pcsx2/plugins/GSdx/GSRendererOGL.cpp

1480 lines
48 KiB
C++

/*
* Copyright (C) 2011-2011 Gregory hainaut
* Copyright (C) 2007-2009 Gabest
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSRendererOGL.h"
#include "GSRenderer.h"
GSRendererOGL::GSRendererOGL()
: GSRendererHW(new GSTextureCacheOGL(this))
{
m_accurate_date = theApp.GetConfigB("accurate_date");
m_sw_blending = theApp.GetConfigI("accurate_blending_unit");
// Hope nothing requires too many draw calls.
m_drawlist.reserve(2048);
UserHacks_TCOffset = theApp.GetConfigI("UserHacks_TCOffset");
UserHacks_TCO_x = (UserHacks_TCOffset & 0xFFFF) / -1000.0f;
UserHacks_TCO_y = ((UserHacks_TCOffset >> 16) & 0xFFFF) / -1000.0f;
UserHacks_unscale_pt_ln = theApp.GetConfigB("UserHacks_unscale_point_line");
UserHacks_HPO = theApp.GetConfigI("UserHacks_HalfPixelOffset");
UserHacks_tri_filter = static_cast<TriFiltering>(theApp.GetConfigI("UserHacks_TriFilter"));
m_prim_overlap = PRIM_OVERLAP_UNKNOW;
ResetStates();
if (!theApp.GetConfigB("UserHacks")) {
UserHacks_TCOffset = 0;
UserHacks_TCO_x = 0;
UserHacks_TCO_y = 0;
UserHacks_unscale_pt_ln = false;
UserHacks_HPO = 0;
UserHacks_tri_filter = TriFiltering::None;
}
}
bool GSRendererOGL::CreateDevice(GSDevice* dev)
{
return GSRenderer::CreateDevice(dev);
}
void GSRendererOGL::SetupIA(const float& sx, const float& sy)
{
GL_PUSH("IA");
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
if (UserHacks_WildHack && !isPackedUV_HackFlag && PRIM->TME && PRIM->FST) {
for(unsigned int i = 0; i < m_vertex.next; i++)
m_vertex.buff[i].UV &= 0x3FEF3FEF;
}
GLenum t = 0;
bool unscale_hack = UserHacks_unscale_pt_ln && (GetUpscaleMultiplier() != 1) && GLLoader::found_geometry_shader;
switch(m_vt.m_primclass)
{
case GS_POINT_CLASS:
if (unscale_hack) {
m_gs_sel.point = 1;
vs_cb.PointSize = GSVector2(16.0f * sx, 16.0f * sy);
}
t = GL_POINTS;
break;
case GS_LINE_CLASS:
if (unscale_hack) {
m_gs_sel.line = 1;
vs_cb.PointSize = GSVector2(16.0f * sx, 16.0f * sy);
}
t = GL_LINES;
break;
case GS_SPRITE_CLASS:
// Heuristics: trade-off
// CPU conversion => ofc, more CPU ;) more bandwidth (72 bytes / sprite)
// GPU conversion => ofc, more GPU. And also more CPU due to extra shader validation stage.
//
// Note: severals openGL operation does draw call under the wood like texture upload. So even if
// you do 10 consecutive draw with the geometry shader, you will still pay extra validation if new
// texture are uploaded. (game Shadow Hearts)
//
// Note2: Due to MultiThreaded driver, Nvidia suffers less of the previous issue. Still it isn't free
// Shadow Heart is 90 fps (gs) vs 113 fps (no gs)
// If the draw calls contains few primitives. Geometry Shader gain with be rather small versus
// the extra validation cost of the extra stage.
//
// Note: keep Geometry Shader in the replayer to ease debug.
if (GLLoader::found_geometry_shader && !m_vt.m_accurate_stq && (m_vertex.next > 32 || GLLoader::in_replayer)) { // <=> 16 sprites (based on Shadow Hearts)
m_gs_sel.sprite = 1;
t = GL_LINES;
} else {
Lines2Sprites();
t = GL_TRIANGLES;
}
break;
case GS_TRIANGLE_CLASS:
t = GL_TRIANGLES;
break;
default:
__assume(0);
}
dev->IASetVertexBuffer(m_vertex.buff, m_vertex.next);
dev->IASetIndexBuffer(m_index.buff, m_index.tail);
dev->IASetPrimitiveTopology(t);
}
void GSRendererOGL::EmulateAtst(const int pass, const GSTextureCache::Source* tex)
{
static const uint32 inverted_atst[] = {ATST_ALWAYS, ATST_NEVER, ATST_GEQUAL, ATST_GREATER, ATST_NOTEQUAL, ATST_LESS, ATST_LEQUAL, ATST_EQUAL};
int atst = (pass == 2) ? inverted_atst[m_context->TEST.ATST] : m_context->TEST.ATST;
if (!m_context->TEST.ATE) return;
switch (atst) {
case ATST_LESS:
if (tex && tex->m_spritehack_t) {
m_ps_sel.atst = 0;
} else {
ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF - 0.1f;
m_ps_sel.atst = 1;
}
break;
case ATST_LEQUAL:
ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF - 0.1f + 1.0f;
m_ps_sel.atst = 1;
break;
case ATST_GEQUAL:
// Maybe a -1 trick multiplication factor could be used to merge with ATST_LEQUAL case
ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF - 0.1f;
m_ps_sel.atst = 2;
break;
case ATST_GREATER:
// Maybe a -1 trick multiplication factor could be used to merge with ATST_LESS case
ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF - 0.1f + 1.0f;
m_ps_sel.atst = 2;
break;
case ATST_EQUAL:
ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF;
m_ps_sel.atst = 3;
break;
case ATST_NOTEQUAL:
ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF;
m_ps_sel.atst = 4;
break;
case ATST_NEVER: // Draw won't be done so no need to implement it in shader
case ATST_ALWAYS:
default:
m_ps_sel.atst = 0;
break;
}
}
void GSRendererOGL::EmulateZbuffer()
{
if (m_context->TEST.ZTE) {
m_om_dssel.ztst = m_context->TEST.ZTST;
m_om_dssel.zwe = !m_context->ZBUF.ZMSK;
} else {
m_om_dssel.ztst = ZTST_ALWAYS;
}
uint32 max_z;
if (m_context->ZBUF.PSM == PSM_PSMZ32) {
max_z = 0xFFFFFFFF;
} else if (m_context->ZBUF.PSM == PSM_PSMZ24) {
max_z = 0xFFFFFF;
} else {
max_z = 0xFFFF;
}
// The real GS appears to do no masking based on the Z buffer format and writing larger Z values
// than the buffer supports seems to be an error condition on the real GS, causing it to crash.
