pcsx2/x86/iCore.cpp

2369 lines
55 KiB
C++

#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <malloc.h>
extern "C" {
#if defined(__WIN32__)
#include <windows.h>
#endif
#include "PS2Etypes.h"
#include "System.h"
#include "R5900.h"
#include "Vif.h"
#include "VU.h"
#include "ix86/ix86.h"
#include "iCore.h"
#include "R3000A.h"
u16 g_x86AllocCounter = 0;
u16 g_xmmAllocCounter = 0;
u16 g_mmxAllocCounter = 0;
u16 x86FpuState, iCWstate;
EEINST* g_pCurInstInfo = NULL;
u32 g_cpuRegHasLive1 = 0, g_cpuPrevRegHasLive1 = 0; // set if upper 32 bits are live
u32 g_cpuRegHasSignExt = 0, g_cpuPrevRegHasSignExt = 0; // set if upper 32 bits are the sign extension of the lower integer
// used to make sure regs don't get changed while in recompiler
// use FreezeMMXRegs, FreezeXMMRegs
u8 g_globalMMXSaved = 0, g_globalXMMSaved = 0;
u32 g_recWriteback = 0;
#ifdef _DEBUG
char g_globalMMXLocked = 0, g_globalXMMLocked = 0;
#endif
_xmmregs xmmregs[XMMREGS], s_saveXMMregs[XMMREGS];
__declspec(align(16)) u64 g_globalMMXData[8];
__declspec(align(16)) u64 g_globalXMMData[2*XMMREGS];
// X86 caching
_x86regs x86regs[X86REGS], s_saveX86regs[X86REGS];
static int s_x86checknext = 0;
} // end extern "C"
#include <vector>
void _initX86regs() {
memset(x86regs, 0, sizeof(x86regs));
g_x86AllocCounter = 0;
s_x86checknext = 0;
}
__forceinline u32 _x86GetAddr(int type, int reg)
{
switch(type&~X86TYPE_VU1) {
case X86TYPE_GPR: return (u32)&cpuRegs.GPR.r[reg];
case X86TYPE_VI: {
//assert( reg < 16 || reg == REG_R );
return (type&X86TYPE_VU1)?(u32)&VU1.VI[reg]:(u32)&VU0.VI[reg];
}
case X86TYPE_MEMOFFSET: return 0;
case X86TYPE_VIMEMOFFSET: return 0;
case X86TYPE_VUQREAD: return (type&X86TYPE_VU1)?(u32)&VU1.VI[REG_P]:(u32)&VU0.VI[REG_Q];
case X86TYPE_VUPREAD: return (type&X86TYPE_VU1)?(u32)&VU1.VI[REG_P]:(u32)&VU0.VI[REG_Q];
case X86TYPE_VUQWRITE: return (type&X86TYPE_VU1)?(u32)&VU1.q:(u32)&VU0.q;
case X86TYPE_VUPWRITE: return (type&X86TYPE_VU1)?(u32)&VU1.p:(u32)&VU0.p;
case X86TYPE_PSX: return (u32)&psxRegs.GPR.r[reg];
case X86TYPE_PCWRITEBACK:
return (u32)&g_recWriteback;
case X86TYPE_VUJUMP:
return (u32)&g_recWriteback;
default: assert(0);
}
return 0;
}
int _getFreeX86reg(int mode)
{
int i, tempi;
u32 bestcount = 0x10000;
int maxreg = (mode&MODE_8BITREG)?4:X86REGS;
for (i=0; i<X86REGS; i++) {
int reg = (s_x86checknext+i)%X86REGS;
if( reg == 0 || reg == ESP ) continue;
if( reg >= maxreg ) continue;
if( (mode&MODE_NOFRAME) && reg==EBP ) continue;
if (x86regs[reg].inuse == 0) {
s_x86checknext = (reg+1)%X86REGS;
return reg;
}
}
tempi = -1;
for (i=1; i<maxreg; i++) {
if( i == ESP ) continue;
if( (mode&MODE_NOFRAME) && i==EBP ) continue;
if (x86regs[i].needed) continue;
if (x86regs[i].type != X86TYPE_TEMP) {
if( x86regs[i].counter < bestcount ) {
tempi = i;
bestcount = x86regs[i].counter;
}
continue;
}
_freeX86reg(i);
return i;
}
if( tempi != -1 ) {
_freeX86reg(tempi);
return tempi;
}
SysPrintf("*PCSX2*: x86 error\n");
assert(0);
return -1;
}
int _allocX86reg(int x86reg, int type, int reg, int mode)
{
int i;
assert( reg >= 0 && reg < 32 );
// if( X86_ISVI(type) )
// assert( reg < 16 || reg == REG_R );
// don't alloc EAX and ESP,EBP if MODE_NOFRAME
int oldmode = mode;
int noframe = mode&MODE_NOFRAME;
int maxreg = (mode&MODE_8BITREG)?4:X86REGS;
mode &= ~(MODE_NOFRAME|MODE_8BITREG);
int readfromreg = -1;
if( type != X86TYPE_TEMP ) {
if( maxreg < X86REGS ) {
// make sure reg isn't in the higher regs
for(i = maxreg; i < X86REGS; ++i) {
if (!x86regs[i].inuse || x86regs[i].type != type || x86regs[i].reg != reg) continue;
if( mode & MODE_READ ) {
readfromreg = i;
x86regs[i].inuse = 0;
break;
}
else if( mode & MODE_WRITE ) {
x86regs[i].inuse = 0;
break;
}
}
}
for (i=1; i<maxreg; i++) {
if( i == ESP ) continue;
if (!x86regs[i].inuse || x86regs[i].type != type || x86regs[i].reg != reg) continue;
if( (noframe && i == EBP) || (i >= maxreg) ) {
if( x86regs[i].mode & MODE_READ )
readfromreg = i;
//if( xmmregs[i].mode & MODE_WRITE ) mode |= MODE_WRITE;
mode |= x86regs[i].mode&MODE_WRITE;
x86regs[i].inuse = 0;
break;
}
if( x86reg >= 0 ) {
// requested specific reg, so return that instead
if( i != x86reg ) {
if( x86regs[i].mode & MODE_READ ) readfromreg = i;
//if( x86regs[i].mode & MODE_WRITE ) mode |= MODE_WRITE;
mode |= x86regs[i].mode&MODE_WRITE;
x86regs[i].inuse = 0;
break;
}
}
if( type != X86TYPE_TEMP && !(x86regs[i].mode & MODE_READ) && (mode&MODE_READ)) {
if( type == X86TYPE_GPR ) _flushConstReg(reg);
if( X86_ISVI(type) && reg < 16 ) MOVZX32M16toR(i, _x86GetAddr(type, reg));
else MOV32MtoR(i, _x86GetAddr(type, reg));
x86regs[i].mode |= MODE_READ;
}
x86regs[i].needed = 1;
x86regs[i].mode|= mode;
return i;
}
}
if (x86reg == -1) {
x86reg = _getFreeX86reg(oldmode);
}
else {
_freeX86reg(x86reg);
}
x86regs[x86reg].type = type;
x86regs[x86reg].reg = reg;
x86regs[x86reg].mode = mode;
x86regs[x86reg].needed = 1;
x86regs[x86reg].inuse = 1;
if( mode & MODE_READ ) {
if( readfromreg >= 0 ) MOV32RtoR(x86reg, readfromreg);
else {
if( type == X86TYPE_GPR ) {
if( reg == 0 ) {
XOR32RtoR(x86reg, x86reg);
}
else {
_flushConstReg(reg);
_deleteMMXreg(MMX_GPR+reg, 1);
_deleteGPRtoXMMreg(reg, 1);
_eeMoveGPRtoR(x86reg, reg);
_deleteMMXreg(MMX_GPR+reg, 0);
_deleteGPRtoXMMreg(reg, 0);
}
}
else {
if( X86_ISVI(type) && reg < 16 ) {
if( reg == 0 ) XOR32RtoR(x86reg, x86reg);
else MOVZX32M16toR(x86reg, _x86GetAddr(type, reg));
}
else MOV32MtoR(x86reg, _x86GetAddr(type, reg));
}
}
}
return x86reg;
}
int _checkX86reg(int type, int reg, int mode)
{
int i;
for (i=0; i<X86REGS; i++) {
if (x86regs[i].inuse && x86regs[i].reg == reg && x86regs[i].type == type) {
if( !(x86regs[i].mode & MODE_READ) && (mode&MODE_READ) ) {
if( X86_ISVI(type) ) MOVZX32M16toR(i, _x86GetAddr(type, reg));
else MOV32MtoR(i, _x86GetAddr(type, reg));
}
x86regs[i].mode |= mode;
x86regs[i].counter = g_x86AllocCounter++;
x86regs[i].needed = 1;
return i;
}
}
return -1;
}
void _addNeededX86reg(int type, int reg)
{
int i;
for (i=0; i<X86REGS; i++) {
if (!x86regs[i].inuse || x86regs[i].reg != reg || x86regs[i].type != type ) continue;
