GIFRegHandlers[GIF_A_D_REG_ALPHA_2] = &GIFRegHandlerALPHA<1>;
g_GIFRegHandlers[GIF_A_D_REG_DIMX] = &GIFRegHandlerDIMX;
g_GIFRegHandlers[GIF_A_D_REG_DTHE] = &GIFRegHandlerDTHE;
g_GIFRegHandlers[GIF_A_D_REG_COLCLAMP] = &GIFRegHandlerCOLCLAMP;
g_GIFRegHandlers[GIF_A_D_REG_TEST_1] = &GIFRegHandlerTEST<0>;
g_GIFRegHandlers[GIF_A_D_REG_TEST_2] = &GIFRegHandlerTEST<1>;
g_GIFRegHandlers[GIF_A_D_REG_PABE] = &GIFRegHandlerPABE;
g_GIFRegHandlers[GIF_A_D_REG_FBA_1] = &GIFRegHandlerFBA<0>;
g_GIFRegHandlers[GIF_A_D_REG_FBA_2] = &GIFRegHandlerFBA<1>;
g_GIFRegHandlers[GIF_A_D_REG_FRAME_1] = &GIFRegHandlerFRAME<0>;
g_GIFRegHandlers[GIF_A_D_REG_FRAME_2] = &GIFRegHandlerFRAME<1>;
g_GIFRegHandlers[GIF_A_D_REG_ZBUF_1] = &GIFRegHandlerZBUF<0>;
g_GIFRegHandlers[GIF_A_D_REG_ZBUF_2] = &GIFRegHandlerZBUF<1>;
g_GIFRegHandlers[GIF_A_D_REG_BITBLTBUF] = &GIFRegHandlerBITBLTBUF;
g_GIFRegHandlers[GIF_A_D_REG_TRXPOS] = &GIFRegHandlerTRXPOS;
g_GIFRegHandlers[GIF_A_D_REG_TRXREG] = &GIFRegHandlerTRXREG;
g_GIFRegHandlers[GIF_A_D_REG_TRXDIR] = &GIFRegHandlerTRXDIR;
g_GIFRegHandlers[GIF_A_D_REG_HWREG] = &GIFRegHandlerHWREG;
SetMultithreaded();
}
void WriteTempRegs()
{
memcpy(g_GIFTempRegHandlers, g_GIFPackedRegHandlers, sizeof(g_GIFTempRegHandlers));
}
void SetFrameSkip(bool skip)
{
if (skip)
{
g_GIFPackedRegHandlers[GIF_REG_PRIM] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_RGBA] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_STQ] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_UV] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_XYZF2] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_XYZ2] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_1] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_2] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_FOG] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_XYZF3] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_XYZ3] = &GIFPackedRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_PRIM] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_RGBAQ] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_ST] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_UV] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_XYZF2] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_XYZ2] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_XYZF3] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_XYZ3] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_PRMODECONT] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_PRMODE] = &GIFRegHandlerNOP;
}
else
{
g_GIFPackedRegHandlers[GIF_REG_PRIM] = &GIFPackedRegHandlerPRIM;
g_GIFPackedRegHandlers[GIF_REG_RGBA] = &GIFPackedRegHandlerRGBA;
g_GIFPackedRegHandlers[GIF_REG_STQ] = &GIFPackedRegHandlerSTQ;
g_GIFPackedRegHandlers[GIF_REG_UV] = &GIFPackedRegHandlerUV;
g_GIFPackedRegHandlers[GIF_REG_XYZF2] = &GIFPackedRegHandlerXYZF2;
g_GIFPackedRegHandlers[GIF_REG_XYZ2] = &GIFPackedRegHandlerXYZ2;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_1] = &GIFPackedRegHandlerCLAMP<0>;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_2] = &GIFPackedRegHandlerCLAMP<1>;
g_GIFPackedRegHandlers[GIF_REG_FOG] = &GIFPackedRegHandlerFOG;
g_GIFPackedRegHandlers[GIF_REG_XYZF3] = &GIFPackedRegHandlerXYZF3;
g_GIFPackedRegHandlers[GIF_REG_XYZ3] = &GIFPackedRegHandlerXYZ3;
g_GIFRegHandlers[GIF_A_D_REG_PRIM] = &GIFRegHandlerPRIM;
g_GIFRegHandlers[GIF_A_D_REG_RGBAQ] = &GIFRegHandlerRGBAQ;
g_GIFRegHandlers[GIF_A_D_REG_ST] = &GIFRegHandlerST;
g_GIFRegHandlers[GIF_A_D_REG_UV] = &GIFRegHandlerUV;
g_GIFRegHandlers[GIF_A_D_REG_XYZF2] = &GIFRegHandlerXYZF2;
g_GIFRegHandlers[GIF_A_D_REG_XYZ2] = &GIFRegHandlerXYZ2;
g_GIFRegHandlers[GIF_A_D_REG_XYZF3] = &GIFRegHandlerXYZF3;
g_GIFRegHandlers[GIF_A_D_REG_XYZ3] = &GIFRegHandlerXYZ3;
g_GIFRegHandlers[GIF_A_D_REG_PRMODECONT] = &GIFRegHandlerPRMODECONT;
g_GIFRegHandlers[GIF_A_D_REG_PRMODE] = &GIFRegHandlerPRMODE;
}
}
#endif