// We are probably receiving bad coordinates from VU1 in these cases.
vs_cb.DepthMask = GSVector2i(0xFFFFFFFF, 0xFFFFFFFF);
if (m_om_dssel.ztst >= ZTST_ALWAYS && m_om_dssel.zwe && (m_context->ZBUF.PSM != PSM_PSMZ32)) {
if (m_vt.m_max.p.z > max_z) {
ASSERT(m_vt.m_min.p.z > max_z); // sfex capcom logo
// Fixme :Following conditional fixes some dialog frame in Wild Arms 3, but may not be what was intended.
if (m_vt.m_min.p.z > max_z) {
GL_DBG("Bad Z size (%f %f) on %s buffers", m_vt.m_min.p.z, m_vt.m_max.p.z, psm_str(m_context->ZBUF.PSM));
vs_cb.DepthMask = GSVector2i(max_z, max_z);
m_om_dssel.ztst = ZTST_ALWAYS;
}
}
}
GSVertex* v = &m_vertex.buff[0];
// Minor optimization of a corner case (it allow to better emulate some alpha test effects)
if (m_om_dssel.ztst == ZTST_GEQUAL && m_vt.m_eq.z && v[0].XYZ.Z == max_z) {
GL_DBG("Optimize Z test GEQUAL to ALWAYS (%s)", psm_str(m_context->ZBUF.PSM));
m_om_dssel.ztst = ZTST_ALWAYS;
}
}
void GSRendererOGL::EmulateTextureShuffleAndFbmask()
{
size_t count = m_vertex.next;
GSVertex* v = &m_vertex.buff[0];
// Shadow_of_memories_Shadow_Flickering (Okami mustn't call this code)
if (m_texture_shuffle && count < 3 && PRIM->FST && (m_context->FRAME.FBMSK == 0)) {
// Avious dubious call to m_texture_shuffle on 16 bits games
// The pattern is severals column of 8 pixels. A single sprite
// smell fishy but a big sprite is wrong.
m_texture_shuffle = ((v[1].U - v[0].U) < 256);
}
if (m_texture_shuffle) {
m_ps_sel.shuffle = 1;
m_ps_sel.dfmt = 0;
const GIFRegXYOFFSET& o = m_context->XYOFFSET;
// vertex position is 8 to 16 pixels, therefore it is the 16-31 bits of the colors
int pos = (v[0].XYZ.X - o.OFX) & 0xFF;
bool write_ba = (pos > 112 && pos < 136);
// Read texture is 8 to 16 pixels (same as above)
float tw = (float)(1u << m_context->TEX0.TW);
int tex_pos = (PRIM->FST) ? v[0].U : (int)(tw * v[0].ST.S);
tex_pos &= 0xFF;
m_ps_sel.read_ba = (tex_pos > 112 && tex_pos < 144);
// Convert the vertex info to a 32 bits color format equivalent
if (PRIM->FST) {
GL_INS("First vertex is P: %d => %d T: %d => %d", v[0].XYZ.X, v[1].XYZ.X, v[0].U, v[1].U);
for(size_t i = 0; i < count; i += 2) {
if (write_ba)
v[i].XYZ.X -= 128u;
else
v[i+1].XYZ.X += 128u;
if (m_ps_sel.read_ba)
v[i].U -= 128u;
else
v[i+1].U += 128u;
// Height is too big (2x).
int tex_offset = v[i].V & 0xF;
GSVector4i offset(o.OFY, tex_offset, o.OFY, tex_offset);
GSVector4i tmp(v[i].XYZ.Y, v[i].V, v[i+1].XYZ.Y, v[i+1].V);
tmp = GSVector4i(tmp - offset).srl32(1) + offset;
v[i].XYZ.Y = (uint16)tmp.x;
v[i].V = (uint16)tmp.y;
v[i+1].XYZ.Y = (uint16)tmp.z;
v[i+1].V = (uint16)tmp.w;
}
} else {
const float offset_8pix = 8.0f / tw;
GL_INS("First vertex is P: %d => %d T: %f => %f (offset %f)", v[0].XYZ.X, v[1].XYZ.X, v[0].ST.S, v[1].ST.S, offset_8pix);
for(size_t i = 0; i < count; i += 2) {
if (write_ba)
v[i].XYZ.X -= 128u;
else
v[i+1].XYZ.X += 128u;
if (m_ps_sel.read_ba)
v[i].ST.S -= offset_8pix;
else
v[i+1].ST.S += offset_8pix;
// Height is too big (2x).
GSVector4i offset(o.OFY, o.OFY);
GSVector4i tmp(v[i].XYZ.Y, v[i+1].XYZ.Y);
tmp = GSVector4i(tmp - offset).srl32(1) + offset;
//fprintf(stderr, "Before %d, After %d\n", v[i+1].XYZ.Y, tmp.y);
v[i].XYZ.Y = (uint16)tmp.x;
v[i].ST.T /= 2.0f;
v[i+1].XYZ.Y = (uint16)tmp.y;
v[i+1].ST.T /= 2.0f;
}
}
// If date is enabled you need to test the green channel instead of the
// alpha channel. Only enable this code in DATE mode to reduce the number
// of shader.
m_ps_sel.write_rg = !write_ba && m_context->TEST.DATE;
// Please bang my head against the wall!
// 1/ Reduce the frame mask to a 16 bit format
const uint32& m = m_context->FRAME.FBMSK;
uint32 fbmask = ((m >> 3) & 0x1F) | ((m >> 6) & 0x3E0) | ((m >> 9) & 0x7C00) | ((m >> 16) & 0x8000);
// FIXME GSVector will be nice here
uint8 rg_mask = fbmask & 0xFF;
uint8 ba_mask = (fbmask >> 8) & 0xFF;
m_om_csel.wrgba = 0;
// 2 Select the new mask (Please someone put SSE here)
if (rg_mask != 0xFF) {
if (write_ba) {
GL_INS("Color shuffle %s => B", m_ps_sel.read_ba ? "B" : "R");
m_om_csel.wb = 1;
} else {
GL_INS("Color shuffle %s => R", m_ps_sel.read_ba ? "B" : "R");
m_om_csel.wr = 1;
}
if (rg_mask)
m_ps_sel.fbmask = 1;
}
if (ba_mask != 0xFF) {
if (write_ba) {
GL_INS("Color shuffle %s => A", m_ps_sel.read_ba ? "A" : "G");
m_om_csel.wa = 1;
} else {
GL_INS("Color shuffle %s => G", m_ps_sel.read_ba ? "A" : "G");
m_om_csel.wg = 1;
}
if (ba_mask)
m_ps_sel.fbmask = 1;
}
if (m_ps_sel.fbmask && m_sw_blending) {
GL_INS("FBMASK SW emulated fb_mask:%x on tex shuffle", fbmask);
ps_cb.FbMask.r = rg_mask;
ps_cb.FbMask.g = rg_mask;
ps_cb.FbMask.b = ba_mask;
ps_cb.FbMask.a = ba_mask;
m_require_full_barrier = true;
} else {
m_ps_sel.fbmask = 0;
}
} else {
m_ps_sel.dfmt = GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt;
GSVector4i fbmask_v = GSVector4i::load((int)m_context->FRAME.FBMSK);
int ff_fbmask = fbmask_v.eq8(GSVector4i::xffffffff()).mask();
int zero_fbmask = fbmask_v.eq8(GSVector4i::zero()).mask();
m_om_csel.wrgba = ~ff_fbmask; // Enable channel if at least 1 bit is 0
m_ps_sel.fbmask = m_sw_blending && (~ff_fbmask & ~zero_fbmask & 0xF);
if (m_ps_sel.fbmask) {
ps_cb.FbMask = fbmask_v.u8to32();
// Only alpha is special here, I think we can take a very unsafe shortcut
// Alpha isn't blended on the GS but directly copyied into the RT.
//
// Behavior is clearly undefined however there is a high probability that
// it will work. Masked bit will be constant and normally the same everywhere
// RT/FS output/Cached value.
//
// Just to be sure let's add a new safe hack for unsafe access :)
//
// Here the GL spec quote to emphasize the unexpected behavior.
/*
- If a texel has been written, then in order to safely read the result
a texel fetch must be in a subsequent Draw separated by the command
void TextureBarrier(void);
TextureBarrier() will guarantee that writes have completed and caches
have been invalidated before subsequent Draws are executed.