x86regs[i].counter = g_x86AllocCounter++;
x86regs[i].needed = 1;
}
}
void _clearNeededX86regs() {
int i;
for (i=0; i<X86REGS; i++) {
if (x86regs[i].needed ) {
if( x86regs[i].inuse && (x86regs[i].mode&MODE_WRITE) )
x86regs[i].mode |= MODE_READ;
}
x86regs[i].needed = 0;
}
}
void _deleteX86reg(int type, int reg, int flush)
{
int i;
for (i=0; i<X86REGS; i++) {
if (x86regs[i].inuse && x86regs[i].reg == reg && x86regs[i].type == type) {
switch(flush) {
case 0:
_freeX86reg(i);
break;
case 1:
if( x86regs[i].mode & MODE_WRITE) {
if( X86_ISVI(type) && x86regs[i].reg < 16 ) MOV16RtoM(_x86GetAddr(type, x86regs[i].reg), i);
else MOV32RtoM(_x86GetAddr(type, x86regs[i].reg), i);
// get rid of MODE_WRITE since don't want to flush again
x86regs[i].mode &= ~MODE_WRITE;
x86regs[i].mode |= MODE_READ;
}
return;
case 2:
x86regs[i].inuse = 0;
break;
}
}
}
}
void _freeX86reg(int x86reg)
{
assert( x86reg >= 0 && x86reg < X86REGS );
if( x86regs[x86reg].inuse && (x86regs[x86reg].mode&MODE_WRITE) ) {
x86regs[x86reg].mode &= ~MODE_WRITE;
if( X86_ISVI(x86regs[x86reg].type) && x86regs[x86reg].reg < 16 ) {
MOV16RtoM(_x86GetAddr(x86regs[x86reg].type, x86regs[x86reg].reg), x86reg);
}
else
MOV32RtoM(_x86GetAddr(x86regs[x86reg].type, x86regs[x86reg].reg), x86reg);
}
x86regs[x86reg].inuse = 0;
}
void _freeX86regs() {
int i;
for (i=0; i<X86REGS; i++) {
if (!x86regs[i].inuse) continue;
_freeX86reg(i);
}
}
void _eeSetLoadStoreReg(int gprreg, u32 offset, int x86reg)
{
int regs[2] = {ESI, EDI};
int i = _checkX86reg(X86TYPE_MEMOFFSET, gprreg, MODE_WRITE);
if( i < 0 ) {
for(i = 0; i < 2; ++i) {
if( !x86regs[regs[i]].inuse ) break;
}
assert( i < 2 );
i = regs[i];
}
if( i != x86reg ) MOV32RtoR(x86reg, i);
x86regs[i].extra = offset;
}
int _eeGeLoadStoreReg(int gprreg, int* poffset)
{
int i = _checkX86reg(X86TYPE_MEMOFFSET, gprreg, MODE_READ);
if( i >= 0 ) return -1;
if( poffset ) *poffset = x86regs[i].extra;
return i;
}
// MMX Caching
_mmxregs mmxregs[8], s_saveMMXregs[8];
static int s_mmxchecknext = 0;
void _initMMXregs()
{
memset(mmxregs, 0, sizeof(mmxregs));
g_mmxAllocCounter = 0;
s_mmxchecknext = 0;
}
__forceinline void* _MMXGetAddr(int reg)
{
assert( reg != MMX_TEMP );
if( reg == MMX_LO ) return &cpuRegs.LO;
if( reg == MMX_HI ) return &cpuRegs.HI;
if( reg == MMX_FPUACC ) return &fpuRegs.ACC;
if( reg >= MMX_GPR && reg < MMX_GPR+32 ) return &cpuRegs.GPR.r[reg&31];
if( reg >= MMX_FPU && reg < MMX_FPU+32 ) return &fpuRegs.fpr[reg&31];
if( reg >= MMX_COP0 && reg < MMX_COP0+32 ) return &cpuRegs.CP0.r[reg&31];
assert( 0 );
return NULL;
}
int _getFreeMMXreg()
{
int i, tempi;
u32 bestcount = 0x10000;
for (i=0; i<MMXREGS; i++) {
if (mmxregs[(s_mmxchecknext+i)%MMXREGS].inuse == 0) {
int ret = (s_mmxchecknext+i)%MMXREGS;
s_mmxchecknext = (s_mmxchecknext+i+1)%MMXREGS;
return ret;
}
}
// check for dead regs
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].needed) continue;
if (mmxregs[i].reg >= MMX_GPR && mmxregs[i].reg < MMX_GPR+34 ) {
if( !(g_pCurInstInfo->regs[mmxregs[i].reg-MMX_GPR] & (EEINST_LIVE0|EEINST_LIVE1)) ) {
_freeMMXreg(i);
return i;
}
if( !(g_pCurInstInfo->regs[mmxregs[i].reg-MMX_GPR]&EEINST_USED) ) {
_freeMMXreg(i);
return i;
}
}
}
// check for future xmm usage
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].needed) continue;
if (mmxregs[i].reg >= MMX_GPR && mmxregs[i].reg < MMX_GPR+34 ) {
if( !(g_pCurInstInfo->regs[mmxregs[i].reg] & EEINST_MMX) ) {
_freeMMXreg(i);
return i;
}
}
}
tempi = -1;
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].needed) continue;
if (mmxregs[i].reg != MMX_TEMP) {
if( mmxregs[i].counter < bestcount ) {
tempi = i;
bestcount = mmxregs[i].counter;
}
continue;
}
_freeMMXreg(i);
return i;
}
if( tempi != -1 ) {
_freeMMXreg(tempi);
return tempi;
}
SysPrintf("*PCSX2*: mmx error\n");
assert(0);
return -1;
}
int _allocMMXreg(int mmxreg, int reg, int mode)
{
int i;
if( reg != MMX_TEMP ) {
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].inuse == 0 || mmxregs[i].reg != reg ) continue;
if( MMX_ISGPR(reg)) {
assert( _checkXMMreg(XMMTYPE_GPRREG, reg-MMX_GPR, 0) == -1 );
}
mmxregs[i].needed = 1;
if( !(mmxregs[i].mode & MODE_READ) && (mode&MODE_READ) && reg != MMX_TEMP ) {
SetMMXstate();
if( reg == MMX_GPR ) {
// moving in 0s
PXORRtoR(i, i);
}
else {
if( MMX_ISGPR(reg) ) _flushConstReg(reg-MMX_GPR);
if( (mode & MODE_READHALF) || (MMX_IS32BITS(reg)&&(mode&MODE_READ)) )
MOVDMtoMMX(i, (u32)_MMXGetAddr(reg));
else {
MOVQMtoR(i, (u32)_MMXGetAddr(reg));
}
}
mmxregs[i].mode |= MODE_READ;
}
mmxregs[i].counter = g_mmxAllocCounter++;
mmxregs[i].mode|= mode;
return i;
}
}
if (mmxreg == -1) {
mmxreg = _getFreeMMXreg();
}
mmxregs[mmxreg].inuse = 1;
mmxregs[mmxreg].reg = reg;
mmxregs[mmxreg].mode = mode&~MODE_READHALF;
mmxregs[mmxreg].needed = 1;
mmxregs[mmxreg].counter = g_mmxAllocCounter++;
SetMMXstate();
if( reg == MMX_GPR ) {
// moving in 0s
PXORRtoR(mmxreg, mmxreg);
}
else {
int xmmreg;
if( MMX_ISGPR(reg) && (xmmreg = _checkXMMreg(XMMTYPE_GPRREG, reg-MMX_GPR, 0)) >= 0 ) {
if (cpucaps.hasStreamingSIMD2Extensions) {
SSE_MOVHPS_XMM_to_M64((u32)_MMXGetAddr(reg)+8, xmmreg);
if( mode & MODE_READ )
SSE2_MOVDQ2Q_XMM_to_MM(mmxreg, xmmreg);
if( xmmregs[xmmreg].mode & MODE_WRITE )
mmxregs[mmxreg].mode |= MODE_WRITE;
// don't flush
xmmregs[xmmreg].inuse = 0;
}
else {
_freeXMMreg(xmmreg);
if( (mode & MODE_READHALF) || (MMX_IS32BITS(reg)&&(mode&MODE_READ)) ) {
MOVDMtoMMX(mmxreg, (u32)_MMXGetAddr(reg));
}
else if( mode & MODE_READ ) {
MOVQMtoR(mmxreg, (u32)_MMXGetAddr(reg));
}
}
}
else {
if( MMX_ISGPR(reg) ) {
if(mode&(MODE_READHALF|MODE_READ)) _flushConstReg(reg-MMX_GPR);
}
if( (mode & MODE_READHALF) || (MMX_IS32BITS(reg)&&(mode&MODE_READ)) ) {
MOVDMtoMMX(mmxreg, (u32)_MMXGetAddr(reg));
}
else if( mode & MODE_READ ) {
MOVQMtoR(mmxreg, (u32)_MMXGetAddr(reg));
}
}
}
return mmxreg;
}
int _checkMMXreg(int reg, int mode)
{
int i;
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].inuse && mmxregs[i].reg == reg ) {
if( !(mmxregs[i].mode & MODE_READ) && (mode&MODE_READ) ) {
if( reg == MMX_GPR ) {
// moving in 0s
PXORRtoR(i, i);
}
else {
if( MMX_ISGPR(reg) && (mode&(MODE_READHALF|MODE_READ)) ) _flushConstReg(reg-MMX_GPR);
if( (mode & MODE_READHALF) || (MMX_IS32BITS(reg)&&(mode&MODE_READ)) )
MOVDMtoMMX(i, (u32)_MMXGetAddr(reg));
else
MOVQMtoR(i, (u32)_MMXGetAddr(reg));
}
SetMMXstate();
}
mmxregs[i].mode |= mode;
mmxregs[i].counter = g_mmxAllocCounter++;
mmxregs[i].needed = 1;
return i;
}
}
return -1;
}
void _addNeededMMXreg(int reg)
{
int i;
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].inuse == 0) continue;
if (mmxregs[i].reg != reg) continue;
mmxregs[i].counter = g_mmxAllocCounter++;
mmxregs[i].needed = 1;
}
}
void _clearNeededMMXregs()
{
int i;
for (i=0; i<MMXREGS; i++) {
if( mmxregs[i].needed ) {
// setup read to any just written regs
if( mmxregs[i].inuse && (mmxregs[i].mode&MODE_WRITE) )
mmxregs[i].mode |= MODE_READ;
mmxregs[i].needed = 0;
}
}
}
// when flush is 0 - frees all of the reg, when flush is 1, flushes all of the reg, when
// it is 2, just stops using the reg (no flushing)
void _deleteMMXreg(int reg, int flush)
{
int i;
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].inuse && mmxregs[i].reg == reg ) {
switch(flush) {
case 0:
_freeMMXreg(i);
break;
case 1:
if( mmxregs[i].mode & MODE_WRITE) {
assert( mmxregs[i].reg != MMX_GPR );
if( MMX_IS32BITS(reg) )
MOVDMMXtoM((u32)_MMXGetAddr(mmxregs[i].reg), i);
else
MOVQRtoM((u32)_MMXGetAddr(mmxregs[i].reg), i);
SetMMXstate();
// get rid of MODE_WRITE since don't want to flush again
mmxregs[i].mode &= ~MODE_WRITE;
mmxregs[i].mode |= MODE_READ;
}
return;
case 2:
mmxregs[i].inuse = 0;
break;
}
return;
}
}
}
int _getNumMMXwrite()
{
int num = 0, i;
for (i=0; i<MMXREGS; i++) {
if( mmxregs[i].inuse && (mmxregs[i].mode&MODE_WRITE) ) ++num;
}
return num;
}
u8 _hasFreeMMXreg()
{
int i;
for (i=0; i<MMXREGS; i++) {
if (!mmxregs[i].inuse) return 1;
}
// check for dead regs
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].needed) continue;
if (mmxregs[i].reg >= MMX_GPR && mmxregs[i].reg < MMX_GPR+34 ) {
if( !EEINST_ISLIVEMMX(mmxregs[i].reg-MMX_GPR) ) {
return 1;
}
}
}
// check for dead regs
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].needed) continue;
if (mmxregs[i].reg >= MMX_GPR && mmxregs[i].reg < MMX_GPR+34 ) {
if( !(g_pCurInstInfo->regs[mmxregs[i].reg-MMX_GPR]&EEINST_USED) ) {
return 1;
}
}
}
return 0;
}
void _freeMMXreg(int mmxreg)
{
assert( mmxreg < MMXREGS );
if (!mmxregs[mmxreg].inuse) return;
if (mmxregs[mmxreg].mode & MODE_WRITE ) {
if( mmxregs[mmxreg].reg >= MMX_GPR && mmxregs[mmxreg].reg < MMX_GPR+32 )
assert( !(g_cpuHasConstReg & (1<<(mmxregs[mmxreg].reg-MMX_GPR))) );
assert( mmxregs[mmxreg].reg != MMX_GPR );
if( MMX_IS32BITS(mmxregs[mmxreg].reg) )
MOVDMMXtoM((u32)_MMXGetAddr(mmxregs[mmxreg].reg), mmxreg);
else
MOVQRtoM((u32)_MMXGetAddr(mmxregs[mmxreg].reg), mmxreg);
SetMMXstate();
}
mmxregs[mmxreg].mode &= ~MODE_WRITE;
mmxregs[mmxreg].inuse = 0;
}
void _moveMMXreg(int mmxreg)
{
int i;
if( !mmxregs[mmxreg].inuse ) return;
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].inuse) continue;
break;
}
if( i == MMXREGS ) {
_freeMMXreg(mmxreg);
return;
}
// move
mmxregs[i] = mmxregs[mmxreg];
mmxregs[mmxreg].inuse = 0;
MOVQRtoR(i, mmxreg);
}
// write all active regs
void _flushMMXregs()
{
int i;
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].inuse == 0) continue;
if( mmxregs[i].mode & MODE_WRITE ) {
assert( !(g_cpuHasConstReg & (1<<mmxregs[i].reg)) );
assert( mmxregs[i].reg != MMX_TEMP );
assert( mmxregs[i].mode & MODE_READ );
assert( mmxregs[i].reg != MMX_GPR );
if( MMX_IS32BITS(mmxregs[i].reg) )
MOVDMMXtoM((u32)_MMXGetAddr(mmxregs[i].reg), i);
else
MOVQRtoM((u32)_MMXGetAddr(mmxregs[i].reg), i);
SetMMXstate();
mmxregs[i].mode &= ~MODE_WRITE;
mmxregs[i].mode |= MODE_READ;
}
}
}
void _freeMMXregs()
{
int i;
for (i=0; i<MMXREGS; i++) {
if (mmxregs[i].inuse == 0) continue;
assert( mmxregs[i].reg != MMX_TEMP );
assert( mmxregs[i].mode & MODE_READ );
_freeMMXreg(i);
}
}
void FreezeMMXRegs_(int save)
{
assert( g_EEFreezeRegs );
if( save ) {
if( g_globalMMXSaved )
return;
g_globalMMXSaved = 1;
__asm {
movntq mmword ptr [g_globalMMXData + 0], mm0
movntq mmword ptr [g_globalMMXData + 8], mm1
movntq mmword ptr [g_globalMMXData + 16], mm2
movntq mmword ptr [g_globalMMXData + 24], mm3
movntq mmword ptr [g_globalMMXData + 32], mm4
movntq mmword ptr [g_globalMMXData + 40], mm5
movntq mmword ptr [g_globalMMXData + 48], mm6
movntq mmword ptr [g_globalMMXData + 56], mm7
emms
}
}
else {
if( !g_globalMMXSaved )
return;
g_globalMMXSaved = 0;
__asm {
movq mm0, mmword ptr [g_globalMMXData + 0]
movq mm1, mmword ptr [g_globalMMXData + 8]
movq mm2, mmword ptr [g_globalMMXData + 16]
movq mm3, mmword ptr [g_globalMMXData + 24]
movq mm4, mmword ptr [g_globalMMXData + 32]
movq mm5, mmword ptr [g_globalMMXData + 40]
movq mm6, mmword ptr [g_globalMMXData + 48]
movq mm7, mmword ptr [g_globalMMXData + 56]
emms
}
}
}
#ifdef _DEBUG
void checkconstreg()
{
SysPrintf("const regs not the same!\n");
assert(0);
}
#endif
void SetMMXstate() {
x86FpuState = MMX_STATE;
}
void SetFPUstate() {
_freeMMXreg(6);
_freeMMXreg(7);
if (x86FpuState==MMX_STATE) {
if (cpucaps.has3DNOWInstructionExtensions) FEMMS();
else EMMS();
x86FpuState=FPU_STATE;
}
}
// XMM Caching
#define VU_VFx_ADDR(x) (u32)&VU->VF[x].UL[0]
#define VU_ACCx_ADDR (u32)&VU->ACC.UL[0]
static int s_xmmchecknext = 0;
void _initXMMregs() {
memset(xmmregs, 0, sizeof(xmmregs));
g_xmmAllocCounter = 0;
s_xmmchecknext = 0;
}
__forceinline void* _XMMGetAddr(int type, int reg, VURegs *VU)
{
if (type == XMMTYPE_VFREG ) return (void*)VU_VFx_ADDR(reg);
else if (type == XMMTYPE_ACC ) return (void*)VU_ACCx_ADDR;
else if (type == XMMTYPE_GPRREG) {
if( reg < 32 )
assert( !(g_cpuHasConstReg & (1<<reg)) || (g_cpuFlushedConstReg & (1<<reg)) );
return &cpuRegs.GPR.r[reg].UL[0];
}
else if (type == XMMTYPE_FPREG ) return &fpuRegs.fpr[reg];
else if (type == XMMTYPE_FPACC ) return &fpuRegs.ACC.f;
assert(0);
return NULL;
}
int _getFreeXMMreg()
{
int i, tempi;
u32 bestcount = 0x10000;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[(i+s_xmmchecknext)%XMMREGS].inuse == 0) {