*/
// Safe option was removed. Likely nobody never use it. Keep the code commented if it becomes useful one day
if (!(~ff_fbmask & ~zero_fbmask & 0x7) /*&& !UserHacks_safe_fbmask*/) {
GL_INS("FBMASK Unsafe SW emulated fb_mask:%x on %d bits format", m_context->FRAME.FBMSK,
(GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt == 2) ? 16 : 32);
m_require_one_barrier = true;
} else {
// The safe and accurate path (but slow)
GL_INS("FBMASK SW emulated fb_mask:%x on %d bits format", m_context->FRAME.FBMSK,
(GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt == 2) ? 16 : 32);
m_require_full_barrier = true;;
}
}
}
}
void GSRendererOGL::EmulateChannelShuffle(GSTexture** rt, const GSTextureCache::Source* tex)
{
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
// Uncomment to disable HLE emulation (allow to trace the draw call)
// m_channel_shuffle = false;
// First let's check we really have a channel shuffle effect
if (m_channel_shuffle) {
if (m_game.title == CRC::GT4 || m_game.title == CRC::GT3 || m_game.title == CRC::GTConcept || m_game.title == CRC::TouristTrophy) {
GL_INS("Gran Turismo RGB Channel");
m_ps_sel.channel = 7;
m_context->TEX0.TFX = TFX_DECAL;
*rt = tex->m_from_target;
} else if (m_game.title == CRC::Tekken5) {
if (m_context->FRAME.FBW == 1) {
GL_INS("Tekken5 RGB Channel");
m_ps_sel.channel = 7;
m_context->FRAME.FBMSK = 0xFF000000;
// 12 pages: 2 calls by channel, 3 channels, 1 blit
// Minus current draw call
m_skip = 12 * (3 + 3 + 1) - 1;
*rt = tex->m_from_target;
} else {
// Could skip model drawing if wrongly detected
m_channel_shuffle = false;
}
} else if ((tex->m_texture->GetType() == GSTexture::DepthStencil) && !(tex->m_32_bits_fmt)) {
// So far 2 games hit this code path. Urban Chaos and Tales of Abyss
// UC: will copy depth to green channel
// ToA: will copy depth to alpha channel
if ((m_context->FRAME.FBMSK & 0xFF0000) == 0xFF0000) {
// Green channel is masked
GL_INS("Tales Of Abyss Crazyness (MSB 16b depth to Alpha)");
m_ps_sel.tales_of_abyss_hle = 1;
} else {
GL_INS("Urban Chaos Crazyness (Green extraction)");
m_ps_sel.urban_chaos_hle = 1;
}
} else if (m_index.tail <= 64 && m_context->CLAMP.WMT == 3) {
// Blood will tell. I think it is channel effect too but again
// implemented in a different way. I don't want to add more CRC stuff. So
// let's disable channel when the signature is different
//
// Note: Tales Of Abyss and Tekken5 could hit this path too. Those games are
// handled above.
GL_INS("maybe not a channel!");
m_channel_shuffle = false;
} else if (m_context->CLAMP.WMS == 3 && ((m_context->CLAMP.MAXU & 0x8) == 8)) {
// Read either blue or Alpha. Let's go for Blue ;)
// MGS3/Kill Zone
GL_INS("Blue channel");
m_ps_sel.channel = 3;
} else if (m_context->CLAMP.WMS == 3 && ((m_context->CLAMP.MINU & 0x8) == 0)) {
// Read either Red or Green. Let's check the V coordinate. 0-1 is likely top so
// red. 2-3 is likely bottom so green (actually depends on texture base pointer offset)
bool green = PRIM->FST && (m_vertex.buff[0].V & 32);
if (green && (m_context->FRAME.FBMSK & 0x00FFFFFF) == 0x00FFFFFF) {
// Typically used in Terminator 3
int blue_mask = m_context->FRAME.FBMSK >> 24;
int green_mask = ~blue_mask & 0xFF;
int blue_shift = -1;
// Note: potentially we could also check the value of the clut
switch (m_context->FRAME.FBMSK >> 24) {
case 0xFF: ASSERT(0); break;
case 0xFE: blue_shift = 1; break;
case 0xFC: blue_shift = 2; break;
case 0xF8: blue_shift = 3; break;
case 0xF0: blue_shift = 4; break;
case 0xE0: blue_shift = 5; break;
case 0xC0: blue_shift = 6; break;
case 0x80: blue_shift = 7; break;
default: ASSERT(0); break;
}
int green_shift = 8 - blue_shift;
dev->SetupCBMisc(GSVector4i(blue_mask, blue_shift, green_mask, green_shift));
if (blue_shift >= 0) {
GL_INS("Green/Blue channel (%d, %d)", blue_shift, green_shift);
m_ps_sel.channel = 6;
m_context->FRAME.FBMSK = 0x00FFFFFF;
} else {
GL_INS("Green channel (wrong mask) (fbmask %x)", m_context->FRAME.FBMSK >> 24);
m_ps_sel.channel = 2;
}
} else if (green) {
GL_INS("Green channel");
m_ps_sel.channel = 2;
} else {
// Pop
GL_INS("Red channel");
m_ps_sel.channel = 1;
}
} else {
GL_INS("channel not supported");
m_channel_shuffle = false;
}
}
// Effect is really a channel shuffle effect so let's cheat a little
if (m_channel_shuffle) {
dev->PSSetShaderResource(4, tex->m_from_target);
m_require_one_barrier = true;
// Replace current draw with a fullscreen sprite
//
// Performance GPU note: it could be wise to reduce the size to
// the rendered size of the framebuffer
GSVertex* s = &m_vertex.buff[0];
s[0].XYZ.X = (uint16)(m_context->XYOFFSET.OFX + 0);
s[1].XYZ.X = (uint16)(m_context->XYOFFSET.OFX + 16384);
s[0].XYZ.Y = (uint16)(m_context->XYOFFSET.OFY + 0);
s[1].XYZ.Y = (uint16)(m_context->XYOFFSET.OFY + 16384);
m_vertex.head = m_vertex.tail = m_vertex.next = 2;
m_index.tail = 2;
} else {
#ifdef ENABLE_OGL_DEBUG
dev->PSSetShaderResource(4, NULL);
#endif
}
}
void GSRendererOGL::EmulateBlending(bool DATE_GL42)
{
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
const GIFRegALPHA& ALPHA = m_context->ALPHA;
bool sw_blending = false;
// No blending so early exit
if (!(PRIM->ABE || PRIM->AA1 && m_vt.m_primclass == GS_LINE_CLASS)) {
#ifdef ENABLE_OGL_DEBUG
if (m_env.PABE.PABE) {
GL_INS("!!! ENV PABE without ABE !!!");
}
#endif
dev->OMSetBlendState();
return;
}
if (m_env.PABE.PABE)
{
GL_INS("!!! ENV PABE not supported !!!");
if (m_sw_blending >= ACC_BLEND_CCLIP_DALPHA) {
m_ps_sel.pabe = 1;
m_require_full_barrier |= (ALPHA.C == 1);
sw_blending = true;
}
//Breath of Fire Dragon Quarter triggers this in battles. Graphics are fine though.