int ret = (s_xmmchecknext+i)%XMMREGS;
s_xmmchecknext = (s_xmmchecknext+i+1)%XMMREGS;
return ret;
}
}
// check for dead regs
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
if( !(g_pCurInstInfo->regs[xmmregs[i].reg] & (EEINST_LIVE0|EEINST_LIVE1|EEINST_LIVE2)) ) {
_freeXMMreg(i);
return i;
}
}
}
// check for future xmm usage
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
if( !(g_pCurInstInfo->regs[xmmregs[i].reg] & EEINST_XMM) ) {
_freeXMMreg(i);
return i;
}
}
}
tempi = -1;
bestcount = 0xffff;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type != XMMTYPE_TEMP) {
if( xmmregs[i].counter < bestcount ) {
tempi = i;
bestcount = xmmregs[i].counter;
}
continue;
}
_freeXMMreg(i);
return i;
}
if( tempi != -1 ) {
_freeXMMreg(tempi);
return tempi;
}
SysPrintf("*PCSX2*: VUrec ERROR\n");
return -1;
}
int _allocTempXMMreg(XMMSSEType type, int xmmreg) {
if (xmmreg == -1) {
xmmreg = _getFreeXMMreg();
}
else {
_freeXMMreg(xmmreg);
}
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_TEMP;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
g_xmmtypes[xmmreg] = type;
return xmmreg;
}
int _allocVFtoXMMreg(VURegs *VU, int xmmreg, int vfreg, int mode) {
int i;
int readfromreg = -1;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0 || xmmregs[i].type != XMMTYPE_VFREG || xmmregs[i].reg != vfreg || xmmregs[i].VU != XMM_CONV_VU(VU) ) continue;
if( xmmreg >= 0 ) {
// requested specific reg, so return that instead
if( i != xmmreg ) {
if( xmmregs[i].mode & MODE_READ ) readfromreg = i;
//if( xmmregs[i].mode & MODE_WRITE ) mode |= MODE_WRITE;
mode |= xmmregs[i].mode&MODE_WRITE;
xmmregs[i].inuse = 0;
break;
}
}
xmmregs[i].needed = 1;
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ) ) {
SSE_MOVAPS_M128_to_XMM(i, VU_VFx_ADDR(vfreg));
xmmregs[i].mode |= MODE_READ;
}
g_xmmtypes[i] = XMMT_FPS;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].mode|= mode;
return i;
}
if (xmmreg == -1) {
xmmreg = _getFreeXMMreg();
}
else {
_freeXMMreg(xmmreg);
}
g_xmmtypes[xmmreg] = XMMT_FPS;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_VFREG;
xmmregs[xmmreg].reg = vfreg;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].VU = XMM_CONV_VU(VU);
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
if (mode & MODE_READ) {
if( readfromreg >= 0 ) SSE_MOVAPS_XMM_to_XMM(xmmreg, readfromreg);
else SSE_MOVAPS_M128_to_XMM(xmmreg, VU_VFx_ADDR(xmmregs[xmmreg].reg));
}
return xmmreg;
}
int _checkXMMreg(int type, int reg, int mode)
{
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse && xmmregs[i].type == (type&0xff) && xmmregs[i].reg == reg ) {
if( !(xmmregs[i].mode & MODE_READ) && (mode&(MODE_READ|MODE_READHALF)) ) {
if(mode&MODE_READ)
SSEX_MOVDQA_M128_to_XMM(i, (u32)_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0));
else {
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[i]==XMMT_INT )
SSE2_MOVQ_M64_to_XMM(i, (u32)_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0));
else
SSE_MOVLPS_M64_to_XMM(i, (u32)_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0));
}
}
xmmregs[i].mode |= mode&~MODE_READHALF;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
return i;
}
}
return -1;
}
int _allocACCtoXMMreg(VURegs *VU, int xmmreg, int mode) {
int i;
int readfromreg = -1;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_ACC) continue;
if (xmmregs[i].VU != XMM_CONV_VU(VU) ) continue;
if( xmmreg >= 0 ) {
// requested specific reg, so return that instead
if( i != xmmreg ) {
if( xmmregs[i].mode & MODE_READ ) readfromreg = i;
//if( xmmregs[i].mode & MODE_WRITE ) mode |= MODE_WRITE;
mode |= xmmregs[i].mode&MODE_WRITE;
xmmregs[i].inuse = 0;
break;
}
}
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ)) {
SSE_MOVAPS_M128_to_XMM(i, VU_ACCx_ADDR);
xmmregs[i].mode |= MODE_READ;
}
g_xmmtypes[i] = XMMT_FPS;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
xmmregs[i].mode|= mode;
return i;
}
if (xmmreg == -1) {
xmmreg = _getFreeXMMreg();
}
else {
_freeXMMreg(xmmreg);
}
g_xmmtypes[xmmreg] = XMMT_FPS;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_ACC;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].VU = XMM_CONV_VU(VU);
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
xmmregs[xmmreg].reg = 0;
if (mode & MODE_READ) {
if( readfromreg >= 0 ) SSE_MOVAPS_XMM_to_XMM(xmmreg, readfromreg);
else SSE_MOVAPS_M128_to_XMM(xmmreg, VU_ACCx_ADDR);
}
return xmmreg;
}
int _allocFPtoXMMreg(int xmmreg, int fpreg, int mode) {
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_FPREG) continue;
if (xmmregs[i].reg != fpreg) continue;
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ)) {
SSE_MOVSS_M32_to_XMM(i, (u32)&fpuRegs.fpr[fpreg].f);
xmmregs[i].mode |= MODE_READ;
}
g_xmmtypes[i] = XMMT_FPS;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
xmmregs[i].mode|= mode;
return i;
}
if (xmmreg == -1) {
xmmreg = _getFreeXMMreg();
}
g_xmmtypes[xmmreg] = XMMT_FPS;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_FPREG;
xmmregs[xmmreg].reg = fpreg;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
if (mode & MODE_READ) {
SSE_MOVSS_M32_to_XMM(xmmreg, (u32)&fpuRegs.fpr[fpreg].f);
}
return xmmreg;
}
int _allocGPRtoXMMreg(int xmmreg, int gprreg, int mode) {
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_GPRREG) continue;
if (xmmregs[i].reg != gprreg) continue;
assert( _checkMMXreg(MMX_GPR|gprreg, mode) == -1 );
g_xmmtypes[i] = XMMT_INT;
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ)) {
if( gprreg == 0 ) {
SSEX_PXOR_XMM_to_XMM(i, i);
}
else {
//assert( !(g_cpuHasConstReg & (1<<gprreg)) || (g_cpuFlushedConstReg & (1<<gprreg)) );
_flushConstReg(gprreg);
SSEX_MOVDQA_M128_to_XMM(i, (u32)&cpuRegs.GPR.r[gprreg].UL[0]);
}
xmmregs[i].mode |= MODE_READ;
}
if( (mode & MODE_WRITE) && gprreg < 32 ) {
g_cpuHasConstReg &= ~(1<<gprreg);
//assert( !(g_cpuHasConstReg & (1<<gprreg)) );
}
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
xmmregs[i].mode|= mode;
return i;
}
// currently only gpr regs are const
if( (mode & MODE_WRITE) && gprreg < 32 ) {
//assert( !(g_cpuHasConstReg & (1<<gprreg)) );
g_cpuHasConstReg &= ~(1<<gprreg);
}
if (xmmreg == -1) {
xmmreg = _getFreeXMMreg();
}
g_xmmtypes[xmmreg] = XMMT_INT;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_GPRREG;
xmmregs[xmmreg].reg = gprreg;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
if (mode & MODE_READ) {
if( gprreg == 0 ) {
SSEX_PXOR_XMM_to_XMM(xmmreg, xmmreg);
}
else {
// DOX86
int mmxreg;
if( (mode&MODE_READ) ) _flushConstReg(gprreg);
if( (mmxreg = _checkMMXreg(MMX_GPR+gprreg, 0)) >= 0 ) {
// transfer
if (cpucaps.hasStreamingSIMD2Extensions ) {
SetMMXstate();
SSE2_MOVQ2DQ_MM_to_XMM(xmmreg, mmxreg);
SSE2_PUNPCKLQDQ_XMM_to_XMM(xmmreg, xmmreg);
SSE2_PUNPCKHQDQ_M128_to_XMM(xmmreg, (u32)&cpuRegs.GPR.r[gprreg].UL[0]);
if( mmxregs[mmxreg].mode & MODE_WRITE ) {
// instead of setting to write, just flush to mem
if( !(mode & MODE_WRITE) ) {
SetMMXstate();
MOVQRtoM((u32)&cpuRegs.GPR.r[gprreg].UL[0], mmxreg);
}
//xmmregs[xmmreg].mode |= MODE_WRITE;
}
// don't flush
mmxregs[mmxreg].inuse = 0;
}
else {
_freeMMXreg(mmxreg);
SSEX_MOVDQA_M128_to_XMM(xmmreg, (u32)&cpuRegs.GPR.r[gprreg].UL[0]);
}
}
else {
SSEX_MOVDQA_M128_to_XMM(xmmreg, (u32)&cpuRegs.GPR.r[gprreg].UL[0]);
}
}
}
else {
_deleteMMXreg(MMX_GPR+gprreg, 0);
}
return xmmreg;
}
int _allocFPACCtoXMMreg(int xmmreg, int mode) {
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_FPACC) continue;
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ)) {
SSE_MOVSS_M32_to_XMM(i, (u32)&fpuRegs.ACC.f);
xmmregs[i].mode |= MODE_READ;
}
g_xmmtypes[i] = XMMT_FPS;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
xmmregs[i].mode|= mode;
return i;
}
if (xmmreg == -1) {
xmmreg = _getFreeXMMreg();
}
g_xmmtypes[xmmreg] = XMMT_FPS;
xmmregs[xmmreg].inuse = 1;
xmmregs[xmmreg].type = XMMTYPE_FPACC;
xmmregs[xmmreg].mode = mode;
xmmregs[xmmreg].needed = 1;
xmmregs[xmmreg].reg = 0;
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
if (mode & MODE_READ) {
SSE_MOVSS_M32_to_XMM(xmmreg, (u32)&fpuRegs.ACC.f);
}
return xmmreg;
}
void _addNeededVFtoXMMreg(int vfreg) {
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_VFREG) continue;
if (xmmregs[i].reg != vfreg) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
}
}
void _addNeededGPRtoXMMreg(int gprreg)
{
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_GPRREG) continue;
if (xmmregs[i].reg != gprreg) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
break;
}
}
void _addNeededACCtoXMMreg() {
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_ACC) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
break;
}
}
void _addNeededFPtoXMMreg(int fpreg) {
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_FPREG) continue;
if (xmmregs[i].reg != fpreg) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
break;
}
}
void _addNeededFPACCtoXMMreg() {
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
if (xmmregs[i].type != XMMTYPE_FPACC) continue;
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
xmmregs[i].needed = 1;
break;
}
}
void _clearNeededXMMregs() {
int i;
for (i=0; i<XMMREGS; i++) {
if( xmmregs[i].needed ) {
// setup read to any just written regs
if( xmmregs[i].inuse && (xmmregs[i].mode&MODE_WRITE) )
xmmregs[i].mode |= MODE_READ;
xmmregs[i].needed = 0;
}
if( xmmregs[i].inuse ) {
assert( xmmregs[i].type != XMMTYPE_TEMP );
}
}
}
void _deleteVFtoXMMreg(int reg, int vu, int flush)
{
int i;
VURegs *VU = vu ? &VU1 : &VU0;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_VFREG && xmmregs[i].reg == reg && xmmregs[i].VU == vu) {
switch(flush) {
case 0:
_freeXMMreg(i);
break;
case 1:
case 2:
if( xmmregs[i].mode & MODE_WRITE ) {
assert( reg != 0 );
if( xmmregs[i].mode & MODE_VUXYZ ) {
if( xmmregs[i].mode & MODE_VUZ ) {
// xyz, don't destroy w
int t0reg;
for(t0reg = 0; t0reg < XMMREGS; ++t0reg ) {
if( !xmmregs[t0reg].inuse ) break;
}
if( t0reg < XMMREGS ) {
SSE_MOVHLPS_XMM_to_XMM(t0reg, i);
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[i].reg), i);
SSE_MOVSS_XMM_to_M32(VU_VFx_ADDR(xmmregs[i].reg)+8, t0reg);
}
else {
// no free reg
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[i].reg), i);
SSE_SHUFPS_XMM_to_XMM(i, i, 0xc6);
SSE_MOVSS_XMM_to_M32(VU_VFx_ADDR(xmmregs[i].reg)+8, i);
SSE_SHUFPS_XMM_to_XMM(i, i, 0xc6);
}
}
else {
// xy
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[i].reg), i);
}
}
else SSE_MOVAPS_XMM_to_M128(VU_VFx_ADDR(xmmregs[i].reg), i);
// get rid of MODE_WRITE since don't want to flush again
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
if( flush == 2 )
xmmregs[i].inuse = 0;
break;
}
return;
}
}
}
void _deleteACCtoXMMreg(int vu, int flush)
{
int i;
VURegs *VU = vu ? &VU1 : &VU0;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_ACC && xmmregs[i].VU == vu) {
switch(flush) {
case 0:
_freeXMMreg(i);
break;
case 1:
case 2:
if( xmmregs[i].mode & MODE_WRITE ) {
if( xmmregs[i].mode & MODE_VUXYZ ) {
if( xmmregs[i].mode & MODE_VUZ ) {
// xyz, don't destroy w
int t0reg;
for(t0reg = 0; t0reg < XMMREGS; ++t0reg ) {
if( !xmmregs[t0reg].inuse ) break;
}
if( t0reg < XMMREGS ) {
SSE_MOVHLPS_XMM_to_XMM(t0reg, i);
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, i);
SSE_MOVSS_XMM_to_M32(VU_ACCx_ADDR+8, t0reg);
}
else {
// no free reg
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, i);
SSE_SHUFPS_XMM_to_XMM(i, i, 0xc6);
//SSE_MOVHLPS_XMM_to_XMM(i, i);
SSE_MOVSS_XMM_to_M32(VU_ACCx_ADDR+8, i);
SSE_SHUFPS_XMM_to_XMM(i, i, 0xc6);
}
}
else {
// xy
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, i);
}
}
else SSE_MOVAPS_XMM_to_M128(VU_ACCx_ADDR, i);
// get rid of MODE_WRITE since don't want to flush again
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
if( flush == 2 )
xmmregs[i].inuse = 0;
break;
}
return;
}
}
}
// when flush is 1 or 2, only commits the reg to mem (still leave its xmm entry)
void _deleteGPRtoXMMreg(int reg, int flush)
{
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_GPRREG && xmmregs[i].reg == reg ) {
switch(flush) {
case 0:
_freeXMMreg(i);
break;
case 1:
case 2:
if( xmmregs[i].mode & MODE_WRITE ) {
assert( reg != 0 );