//ASSERT(0);
}
// Compute the blending equation to detect special case
uint8 blend_index = uint8(((ALPHA.A * 3 + ALPHA.B) * 3 + ALPHA.C) * 3 + ALPHA.D);
int blend_flag = GSDeviceOGL::m_blendMapOGL[blend_index].bogus;
// SW Blend is (nearly) free. Let's use it.
bool impossible_or_free_blend = (blend_flag & (BLEND_NO_BAR|BLEND_A_MAX|BLEND_ACCU)) // Blend doesn't requires the costly barrier
|| (m_prim_overlap == PRIM_OVERLAP_NO) // Blend can be done in a single draw
|| (m_require_full_barrier); // Another effect (for example fbmask) already requires a full barrier
// Do the multiplication in shader for blending accumulation: Cs*As + Cd or Cs*Af + Cd
bool accumulation_blend = !!(blend_flag & BLEND_ACCU);
// Warning no break on purpose
switch (m_sw_blending) {
case ACC_BLEND_ULTRA: sw_blending |= true;
case ACC_BLEND_FULL: if (!m_vt.m_alpha.valid && (ALPHA.C == 0)) GetAlphaMinMax();
sw_blending |= (ALPHA.A != ALPHA.B) &&
((ALPHA.C == 0 && m_vt.m_alpha.max > 128) || (ALPHA.C == 2 && ALPHA.FIX > 128u));
case ACC_BLEND_CCLIP_DALPHA: sw_blending |= (ALPHA.C == 1) || (m_env.COLCLAMP.CLAMP == 0);
// Initial idea was to enable accurate blending for sprite rendering to handle
// correctly post-processing effect. Some games (ZoE) use tons of sprites as particles.
// In order to keep it fast, let's limit it to smaller draw call.
case ACC_BLEND_SPRITE: sw_blending |= m_vt.m_primclass == GS_SPRITE_CLASS && m_drawlist.size() < 100;
case ACC_BLEND_FREE: sw_blending |= impossible_or_free_blend;
default: /*sw_blending |= accumulation_blend*/;
}
// SW Blending
// GL42 interact very badly with sw blending. GL42 uses the primitiveID to find the primitive
// that write the bad alpha value. Sw blending will force the draw to run primitive by primitive
// (therefore primitiveID will be constant to 1)
sw_blending &= !DATE_GL42;
// Color clip
if (m_env.COLCLAMP.CLAMP == 0) {
if (m_prim_overlap == PRIM_OVERLAP_NO) {
// The fastest algo that requires a single pass
GL_INS("COLCLIP Free mode ENABLED");
m_ps_sel.colclip = 1;
//ASSERT(sw_blending);
sw_blending = true;
accumulation_blend = false; // disable the HDR algo
} else if (accumulation_blend) {
// A fast algo that requires 2 passes
GL_INS("COLCLIP Fast HDR mode ENABLED");
m_ps_sel.hdr = 1;
sw_blending = true; // Enable sw blending for the HDR algo
} else if (sw_blending) {
// A slow algo that could requires several passes (barely used)
GL_INS("COLCLIP SW ENABLED (blending is %d/%d/%d/%d)", ALPHA.A, ALPHA.B, ALPHA.C, ALPHA.D);
m_ps_sel.colclip = 1;
} else {
// Speed hack skip previous slow algo
GL_INS("Sorry colclip isn't supported");
}
}
// Seriously don't expect me to support this kind of crazyness.
// No mix of COLCLIP + accumulation_blend + DATE GL42
// Neither fbmask and GL42
ASSERT(!(m_ps_sel.hdr && DATE_GL42));
ASSERT(!(m_ps_sel.fbmask && DATE_GL42));
// For stat to optimize accurate option
#if 0
GL_INS("BLEND_INFO: %d/%d/%d/%d. Clamp:%d. Prim:%d number %d (drawlist %d) (sw %d)",
ALPHA.A, ALPHA.B, ALPHA.C, ALPHA.D, m_env.COLCLAMP.CLAMP, m_vt.m_primclass, m_vertex.next, m_drawlist.size(), sw_blending);
#endif
if (sw_blending) {
m_ps_sel.blend_a = ALPHA.A;
m_ps_sel.blend_b = ALPHA.B;
m_ps_sel.blend_c = ALPHA.C;
m_ps_sel.blend_d = ALPHA.D;
if (accumulation_blend) {
// Keep HW blending to do the addition/subtraction
dev->OMSetBlendState(blend_index, 0, false, true);
if (ALPHA.A == 2) {
// The blend unit does a reverse subtraction so it means
// the shader must output a positive value.
// Replace 0 - Cs by Cs - 0
m_ps_sel.blend_a = ALPHA.B;
m_ps_sel.blend_b = 2;
}
// Remove the addition/substraction from the SW blending
m_ps_sel.blend_d = 2;
// Note accumulation_blend doesn't require a barrier
} else {
// Disable HW blending
dev->OMSetBlendState();
m_require_full_barrier |= !(blend_flag & BLEND_NO_BAR);
}
// Require the fix alpha vlaue
if (ALPHA.C == 2) {
ps_cb.TA_Af.a = (float)ALPHA.FIX / 128.0f;
}
} else {
m_ps_sel.clr1 = !!(blend_flag & BLEND_C_CLR);
if (m_ps_sel.dfmt == 1 && ALPHA.C == 1) {
// 24 bits doesn't have an alpha channel so use 1.0f fix factor as equivalent
uint8 hacked_blend_index = blend_index + 3; // +3 <=> +1 on C
dev->OMSetBlendState(hacked_blend_index, 128, true);
} else {
dev->OMSetBlendState(blend_index, ALPHA.FIX, (ALPHA.C == 2));
}
}
}
void GSRendererOGL::EmulateTextureSampler(const GSTextureCache::Source* tex)
{
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
// Warning fetch the texture PSM format rather than the context format. The latter could have been corrected in the texture cache for depth.
//const GSLocalMemory::psm_t &psm = GSLocalMemory::m_psm[m_context->TEX0.PSM];
const GSLocalMemory::psm_t &psm = GSLocalMemory::m_psm[tex->m_TEX0.PSM];
const GSLocalMemory::psm_t &cpsm = psm.pal > 0 ? GSLocalMemory::m_psm[m_context->TEX0.CPSM] : psm;
const uint8 wms = m_context->CLAMP.WMS;
const uint8 wmt = m_context->CLAMP.WMT;
bool complex_wms_wmt = !!((wms | wmt) & 2);
bool need_mipmap = IsMipMapDraw();
bool shader_emulated_sampler = tex->m_palette || cpsm.fmt != 0 || complex_wms_wmt || psm.depth;
bool trilinear_manual = need_mipmap && m_mipmap == 2;
bool bilinear = m_vt.IsLinear();
int trilinear = 0;
bool trilinear_auto = false;
switch (UserHacks_tri_filter)
{
case TriFiltering::Forced:
trilinear = static_cast<uint8>(GS_MIN_FILTER::Linear_Mipmap_Linear);
trilinear_auto = m_mipmap != 2;
break;
case TriFiltering::PS2:
if (need_mipmap && m_mipmap != 2) {
trilinear = m_context->TEX1.MMIN;
trilinear_auto = true;
}
break;
case TriFiltering::None:
default:
break;
}
// 1 and 0 are equivalent
m_ps_sel.wms = (wms & 2) ? wms : 0;
m_ps_sel.wmt = (wmt & 2) ? wmt : 0;
// Depth + bilinear filtering isn't done yet (And I'm not sure we need it anyway but a game will prove me wrong)
// So of course, GTA set the linear mode, but sampling is done at texel center so it is equivalent to nearest sampling
ASSERT(!(psm.depth && m_vt.IsLinear()));
// Performance note:
// 1/ Don't set 0 as it is the default value
// 2/ Only keep aem when it is useful (avoid useless shader permutation)
if (m_ps_sel.shuffle) {
// Force a 32 bits access (normally shuffle is done on 16 bits)
// m_ps_sel.tex_fmt = 0; // removed as an optimization
m_ps_sel.aem = m_env.TEXA.AEM;
ASSERT(tex->m_target);
// Require a float conversion if the texure is a depth otherwise uses Integral scaling
if (psm.depth) {
m_ps_sel.depth_fmt = (tex->m_texture->GetType() != GSTexture::DepthStencil) ? 3 : 1;
}
// Shuffle is a 16 bits format, so aem is always required
GSVector4 ta(m_env.TEXA & GSVector4i::x000000ff());
ta /= 255.0f;
// FIXME rely on compiler for the optimization
ps_cb.TA_Af.x = ta.x;
ps_cb.TA_Af.y = ta.y;
// The purpose of texture shuffle is to move color channel. Extra interpolation is likely a bad idea.
bilinear &= m_vt.IsLinear();
vs_cb.TextureOffset = RealignTargetTextureCoordinate(tex);
} else if (tex->m_target) {
// Use an old target. AEM and index aren't resolved it must be done
// on the GPU
// Select the 32/24/16 bits color (AEM)
m_ps_sel.tex_fmt = cpsm.fmt;
m_ps_sel.aem = m_env.TEXA.AEM;
// Don't upload AEM if format is 32 bits
if (cpsm.fmt) {
GSVector4 ta(m_env.TEXA & GSVector4i::x000000ff());
ta /= 255.0f;
// FIXME rely on compiler for the optimization
ps_cb.TA_Af.x = ta.x;
ps_cb.TA_Af.y = ta.y;
}
// Select the index format
if (tex->m_palette) {
// FIXME Potentially improve fmt field in GSLocalMemory
if (m_context->TEX0.PSM == PSM_PSMT4HL)
m_ps_sel.tex_fmt |= 1 << 2;
else if (m_context->TEX0.PSM == PSM_PSMT4HH)
m_ps_sel.tex_fmt |= 2 << 2;
else
m_ps_sel.tex_fmt |= 3 << 2;
// Alpha channel of the RT is reinterpreted as an index. Star
// Ocean 3 uses it to emulate a stencil buffer. It is a very
// bad idea to force bilinear filtering on it.
bilinear &= m_vt.IsLinear();
}
// Depth format
if (tex->m_texture->GetType() == GSTexture::DepthStencil) {
// Require a float conversion if the texure is a depth format
m_ps_sel.depth_fmt = (psm.bpp == 16) ? 2 : 1;
// Don't force interpolation on depth format
bilinear &= m_vt.IsLinear();
} else if (psm.depth) {
// Use Integral scaling
m_ps_sel.depth_fmt = 3;
// Don't force interpolation on depth format
bilinear &= m_vt.IsLinear();
}
vs_cb.TextureOffset = RealignTargetTextureCoordinate(tex);
} else if (tex->m_palette) {
// Use a standard 8 bits texture. AEM is already done on the CLUT
// Therefore you only need to set the index
// m_ps_sel.aem = 0; // removed as an optimization
// Note 4 bits indexes are converted to 8 bits
m_ps_sel.tex_fmt = 3 << 2;
} else {
// Standard texture. Both index and AEM expansion were already done by the CPU.
// m_ps_sel.tex_fmt = 0; // removed as an optimization
// m_ps_sel.aem = 0; // removed as an optimization
}
if (m_context->TEX0.TFX == TFX_MODULATE && m_vt.m_eq.rgba == 0xFFFF && m_vt.m_min.c.eq(GSVector4i(128))) {
// Micro optimization that reduces GPU load (removes 5 instructions on the FS program)
m_ps_sel.tfx = TFX_DECAL;
} else {
m_ps_sel.tfx = m_context->TEX0.TFX;
}
m_ps_sel.tcc = m_context->TEX0.TCC;
m_ps_sel.ltf = bilinear && shader_emulated_sampler;
int w = tex->m_texture->GetWidth();
int h = tex->m_texture->GetHeight();
int tw = (int)(1 << m_context->TEX0.TW);
int th = (int)(1 << m_context->TEX0.TH);
GSVector4 WH(tw, th, w, h);
m_ps_sel.fst = !!PRIM->FST;
ps_cb.WH = WH;
ps_cb.HalfTexel = GSVector4(-0.5f, 0.5f).xxyy() / WH.zwzw();
if (complex_wms_wmt) {
ps_cb.MskFix = GSVector4i(m_context->CLAMP.MINU, m_context->CLAMP.MINV, m_context->CLAMP.MAXU, m_context->CLAMP.MAXV);
ps_cb.MinMax = GSVector4(ps_cb.MskFix) / WH.xyxy();
} else if (trilinear_manual) {
// Reuse MinMax for mipmap parameter to avoid an extension of the UBO
ps_cb.MinMax.x = (float)m_context->TEX1.K / 16.0f;
ps_cb.MinMax.y = float(1 << m_context->TEX1.L);
ps_cb.MinMax.z = float(m_lod.x); // Offset because first layer is m_lod, dunno if we can do better
ps_cb.MinMax.w = float(m_lod.y);
} else if (trilinear_auto) {
tex->m_texture->GenerateMipmap();
}
// TC Offset Hack
m_ps_sel.tcoffsethack = !!UserHacks_TCOffset;
ps_cb.TC_OH_TS = GSVector4(1/16.0f, 1/16.0f, UserHacks_TCO_x, UserHacks_TCO_y) / WH.xyxy();
// Only enable clamping in CLAMP mode. REGION_CLAMP will be done manually in the shader
m_ps_ssel.tau = (wms != CLAMP_CLAMP);
m_ps_ssel.tav = (wmt != CLAMP_CLAMP);
if (shader_emulated_sampler) {
m_ps_ssel.biln = 0;
m_ps_ssel.aniso = 0;
m_ps_ssel.triln = 0;
} else {
m_ps_ssel.biln = bilinear;
m_ps_ssel.aniso = 1;
m_ps_ssel.triln = trilinear;
if (trilinear_manual) {
m_ps_sel.manual_lod = 1;
} else if (trilinear_auto) {
m_ps_sel.automatic_lod = 1;
}
}
// Setup Texture ressources
dev->SetupSampler(m_ps_ssel);
dev->PSSetShaderResources(tex->m_texture, tex->m_palette);
}
GSRendererOGL::PRIM_OVERLAP GSRendererOGL::PrimitiveOverlap()
{
// Either 1 triangle or 1 line or 3 POINTs
// It is bad for the POINTs but low probability that they overlap
if (m_vertex.next < 4)
return PRIM_OVERLAP_NO;
if (m_vt.m_primclass != GS_SPRITE_CLASS)
return PRIM_OVERLAP_UNKNOW; // maybe, maybe not
// Check intersection of sprite primitive only
size_t count = m_vertex.next;
PRIM_OVERLAP overlap = PRIM_OVERLAP_NO;
GSVertex* v = m_vertex.buff;
m_drawlist.clear();
size_t i = 0;
while (i < count) {
// In order to speed up comparison a bounding-box is accumulated. It removes a
// loop so code is much faster (check game virtua fighter). Besides it allow to check
// properly the Y order.
// .x = min(v[i].XYZ.X, v[i+1].XYZ.X)
// .y = min(v[i].XYZ.Y, v[i+1].XYZ.Y)
// .z = max(v[i].XYZ.X, v[i+1].XYZ.X)
// .w = max(v[i].XYZ.Y, v[i+1].XYZ.Y)
GSVector4i all = GSVector4i(v[i].m[1]).upl16(GSVector4i(v[i+1].m[1])).upl16().xzyw();
all = all.xyxy().blend(all.zwzw(), all > all.zwxy());
size_t j = i + 2;
while (j < count) {
GSVector4i sprite = GSVector4i(v[j].m[1]).upl16(GSVector4i(v[j+1].m[1])).upl16().xzyw();
sprite = sprite.xyxy().blend(sprite.zwzw(), sprite > sprite.zwxy());
// Be sure to get vertex in good order, otherwise .r* function doesn't
// work as expected.