//assert( g_xmmtypes[i] == XMMT_INT );
SSEX_MOVDQA_XMM_to_M128((u32)&cpuRegs.GPR.r[reg].UL[0], i);
// get rid of MODE_WRITE since don't want to flush again
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
if( flush == 2 )
xmmregs[i].inuse = 0;
break;
}
return;
}
}
}
void _deleteFPtoXMMreg(int reg, int flush)
{
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_FPREG && xmmregs[i].reg == reg ) {
switch(flush) {
case 0:
_freeXMMreg(i);
break;
case 1:
case 2:
if( flush == 1 && (xmmregs[i].mode & MODE_WRITE) ) {
assert( reg != 0 );
SSE_MOVSS_XMM_to_M32((u32)&fpuRegs.fpr[reg].UL, i);
// get rid of MODE_WRITE since don't want to flush again
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
if( flush == 2 )
xmmregs[i].inuse = 0;
break;
}
return;
}
}
}
void _freeXMMreg(int xmmreg) {
VURegs *VU = xmmregs[xmmreg].VU ? &VU1 : &VU0;
assert( xmmreg < XMMREGS );
if (!xmmregs[xmmreg].inuse) return;
if (xmmregs[xmmreg].type == XMMTYPE_VFREG && (xmmregs[xmmreg].mode & MODE_WRITE) ) {
if( xmmregs[xmmreg].mode & MODE_VUXYZ ) {
if( xmmregs[xmmreg].mode & MODE_VUZ ) {
// don't destroy w
int t0reg;
for(t0reg = 0; t0reg < XMMREGS; ++t0reg ) {
if( !xmmregs[t0reg].inuse ) break;
}
if( t0reg < XMMREGS ) {
SSE_MOVHLPS_XMM_to_XMM(t0reg, xmmreg);
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[xmmreg].reg), xmmreg);
SSE_MOVSS_XMM_to_M32(VU_VFx_ADDR(xmmregs[xmmreg].reg)+8, t0reg);
}
else {
// no free reg
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[xmmreg].reg), xmmreg);
SSE_SHUFPS_XMM_to_XMM(xmmreg, xmmreg, 0xc6);
//SSE_MOVHLPS_XMM_to_XMM(xmmreg, xmmreg);
SSE_MOVSS_XMM_to_M32(VU_VFx_ADDR(xmmregs[xmmreg].reg)+8, xmmreg);
SSE_SHUFPS_XMM_to_XMM(xmmreg, xmmreg, 0xc6);
}
}
else {
SSE_MOVLPS_XMM_to_M64(VU_VFx_ADDR(xmmregs[xmmreg].reg), xmmreg);
}
}
else SSE_MOVAPS_XMM_to_M128(VU_VFx_ADDR(xmmregs[xmmreg].reg), xmmreg);
}
else if (xmmregs[xmmreg].type == XMMTYPE_ACC && (xmmregs[xmmreg].mode & MODE_WRITE) ) {
if( xmmregs[xmmreg].mode & MODE_VUXYZ ) {
if( xmmregs[xmmreg].mode & MODE_VUZ ) {
// don't destroy w
int t0reg;
for(t0reg = 0; t0reg < XMMREGS; ++t0reg ) {
if( !xmmregs[t0reg].inuse ) break;
}
if( t0reg < XMMREGS ) {
SSE_MOVHLPS_XMM_to_XMM(t0reg, xmmreg);
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, xmmreg);
SSE_MOVSS_XMM_to_M32(VU_ACCx_ADDR+8, t0reg);
}
else {
// no free reg
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, xmmreg);
SSE_SHUFPS_XMM_to_XMM(xmmreg, xmmreg, 0xc6);
//SSE_MOVHLPS_XMM_to_XMM(xmmreg, xmmreg);
SSE_MOVSS_XMM_to_M32(VU_ACCx_ADDR+8, xmmreg);
SSE_SHUFPS_XMM_to_XMM(xmmreg, xmmreg, 0xc6);
}
}
else {
SSE_MOVLPS_XMM_to_M64(VU_ACCx_ADDR, xmmreg);
}
}
else SSE_MOVAPS_XMM_to_M128(VU_ACCx_ADDR, xmmreg);
}
else if (xmmregs[xmmreg].type == XMMTYPE_GPRREG && (xmmregs[xmmreg].mode & MODE_WRITE) ) {
assert( xmmregs[xmmreg].reg != 0 );
//assert( g_xmmtypes[xmmreg] == XMMT_INT );
SSEX_MOVDQA_XMM_to_M128((u32)&cpuRegs.GPR.r[xmmregs[xmmreg].reg].UL[0], xmmreg);
}
else if (xmmregs[xmmreg].type == XMMTYPE_FPREG && (xmmregs[xmmreg].mode & MODE_WRITE)) {
SSE_MOVSS_XMM_to_M32((u32)&fpuRegs.fpr[xmmregs[xmmreg].reg], xmmreg);
}
else if (xmmregs[xmmreg].type == XMMTYPE_FPACC && (xmmregs[xmmreg].mode & MODE_WRITE)) {
SSE_MOVSS_XMM_to_M32((u32)&fpuRegs.ACC.f, xmmreg);
}
xmmregs[xmmreg].mode &= ~(MODE_WRITE|MODE_VUXYZ);
xmmregs[xmmreg].inuse = 0;
}
int _getNumXMMwrite()
{
int num = 0, i;
for (i=0; i<XMMREGS; i++) {
if( xmmregs[i].inuse && (xmmregs[i].mode&MODE_WRITE) ) ++num;
}
return num;
}
u8 _hasFreeXMMreg()
{
int i;
for (i=0; i<XMMREGS; i++) {
if (!xmmregs[i].inuse) return 1;
}
// check for dead regs
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
if( !EEINST_ISLIVEXMM(xmmregs[i].reg) ) {
return 1;
}
}
}
// check for dead regs
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].needed) continue;
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
if( !(g_pCurInstInfo->regs[xmmregs[i].reg]&EEINST_USED) ) {
return 1;
}
}
}
return 0;
}
void _moveXMMreg(int xmmreg)
{
int i;
if( !xmmregs[xmmreg].inuse ) return;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse) continue;
break;
}
if( i == XMMREGS ) {
_freeXMMreg(xmmreg);
return;
}
// move
xmmregs[i] = xmmregs[xmmreg];
xmmregs[xmmreg].inuse = 0;
SSEX_MOVDQA_XMM_to_XMM(i, xmmreg);
}
void _flushXMMregs()
{
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
assert( xmmregs[i].type != XMMTYPE_TEMP );
assert( xmmregs[i].mode & (MODE_READ|MODE_WRITE) );
_freeXMMreg(i);
xmmregs[i].inuse = 1;
xmmregs[i].mode &= ~MODE_WRITE;
xmmregs[i].mode |= MODE_READ;
}
}
void _freeXMMregs()
{
int i;
for (i=0; i<XMMREGS; i++) {
if (xmmregs[i].inuse == 0) continue;
assert( xmmregs[i].type != XMMTYPE_TEMP );
//assert( xmmregs[i].mode & (MODE_READ|MODE_WRITE) );
_freeXMMreg(i);
}
}
void FreezeXMMRegs_(int save)
{
assert( g_EEFreezeRegs );
if( save ) {
if( g_globalXMMSaved )
return;
g_globalXMMSaved = 1;
__asm {
movaps xmmword ptr [g_globalXMMData + 0], xmm0
movaps xmmword ptr [g_globalXMMData + 16], xmm1
movaps xmmword ptr [g_globalXMMData + 32], xmm2
movaps xmmword ptr [g_globalXMMData + 48], xmm3
movaps xmmword ptr [g_globalXMMData + 64], xmm4
movaps xmmword ptr [g_globalXMMData + 80], xmm5
movaps xmmword ptr [g_globalXMMData + 96], xmm6
movaps xmmword ptr [g_globalXMMData + 112], xmm7
}
}
else {
if( !g_globalXMMSaved )
return;
g_globalXMMSaved = 0;
__asm {
movaps xmm0, xmmword ptr [g_globalXMMData + 0]
movaps xmm1, xmmword ptr [g_globalXMMData + 16]
movaps xmm2, xmmword ptr [g_globalXMMData + 32]
movaps xmm3, xmmword ptr [g_globalXMMData + 48]
movaps xmm4, xmmword ptr [g_globalXMMData + 64]
movaps xmm5, xmmword ptr [g_globalXMMData + 80]
movaps xmm6, xmmword ptr [g_globalXMMData + 96]
movaps xmm7, xmmword ptr [g_globalXMMData + 112]
}
}
}
// EE
void _eeMoveGPRtoR(x86IntRegType to, int fromgpr)
{
if( GPR_IS_CONST1(fromgpr) )
MOV32ItoR( to, g_cpuConstRegs[fromgpr].UL[0] );
else {
int mmreg;
if( (mmreg = _checkXMMreg(XMMTYPE_GPRREG, fromgpr, MODE_READ)) >= 0 && (xmmregs[mmreg].mode&MODE_WRITE)) {
SSE2_MOVD_XMM_to_R(to, mmreg);
}
else if( (mmreg = _checkMMXreg(MMX_GPR+fromgpr, MODE_READ)) >= 0 && (mmxregs[mmreg].mode&MODE_WRITE) ) {
MOVD32MMXtoR(to, mmreg);
SetMMXstate();
}
else {
MOV32MtoR(to, (int)&cpuRegs.GPR.r[ fromgpr ].UL[ 0 ] );
}
}
}
void _eeMoveGPRtoM(u32 to, int fromgpr)
{
if( GPR_IS_CONST1(fromgpr) )
MOV32ItoM( to, g_cpuConstRegs[fromgpr].UL[0] );
else {
int mmreg;
if( (mmreg = _checkXMMreg(XMMTYPE_GPRREG, fromgpr, MODE_READ)) >= 0 ) {
SSEX_MOVD_XMM_to_M32(to, mmreg);
}
else if( (mmreg = _checkMMXreg(MMX_GPR+fromgpr, MODE_READ)) >= 0 ) {
MOVDMMXtoM(to, mmreg);
SetMMXstate();
}
else {
MOV32MtoR(EAX, (int)&cpuRegs.GPR.r[ fromgpr ].UL[ 0 ] );
MOV32RtoM(to, EAX );
}
}
}
void _eeMoveGPRtoRm(x86IntRegType to, int fromgpr)
{
if( GPR_IS_CONST1(fromgpr) )
MOV32ItoRmOffset( to, g_cpuConstRegs[fromgpr].UL[0], 0 );
else {
int mmreg;
if( (mmreg = _checkXMMreg(XMMTYPE_GPRREG, fromgpr, MODE_READ)) >= 0 ) {
SSEX_MOVD_XMM_to_Rm(to, mmreg);
}
else if( (mmreg = _checkMMXreg(MMX_GPR+fromgpr, MODE_READ)) >= 0 ) {
MOVD32MMXtoRm(to, mmreg);
SetMMXstate();
}
else {
MOV32MtoR(EAX, (int)&cpuRegs.GPR.r[ fromgpr ].UL[ 0 ] );
MOV32RtoRm(to, EAX );
}
}
}
// PSX
void _psxMoveGPRtoR(x86IntRegType to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoR( to, g_psxConstRegs[fromgpr] );
else {
// check x86
MOV32MtoR(to, (int)&psxRegs.GPR.r[ fromgpr ] );
}
}
void _psxMoveGPRtoM(u32 to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoM( to, g_psxConstRegs[fromgpr] );
else {
// check x86
MOV32MtoR(EAX, (int)&psxRegs.GPR.r[ fromgpr ] );
MOV32RtoM(to, EAX );
}
}
void _psxMoveGPRtoRm(x86IntRegType to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoRmOffset( to, g_psxConstRegs[fromgpr], 0 );
else {
// check x86
MOV32MtoR(EAX, (int)&psxRegs.GPR.r[ fromgpr ] );
MOV32RtoRm(to, EAX );
}
}
void _recPushReg(int mmreg)
{
if( IS_XMMREG(mmreg) ) {
SUB32ItoR(ESP, 4);
SSEX_MOVD_XMM_to_Rm(ESP, mmreg&0xf);
}
else if( IS_MMXREG(mmreg) ) {
SUB32ItoR(ESP, 4);
MOVD32MMXtoRm(ESP, mmreg&0xf);
}
else if( IS_CONSTREG(mmreg) ) {
PUSH32I(g_cpuConstRegs[(mmreg>>16)&0x1f].UL[0]);
}
else if( IS_PSXCONSTREG(mmreg) ) {
PUSH32I(g_psxConstRegs[(mmreg>>16)&0x1f]);
}
else PUSH32R(mmreg);
}
void _signExtendSFtoM(u32 mem)
{
LAHF();
SAR16ItoR(EAX, 15);
CWDE();
MOV32RtoM(mem, EAX );
}
int _signExtendMtoMMX(x86MMXRegType to, u32 mem)
{
int t0reg = _allocMMXreg(-1, MMX_TEMP, 0);
MOVDMtoMMX(t0reg, mem);
MOVQRtoR(to, t0reg);
PSRADItoR(t0reg, 31);
PUNPCKLDQRtoR(to, t0reg);
_freeMMXreg(t0reg);
return to;
}
int _signExtendGPRMMXtoMMX(x86MMXRegType to, u32 gprreg, x86MMXRegType from, u32 gprfromreg)
{
assert( to >= 0 && from >= 0 );
if( !EEINST_ISLIVE1(gprreg) ) {
EEINST_RESETHASLIVE1(gprreg);
if( to != from ) MOVQRtoR(to, from);
return to;
}
if( to == from ) return _signExtendGPRtoMMX(to, gprreg, 0);
if( !(g_pCurInstInfo->regs[gprfromreg]&EEINST_LASTUSE) ) {
if( EEINST_ISLIVEMMX(gprfromreg) ) {
MOVQRtoR(to, from);
return _signExtendGPRtoMMX(to, gprreg, 0);
}
}
// from is free for use
SetMMXstate();
if( g_pCurInstInfo->regs[gprreg] & EEINST_MMX ) {
if( EEINST_ISLIVEMMX(gprfromreg) ) {
_freeMMXreg(from);
}
MOVQRtoR(to, from);
PSRADItoR(from, 31);
PUNPCKLDQRtoR(to, from);
return to;
}
else {
MOVQRtoR(to, from);
MOVDMMXtoM((u32)&cpuRegs.GPR.r[gprreg].UL[0], from);
PSRADItoR(from, 31);
MOVDMMXtoM((u32)&cpuRegs.GPR.r[gprreg].UL[1], from);
mmxregs[to].inuse = 0;
return -1;
}
assert(0);
}
int _signExtendGPRtoMMX(x86MMXRegType to, u32 gprreg, int shift)
{
assert( to >= 0 && shift >= 0 );
if( !EEINST_ISLIVE1(gprreg) ) {
if( shift > 0 ) PSRADItoR(to, shift);
EEINST_RESETHASLIVE1(gprreg);
return to;
}
SetMMXstate();
if( g_pCurInstInfo->regs[gprreg] & EEINST_MMX ) {
if( _hasFreeMMXreg() ) {
int t0reg = _allocMMXreg(-1, MMX_TEMP, 0);
MOVQRtoR(t0reg, to);
PSRADItoR(to, 31);
if( shift > 0 ) PSRADItoR(t0reg, shift);
PUNPCKLDQRtoR(t0reg, to);
// swap mmx regs.. don't ask
mmxregs[t0reg] = mmxregs[to];
mmxregs[to].inuse = 0;
return t0reg;
}
else {
// will be used in the future as mmx
if( shift > 0 ) PSRADItoR(to, shift);
MOVDMMXtoM((u32)&cpuRegs.GPR.r[gprreg].UL[0], to);
PSRADItoR(to, 31);
MOVDMMXtoM((u32)&cpuRegs.GPR.r[gprreg].UL[1], to);
// read again
MOVQMtoR(to, (u32)&cpuRegs.GPR.r[gprreg].UL[0]);
mmxregs[to].mode &= ~MODE_WRITE;
return to;
}
}
else {
if( shift > 0 ) PSRADItoR(to, shift);
MOVDMMXtoM((u32)&cpuRegs.GPR.r[gprreg].UL[0], to);
PSRADItoR(to, 31);
MOVDMMXtoM((u32)&cpuRegs.GPR.r[gprreg].UL[1], to);
mmxregs[to].inuse = 0;
return -1;
}
assert(0);
}
__declspec(align(16)) u32 s_zeros[4] = {0};
int _signExtendXMMtoM(u32 to, x86SSERegType from, int candestroy)
{
int t0reg;
// if( g_xmmtypes[from] == XMMT_FPS && (!candestroy || _hasFreeXMMreg()) ) {
// // special floating point implementation
// // NOTE: doesn't sign extend 0x80000000
// xmmregs[from].needed = 1;
// t0reg = _allocTempXMMreg(XMMT_FPS, -1);
// SSE_XORPS_XMM_to_XMM(t0reg, t0reg);
// SSE_MOVSS_XMM_to_M32(to, from);
// SSE_CMPNLESS_XMM_to_XMM(t0reg, from);
// SSE_MOVSS_XMM_to_M32(to+4, t0reg);
// _freeXMMreg(t0reg);
// return 0;
// }
// else {
g_xmmtypes[from] = XMMT_INT;
if( candestroy ) {
if( g_xmmtypes[from] == XMMT_FPS || !cpucaps.hasStreamingSIMD2Extensions ) SSE_MOVSS_XMM_to_M32(to, from);
else SSE2_MOVD_XMM_to_M32(to, from);
// if( g_xmmtypes[from] == XMMT_FPS ) {
// SSE_CMPLTSS_M32_to_XMM(from, (u32)&s_zeros[0]);
// SSE_MOVSS_XMM_to_M32(to+4, from);
// return 1;
// }
// else {
if( cpucaps.hasStreamingSIMD2Extensions ) {
SSE2_PSRAD_I8_to_XMM(from, 31);
SSE2_MOVD_XMM_to_M32(to+4, from);
return 1;
}
else {
SSE_MOVSS_XMM_to_M32(to+4, from);
SAR32ItoM(to+4, 31);
return 0;
}
// }
}
else {
// can't destroy and type is int
assert( g_xmmtypes[from] == XMMT_INT );
if( cpucaps.hasStreamingSIMD2Extensions ) {
if( _hasFreeXMMreg() ) {
xmmregs[from].needed = 1;
t0reg = _allocTempXMMreg(XMMT_INT, -1);
SSEX_MOVDQA_XMM_to_XMM(t0reg, from);
SSE2_PSRAD_I8_to_XMM(from, 31);
SSE2_MOVD_XMM_to_M32(to, t0reg);
SSE2_MOVD_XMM_to_M32(to+4, from);
// swap xmm regs.. don't ask
xmmregs[t0reg] = xmmregs[from];
xmmregs[from].inuse = 0;
}
else {
SSE2_MOVD_XMM_to_M32(to+4, from);