ASSERT(sprite.x <= sprite.z);
ASSERT(sprite.y <= sprite.w);
ASSERT(all.x <= all.z);
ASSERT(all.y <= all.w);
if (all.rintersect(sprite).rempty()) {
all = all.runion_ordered(sprite);
} else {
overlap = PRIM_OVERLAP_YES;
break;
}
j += 2;
}
m_drawlist.push_back((j - i) >> 1); // Sprite count
i = j;
}
#if 0
// Old algo: less constraint but O(n^2) instead of O(n) as above
// You have no guarantee on the sprite order, first vertex can be either top-left or bottom-left
// There is a high probability that the draw call will uses same ordering for all vertices.
// In order to keep a small performance impact only the first sprite will be checked
//
// Some safe-guard will be added in the outer-loop to avoid corruption with a limited perf impact
if (v[1].XYZ.Y < v[0].XYZ.Y) {
// First vertex is Top-Left
for(size_t i = 0; i < count; i += 2) {
if (v[i+1].XYZ.Y > v[i].XYZ.Y) {
return PRIM_OVERLAP_UNKNOW;
}
GSVector4i vi(v[i].XYZ.X, v[i+1].XYZ.Y, v[i+1].XYZ.X, v[i].XYZ.Y);
for (size_t j = i+2; j < count; j += 2) {
GSVector4i vj(v[j].XYZ.X, v[j+1].XYZ.Y, v[j+1].XYZ.X, v[j].XYZ.Y);
GSVector4i inter = vi.rintersect(vj);
if (!inter.rempty()) {
return PRIM_OVERLAP_YES;
}
}
}
} else {
// First vertex is Bottom-Left
for(size_t i = 0; i < count; i += 2) {
if (v[i+1].XYZ.Y < v[i].XYZ.Y) {
return PRIM_OVERLAP_UNKNOW;
}
GSVector4i vi(v[i].XYZ.X, v[i].XYZ.Y, v[i+1].XYZ.X, v[i+1].XYZ.Y);
for (size_t j = i+2; j < count; j += 2) {
GSVector4i vj(v[j].XYZ.X, v[j].XYZ.Y, v[j+1].XYZ.X, v[j+1].XYZ.Y);
GSVector4i inter = vi.rintersect(vj);
if (!inter.rempty()) {
return PRIM_OVERLAP_YES;
}
}
}
}
#endif
//fprintf(stderr, "%d: Yes, code can be optimized (draw of %d vertices)\n", s_n, count);
return overlap;
}
GSVector4i GSRendererOGL::ComputeBoundingBox(const GSVector2& rtscale, const GSVector2i& rtsize)
{
GSVector4 scale = GSVector4(rtscale.x, rtscale.y);
GSVector4 offset = GSVector4(-1.0f, 1.0f); // Round value
GSVector4 box = m_vt.m_min.p.xyxy(m_vt.m_max.p) + offset.xxyy();
return GSVector4i(box * scale.xyxy()).rintersect(GSVector4i(0, 0, rtsize.x, rtsize.y));
}
void GSRendererOGL::SendDraw()
{
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
if (!m_require_full_barrier && m_require_one_barrier) {
// Need only a single barrier
glTextureBarrier();
dev->DrawIndexedPrimitive();
} else if (!m_require_full_barrier) {
// Don't need any barrier
dev->DrawIndexedPrimitive();
} else if (m_prim_overlap == PRIM_OVERLAP_NO) {
// Need full barrier but a single barrier will be enough
glTextureBarrier();
dev->DrawIndexedPrimitive();
} else if (m_vt.m_primclass == GS_SPRITE_CLASS) {
size_t nb_vertex = (m_gs_sel.sprite == 1) ? 2 : 6;
GL_PUSH("Split the draw (SPRITE)");
#if defined(_DEBUG)
// Check how draw call is split.
map<size_t, size_t> frequency;
for (const auto& it: m_drawlist)
++frequency[it];
string message;
for (const auto& it: frequency)
message += " " + to_string(it.first) + "(" + to_string(it.second) + ")";
GL_PERF("Split single draw (%d sprites) into %zu draws: consecutive draws(frequency):%s",
m_index.tail / nb_vertex, m_drawlist.size(), message.c_str());
#endif
for (size_t count, p = 0, n = 0; n < m_drawlist.size(); p += count, ++n) {
count = m_drawlist[n] * nb_vertex;
glTextureBarrier();
dev->DrawIndexedPrimitive(p, count);
}
} else {
// FIXME: Investigate: a dynamic check to pack as many primitives as possibles
// I'm nearly sure GSdx already have this kind of code (maybe we can adapt GSDirtyRect)
size_t nb_vertex = GSUtil::GetClassVertexCount(m_vt.m_primclass);
GL_PUSH("Split the draw");
GL_PERF("Split single draw in %d draw", m_index.tail/nb_vertex);
for (size_t p = 0; p < m_index.tail; p += nb_vertex) {
glTextureBarrier();
dev->DrawIndexedPrimitive(p, nb_vertex);
}
}
}
void GSRendererOGL::ResetStates()
{
m_require_one_barrier = false;
m_require_full_barrier = false;
m_vs_sel.key = 0;
m_gs_sel.key = 0;
m_ps_sel.key = 0;
m_ps_ssel.key = 0;
m_om_csel.key = 0;
m_om_dssel.key = 0;
}
void GSRendererOGL::DrawPrims(GSTexture* rt, GSTexture* ds, GSTextureCache::Source* tex)
{
#ifdef ENABLE_OGL_DEBUG
GSVector4i area_out = GSVector4i(m_vt.m_min.p.xyxy(m_vt.m_max.p)).rintersect(GSVector4i(m_context->scissor.in));
GSVector4i area_in = GSVector4i(m_vt.m_min.t.xyxy(m_vt.m_max.t));
GL_PUSH("GL Draw from %d (area %d,%d => %d,%d) in %d (Depth %d) (area %d,%d => %d,%d)",
tex && tex->m_texture ? tex->m_texture->GetID() : -1,
area_in.x, area_in.y, area_in.z, area_in.w,
rt ? rt->GetID() : -1, ds ? ds->GetID() : -1,
area_out.x, area_out.y, area_out.z, area_out.w
);
#endif
GSTexture* hdr_rt = NULL;
const GSVector2i& rtsize = ds ? ds->GetSize() : rt->GetSize();
const GSVector2& rtscale = ds ? ds->GetScale() : rt->GetScale();
bool DATE = m_context->TEST.DATE && m_context->FRAME.PSM != PSM_PSMCT24;
bool DATE_GL42 = false;
bool DATE_GL45 = false;
bool DATE_one = false;
bool ate_first_pass = m_context->TEST.DoFirstPass();
bool ate_second_pass = m_context->TEST.DoSecondPass();
ResetStates();
vs_cb.TextureOffset = GSVector4(0.0f);
ASSERT(m_dev != NULL);
GSDeviceOGL* dev = (GSDeviceOGL*)m_dev;
// HLE implementation of the channel selection effect
//
// Warning it must be done at the begining because it will change the
// vertex list (it will interact with PrimitiveOverlap and accurate
// blending)
EmulateChannelShuffle(&rt, tex);
// Upscaling hack to avoid various line/grid issues
MergeSprite(tex);
// Always check if primitive overlap. The function will return PRIM_OVERLAP_UNKNOW for non sprite primitive
m_prim_overlap = PrimitiveOverlap();
if ((m_context->FRAME.Block() == m_context->TEX0.TBP0) && PRIM->TME && m_sw_blending && (m_prim_overlap != PRIM_OVERLAP_NO) && (m_vertex.next > 2)) {
if (m_context->FRAME.FBMSK == 0x00FFFFFF) {
// Ratchet & Clank / Jak uses this pattern to compute the shadows. Alpha (multiplication) tfx is mostly equivalent to -1/+1 stencil operation
GL_DBG("ERROR: Source and Target are the same! Let's sample the framebuffer");
m_ps_sel.tex_is_fb = 1;
m_require_full_barrier = true;
} else {
GL_INS("ERROR: Source and Target are the same!");
}
}
EmulateTextureShuffleAndFbmask();
// DATE: selection of the algorithm. Must be done before blending because GL42 is not compatible with blending
if (DATE) {
if (m_prim_overlap == PRIM_OVERLAP_NO || m_texture_shuffle) {
// It is way too complex to emulate texture shuffle with DATE. So just use
// the slow but accurate algo
m_require_full_barrier = true;
DATE_GL45 = true;
DATE = false;
} else if (m_om_csel.wa && !m_context->TEST.ATE) {
// Performance note: check alpha range with GetAlphaMinMax()
// Note: all my dump are already above 120fps, but it seems to reduce GPU load
// with big upscaling
GetAlphaMinMax();
if (m_context->TEST.DATM && m_vt.m_alpha.max < 128) {
// Only first pixel (write 0) will pass (alpha is 1)
GL_PERF("Fast DATE with alpha %d-%d", m_vt.m_alpha.min, m_vt.m_alpha.max);
DATE_one = true;
} else if (!m_context->TEST.DATM && m_vt.m_alpha.min >= 128) {
// Only first pixel (write 1) will pass (alpha is 0)
GL_PERF("Fast DATE with alpha %d-%d", m_vt.m_alpha.min, m_vt.m_alpha.max);
DATE_one = true;
} else if ((m_vt.m_primclass == GS_SPRITE_CLASS && m_drawlist.size() < 50) || (m_index.tail < 100)) {
// texture barrier will split the draw call into n draw call. It is very efficient for
// few primitive draws. Otherwise it sucks.
GL_PERF("Slower DATE with alpha %d-%d", m_vt.m_alpha.min, m_vt.m_alpha.max);
m_require_full_barrier = true;
DATE_GL45 = true;
DATE = false;
} else if (m_accurate_date) {
GL_PERF("Slow DATE with alpha %d-%d", m_vt.m_alpha.min, m_vt.m_alpha.max);
if (GLLoader::found_GL_ARB_shader_image_load_store && GLLoader::found_GL_ARB_clear_texture) {
DATE_GL42 = true;
} else {
m_require_full_barrier = true;
DATE_GL45 = true;
DATE = false;
}
}
} else if (!m_om_csel.wa && !m_context->TEST.ATE) {
// TODO: is it legal ? Likely but it need to be tested carefully
// DATE_GL45 = true;
// m_require_one_barrier = true; << replace it with a cheap barrier
}
// Will save my life !
ASSERT(!(DATE_GL45 && DATE_one));
ASSERT(!(DATE_GL42 && DATE_one));
ASSERT(!(DATE_GL42 && DATE_GL45));
}
// Blend
if (!IsOpaque() && rt) {
EmulateBlending(DATE_GL42);
} else {
dev->OMSetBlendState(); // No blending please
}
if (m_ps_sel.dfmt == 1) {
// Disable writing of the alpha channel
m_om_csel.wa = 0;
}
// DATE (setup part)
if (DATE) {
GSVector4i dRect = ComputeBoundingBox(rtscale, rtsize);
// Reduce the quantity of clean function
glScissor( dRect.x, dRect.y, dRect.width(), dRect.height() );
GLState::scissor = dRect;
// Must be done here to avoid any GL state pertubation (clear function...)
// Create an r32ui image that will containt primitive ID
if (DATE_GL42) {
dev->InitPrimDateTexture(rt, dRect);
} else if (DATE_one) {
dev->ClearStencil(ds, 1);
} else {
GSVector4 src = GSVector4(dRect) / GSVector4(rtsize.x, rtsize.y).xyxy();
GSVector4 dst = src * 2.0f - 1.0f;
GSVertexPT1 vertices[] =
{
{GSVector4(dst.x, dst.y, 0.0f, 0.0f), GSVector2(src.x, src.y)},
{GSVector4(dst.z, dst.y, 0.0f, 0.0f), GSVector2(src.z, src.y)},
{GSVector4(dst.x, dst.w, 0.0f, 0.0f), GSVector2(src.x, src.w)},
{GSVector4(dst.z, dst.w, 0.0f, 0.0f), GSVector2(src.z, src.w)},
};
dev->SetupDATE(rt, ds, vertices, m_context->TEST.DATM);
}
}
//
dev->BeginScene();
// om
EmulateZbuffer(); // will update VS depth mask
// vs
// FIXME Opengl support half pixel center (as dx10). Code could be easier!!!
float sx = 2.0f * rtscale.x / (rtsize.x << 4);
float sy = 2.0f * rtscale.y / (rtsize.y << 4);
float ox = (float)(int)m_context->XYOFFSET.OFX;
float oy = (float)(int)m_context->XYOFFSET.OFY;
float ox2 = -1.0f / rtsize.x;
float oy2 = -1.0f / rtsize.y;
//This hack subtracts around half a pixel from OFX and OFY. (Cannot do this directly,
//because DX10 and DX9 have a different pixel center.)
//
//The resulting shifted output aligns better with common blending / corona / blurring effects,
//but introduces a few bad pixels on the edges.
if (rt && rt->LikelyOffset && UserHacks_HPO == 1)
{
ox2 *= rt->OffsetHack_modx;
oy2 *= rt->OffsetHack_mody;
}
// Note: DX does y *= -1.0
vs_cb.Vertex_Scale_Offset = GSVector4(sx, sy, ox * sx + ox2 + 1, oy * sy + oy2 + 1);
// END of FIXME
// GS_SPRITE_CLASS are already flat (either by CPU or the GS)
m_ps_sel.iip = (m_vt.m_primclass == GS_SPRITE_CLASS) ? 1 : PRIM->IIP;
if (DATE_GL45) {
m_ps_sel.date = 5 + m_context->TEST.DATM;
} else if (DATE_one) {
m_require_one_barrier = true;
m_ps_sel.date = 5 + m_context->TEST.DATM;
m_om_dssel.date = 1;
m_om_dssel.date_one = 1;
} else if (DATE) {
if (DATE_GL42)
m_ps_sel.date = 1 + m_context->TEST.DATM;
else
m_om_dssel.date = 1;
}
m_ps_sel.fba = m_context->FBA.FBA;
if (PRIM->FGE)
{
m_ps_sel.fog = 1;
GSVector4 fc = GSVector4::rgba32(m_env.FOGCOL.u32[0]);
#if _M_SSE >= 0x401
// Blend AREF to avoid to load a random value for alpha (dirty cache)
ps_cb.FogColor_AREF = fc.blend32<8>(ps_cb.FogColor_AREF);
#else
ps_cb.FogColor_AREF = fc;
#endif
}
// Warning must be done after EmulateZbuffer
// Depth test is always true so it can be executed in 2 passes (no order required) unlike color.