SSE2_MOVD_XMM_to_M32(to, from);
SAR32ItoM(to+4, 31);
}
}
else {
SSE_MOVSS_XMM_to_M32(to+4, from);
SSE_MOVSS_XMM_to_M32(to, from);
SAR32ItoM(to+4, 31);
}
return 0;
}
//}
assert(0);
}
int _allocCheckGPRtoXMM(EEINST* pinst, int gprreg, int mode)
{
if( pinst->regs[gprreg] & EEINST_XMM ) return _allocGPRtoXMMreg(-1, gprreg, mode);
return _checkXMMreg(XMMTYPE_GPRREG, gprreg, mode);
}
int _allocCheckFPUtoXMM(EEINST* pinst, int fpureg, int mode)
{
if( pinst->fpuregs[fpureg] & EEINST_XMM ) return _allocFPtoXMMreg(-1, fpureg, mode);
return _checkXMMreg(XMMTYPE_FPREG, fpureg, mode);
}
int _allocCheckGPRtoMMX(EEINST* pinst, int reg, int mode)
{
if( pinst->regs[reg] & EEINST_MMX ) return _allocMMXreg(-1, MMX_GPR+reg, mode);
return _checkMMXreg(MMX_GPR+reg, mode);
}
void _recClearInst(EEINST* pinst)
{
memset(&pinst->regs[0], EEINST_LIVE0|EEINST_LIVE1|EEINST_LIVE2, sizeof(pinst->regs));
memset(&pinst->fpuregs[0], EEINST_LIVE0, sizeof(pinst->fpuregs));
memset(&pinst->info, 0, sizeof(EEINST)-sizeof(pinst->regs)-sizeof(pinst->fpuregs));
}
// returns nonzero value if reg has been written between [startpc, endpc-4]
int _recIsRegWritten(EEINST* pinst, int size, u8 xmmtype, u8 reg)
{
int i, inst = 1;
while(size-- > 0) {
for(i = 0; i < ARRAYSIZE(pinst->writeType); ++i) {
if( pinst->writeType[i] == xmmtype && pinst->writeReg[i] == reg )
return inst;
}
++inst;
pinst++;
}
return 0;
}
int _recIsRegUsed(EEINST* pinst, int size, u8 xmmtype, u8 reg)
{
int i, inst = 1;
while(size-- > 0) {
for(i = 0; i < ARRAYSIZE(pinst->writeType); ++i) {
if( pinst->writeType[i] == xmmtype && pinst->writeReg[i] == reg )
return inst;
}
for(i = 0; i < ARRAYSIZE(pinst->readType); ++i) {
if( pinst->readType[i] == xmmtype && pinst->readReg[i] == reg )
return inst;
}
++inst;
pinst++;
}
return 0;
}
void _recFillRegister(EEINST* pinst, int type, int reg, int write)
{
int i = 0;
if( write ) {
for(i = 0; i < ARRAYSIZE(pinst->writeType); ++i) {
if( pinst->writeType[i] == XMMTYPE_TEMP ) {
pinst->writeType[i] = type;
pinst->writeReg[i] = reg;
return;
}
}
assert(0);
}
else {
for(i = 0; i < ARRAYSIZE(pinst->readType); ++i) {
if( pinst->readType[i] == XMMTYPE_TEMP ) {
pinst->readType[i] = type;
pinst->readReg[i] = reg;
return;
}
}
assert(0);
}
}
// Writebacks //
void _recClearWritebacks()
{
}
void _recAddWriteBack(int cycle, u32 viwrite, EEINST* parent)
{
}
EEINSTWRITEBACK* _recCheckWriteBack(int cycle)
{
return NULL;
}
__declspec(align(16)) static u32 s_ones[2] = {0xffffffff, 0xffffffff};
void LogicalOpRtoR(x86MMXRegType to, x86MMXRegType from, int op)
{
switch(op) {
case 0: PANDRtoR(to, from); break;
case 1: PORRtoR(to, from); break;
case 2: PXORRtoR(to, from); break;
case 3:
PORRtoR(to, from);
PXORMtoR(to, (u32)&s_ones[0]);
break;
}
}
void LogicalOpMtoR(x86MMXRegType to, u32 from, int op)
{
switch(op) {
case 0: PANDMtoR(to, from); break;
case 1: PORMtoR(to, from); break;
case 2: PXORMtoR(to, from); break;
case 3:
PORRtoR(to, from);
PXORMtoR(to, (u32)&s_ones[0]);
break;
}
}
void LogicalOp32RtoM(u32 to, x86IntRegType from, int op)
{
switch(op) {
case 0: AND32RtoM(to, from); break;
case 1: OR32RtoM(to, from); break;
case 2: XOR32RtoM(to, from); break;
case 3: OR32RtoM(to, from); break;
}
}
void LogicalOp32MtoR(x86IntRegType to, u32 from, int op)
{
switch(op) {
case 0: AND32MtoR(to, from); break;
case 1: OR32MtoR(to, from); break;
case 2: XOR32MtoR(to, from); break;
case 3: OR32MtoR(to, from); break;
}
}
void LogicalOp32ItoR(x86IntRegType to, u32 from, int op)
{
switch(op) {
case 0: AND32ItoR(to, from); break;
case 1: OR32ItoR(to, from); break;
case 2: XOR32ItoR(to, from); break;
case 3: OR32ItoR(to, from); break;
}
}
void LogicalOp32ItoM(u32 to, u32 from, int op)
{
switch(op) {
case 0: AND32ItoM(to, from); break;
case 1: OR32ItoM(to, from); break;
case 2: XOR32ItoM(to, from); break;
case 3: OR32ItoM(to, from); break;
}
}
using namespace std;
struct BASEBLOCKS
{
// 0 - ee, 1 - iop
inline void Add(BASEBLOCKEX*);
inline void Remove(BASEBLOCKEX*);
inline int Get(u32 startpc);
inline void Reset();
inline BASEBLOCKEX** GetAll(int* pnum);
vector<BASEBLOCKEX*> blocks;
};
void BASEBLOCKS::Add(BASEBLOCKEX* pex)
{
assert( pex != NULL );
switch(blocks.size()) {
case 0:
blocks.push_back(pex);
return;
case 1:
assert( blocks.front()->startpc != pex->startpc );
if( blocks.front()->startpc < pex->startpc ) {
blocks.push_back(pex);
}
else blocks.insert(blocks.begin(), pex);
return;
default:
{
int imin = 0, imax = blocks.size(), imid;
while(imin < imax) {
imid = (imin+imax)>>1;
if( blocks[imid]->startpc > pex->startpc ) imax = imid;
else imin = imid+1;
}
assert( imin == blocks.size() || blocks[imin]->startpc > pex->startpc );
if( imin > 0 ) assert( blocks[imin-1]->startpc < pex->startpc );
blocks.insert(blocks.begin()+imin, pex);
return;
}
}
}
int BASEBLOCKS::Get(u32 startpc)
{
switch(blocks.size()) {
case 1:
return 0;
case 2:
return blocks.front()->startpc < startpc;
default:
{
int imin = 0, imax = blocks.size()-1, imid;
while(imin < imax) {
imid = (imin+imax)>>1;
if( blocks[imid]->startpc > startpc ) imax = imid;
else if( blocks[imid]->startpc == startpc ) return imid;
else imin = imid+1;
}
assert( blocks[imin]->startpc == startpc );
return imin;
}
}
}
void BASEBLOCKS::Remove(BASEBLOCKEX* pex)
{
assert( pex != NULL );
int i = Get(pex->startpc);
assert( blocks[i] == pex );
blocks.erase(blocks.begin()+i);
}
void BASEBLOCKS::Reset()
{
blocks.resize(0);
blocks.reserve(512);
}
BASEBLOCKEX** BASEBLOCKS::GetAll(int* pnum)
{
assert( pnum != NULL );
*pnum = blocks.size();
return &blocks[0];
}
static BASEBLOCKS s_vecBaseBlocksEx[2];
void AddBaseBlockEx(BASEBLOCKEX* pex, int cpu)
{
s_vecBaseBlocksEx[cpu].Add(pex);
}
BASEBLOCKEX* GetBaseBlockEx(u32 startpc, int cpu)
{
return s_vecBaseBlocksEx[cpu].blocks[s_vecBaseBlocksEx[cpu].Get(startpc)];
}
void RemoveBaseBlockEx(BASEBLOCKEX* pex, int cpu)
{
s_vecBaseBlocksEx[cpu].Remove(pex);
}
void ResetBaseBlockEx(int cpu)
{
s_vecBaseBlocksEx[cpu].Reset();
}
BASEBLOCKEX** GetAllBaseBlocks(int* pnum, int cpu)
{
return s_vecBaseBlocksEx[cpu].GetAll(pnum);
}