// The idea is to compute first the color which is independent of the alpha test. And then do a 2nd
// pass to handle the depth based on the alpha test.
bool ate_RGBA_then_Z = false;
bool ate_RGB_then_ZA = false;
if (ate_first_pass & ate_second_pass) {
GL_DBG("Complex Alpha Test");
bool commutative_depth = (m_om_dssel.ztst == ZTST_GEQUAL && m_vt.m_eq.z) || (m_om_dssel.ztst == ZTST_ALWAYS);
bool commutative_alpha = (m_context->ALPHA.C != 1); // when either Alpha Src or a constant
ate_RGBA_then_Z = (m_context->TEST.AFAIL == AFAIL_FB_ONLY) & commutative_depth;
ate_RGB_then_ZA = (m_context->TEST.AFAIL == AFAIL_RGB_ONLY) & commutative_depth & commutative_alpha;
}
if (ate_RGBA_then_Z) {
GL_DBG("Alternate ATE handling: ate_RGBA_then_Z");
// Render all color but don't update depth
// ATE is disabled here
m_om_dssel.zwe = false;
} else if (ate_RGB_then_ZA) {
GL_DBG("Alternate ATE handling: ate_RGB_then_ZA");
// Render RGB color but don't update depth/alpha
// ATE is disabled here
m_om_dssel.zwe = false;
m_om_csel.wa = false;
} else {
EmulateAtst(1, tex);
}
if (tex) {
EmulateTextureSampler(tex);
} else {
m_ps_sel.tfx = 4;
}
// Always bind the RT. This way special effect can use it.
dev->PSSetShaderResource(3, rt);
if (m_game.title == CRC::ICO) {
GSVertex* v = &m_vertex.buff[0];
if (tex && m_vt.m_primclass == GS_SPRITE_CLASS && m_vertex.next == 2 && PRIM->ABE && // Blend texture
v[1].U == 8200 && v[1].V == 7176 && // at display resolution 512x448
tex->m_TEX0.PSM == PSM_PSMT8H) { // i.e. read the alpha channel of a 32 bits texture
// Note potentially we can limit to TBP0:0x2800
// Depth buffer was moved so GSdx will invalide it which means a
// downscale. ICO uses the MSB depth bits as the texture alpha
// channel. However this depth of field effect requires
// texel:pixel mapping accuraccy.
//
// Use an HLE shader to sample depth directly as the alpha channel
GL_INS("ICO sample depth as alpha");
m_require_full_barrier = true;
// Extract the depth as palette index
m_ps_sel.depth_fmt = 1;
m_ps_sel.channel = 3;
dev->PSSetShaderResource(4, ds);
// We need the palette to convert the depth to the correct alpha value.
if (!tex->m_palette) {
tex->m_palette = m_dev->CreateTexture(256, 1);
const uint32* clut = m_mem.m_clut;
int pal = GSLocalMemory::m_psm[tex->m_TEX0.PSM].pal;
tex->m_palette->Update(GSVector4i(0, 0, pal, 1), clut, pal * sizeof(clut[0]));
tex->m_initpalette = false;
dev->PSSetShaderResource(1, tex->m_palette);
}
}
}
// rs
const GSVector4& hacked_scissor = m_channel_shuffle ? GSVector4(0, 0, 1024, 1024) : m_context->scissor.in;
GSVector4i scissor = GSVector4i(GSVector4(rtscale).xyxy() * hacked_scissor).rintersect(GSVector4i(rtsize).zwxy());
SetupIA(sx, sy);
dev->OMSetColorMaskState(m_om_csel);
dev->SetupOM(m_om_dssel);
dev->SetupCB(&vs_cb, &ps_cb);
dev->SetupPipeline(m_vs_sel, m_gs_sel, m_ps_sel);
if (DATE_GL42) {
GL_PUSH("Date GL42");
// It could be good idea to use stencil in the same time.
// Early stencil test will reduce the number of atomic-load operation
// Create an r32i image that will contain primitive ID
// Note: do it at the beginning because the clean will dirty the FBO state
//dev->InitPrimDateTexture(rtsize.x, rtsize.y);
// I don't know how much is it legal to mount rt as Texture/RT. No write is done.
// In doubt let's detach RT.
dev->OMSetRenderTargets(NULL, ds, &scissor);
// Don't write anything on the color buffer
// Neither in the depth buffer
glDepthMask(false);
// Compute primitiveID max that pass the date test (Draw without barrier)
dev->DrawIndexedPrimitive();
// Ask PS to discard shader above the primitiveID max
glDepthMask(GLState::depth_mask);
m_ps_sel.date = 3;
dev->SetupPipeline(m_vs_sel, m_gs_sel, m_ps_sel);
// Be sure that first pass is finished !
dev->Barrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
}
if (m_ps_sel.hdr) {
hdr_rt = dev->CreateTexture(rtsize.x, rtsize.y, GL_RGBA32F);
dev->CopyRectConv(rt, hdr_rt, ComputeBoundingBox(rtscale, rtsize), false);
dev->OMSetRenderTargets(hdr_rt, ds, &scissor);
} else {
dev->OMSetRenderTargets(rt, ds, &scissor);
}
if (ate_first_pass)
{
SendDraw();
}
if (ate_second_pass)
{
ASSERT(!m_env.PABE.PABE);
if (ate_RGBA_then_Z | ate_RGB_then_ZA) {
// Enable ATE as first pass to update the depth
// of pixels that passed the alpha test
EmulateAtst(1, tex);
} else {
// second pass will process the pixels that failed
// the alpha test
EmulateAtst(2, tex);
}
// Potentially AREF was updated (hope perf impact will be limited)
dev->SetupCB(&vs_cb, &ps_cb);
dev->SetupPipeline(m_vs_sel, m_gs_sel, m_ps_sel);
bool z = m_om_dssel.zwe;
bool r = m_om_csel.wr;
bool g = m_om_csel.wg;
bool b = m_om_csel.wb;
bool a = m_om_csel.wa;
switch(m_context->TEST.AFAIL)
{
case AFAIL_KEEP: z = r = g = b = a = false; break; // none
case AFAIL_FB_ONLY: z = false; break; // rgba
case AFAIL_ZB_ONLY: r = g = b = a = false; break; // z
case AFAIL_RGB_ONLY: z = a = false; break; // rgb
default: __assume(0);
}
// Depth test should be disabled when depth writes are masked and similarly, Alpha test must be disabled
// when writes to all of the alpha bits in the Framebuffer are masked.
if (ate_RGBA_then_Z) {
z = !m_context->ZBUF.ZMSK;
r = g = b = a = false;
} else if (ate_RGB_then_ZA) {
z = !m_context->ZBUF.ZMSK;
a = (m_context->FRAME.FBMSK & 0xFF000000) != 0xFF000000;
r = g = b = false;
}
if (z || r || g || b || a)
{
m_om_dssel.zwe = z;
m_om_csel.wr = r;
m_om_csel.wg = g;
m_om_csel.wb = b;
m_om_csel.wa = a;
dev->OMSetColorMaskState(m_om_csel);
dev->SetupOM(m_om_dssel);
SendDraw();
}
}
if (DATE_GL42) {
dev->RecycleDateTexture();
}
dev->EndScene();
// Warning: EndScene must be called before StretchRect otherwise
// vertices will be overwritten. Trust me you don't want to do that.
if (hdr_rt) {
GSVector4 dRect(ComputeBoundingBox(rtscale, rtsize));
GSVector4 sRect = dRect / GSVector4(rtsize.x, rtsize.y).xyxy();
dev->StretchRect(hdr_rt, sRect, rt, dRect, ShaderConvert_MOD_256, false);
dev->Recycle(hdr_rt);
}
}