pcsx2/plugins/GSdx/GSRendererSW.cpp

1684 lines
39 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSRendererSW.h"
#define LOG 0
static FILE* s_fp = LOG ? fopen("c:\\temp1\\_.txt", "w") : NULL;
GSVector4 GSRendererSW::m_pos_scale;
#if _M_SSE >= 0x501
GSVector8 GSRendererSW::m_pos_scale2;
#endif
void GSRendererSW::InitVectors()
{
m_pos_scale = GSVector4(1.0f / 16, 1.0f / 16, 1.0f, 128.0f);
#if _M_SSE >= 0x501
m_pos_scale2 = GSVector8(1.0f / 16, 1.0f / 16, 1.0f, 128.0f, 1.0f / 16, 1.0f / 16, 1.0f, 128.0f);
#endif
}
GSRendererSW::GSRendererSW(int threads)
: m_fzb(NULL)
{
m_nativeres = true; // ignore ini, sw is always native
m_tc = new GSTextureCacheSW(this);
memset(m_texture, 0, sizeof(m_texture));
m_rl = GSRasterizerList::Create<GSDrawScanline>(threads, &m_perfmon);
m_output = (uint8*)_aligned_malloc(1024 * 1024 * sizeof(uint32), 32);
for (uint32 i = 0; i < countof(m_fzb_pages); i++) {
m_fzb_pages[i] = 0;
}
for (uint32 i = 0; i < countof(m_tex_pages); i++) {
m_tex_pages[i] = 0;
}
#define InitCVB(P) \
m_cvb[P][0][0] = &GSRendererSW::ConvertVertexBuffer<P, 0, 0>; \
m_cvb[P][0][1] = &GSRendererSW::ConvertVertexBuffer<P, 0, 1>; \
m_cvb[P][1][0] = &GSRendererSW::ConvertVertexBuffer<P, 1, 0>; \
m_cvb[P][1][1] = &GSRendererSW::ConvertVertexBuffer<P, 1, 1>; \
InitCVB(GS_POINT_CLASS);
InitCVB(GS_LINE_CLASS);
InitCVB(GS_TRIANGLE_CLASS);
InitCVB(GS_SPRITE_CLASS);
m_dump_root = root_sw;
}
GSRendererSW::~GSRendererSW()
{
delete m_tc;
for(size_t i = 0; i < countof(m_texture); i++)
{
delete m_texture[i];
}
delete m_rl;
_aligned_free(m_output);
}
void GSRendererSW::Reset()
{
Sync(-1);
m_tc->RemoveAll();
GSRenderer::Reset();
}
void GSRendererSW::VSync(int field)
{
Sync(0); // IncAge might delete a cached texture in use
if(0) if(LOG)
{
fprintf(s_fp, "%lld\n", m_perfmon.GetFrame());
GSVector4i dr = GetDisplayRect();
GSVector4i fr = GetFrameRect();
fprintf(s_fp, "dr %d %d %d %d, fr %d %d %d %d\n",
dr.x, dr.y, dr.z, dr.w,
fr.x, fr.y, fr.z, fr.w);
for(int i = 0; i < 2; i++)
{
if(i == 0 && !m_regs->PMODE.EN1) continue;
if(i == 1 && !m_regs->PMODE.EN2) continue;
fprintf(s_fp, "DISPFB[%d] BP=%05x BW=%d PSM=%d DBX=%d DBY=%d\n",
i,
m_regs->DISP[i].DISPFB.Block(),
m_regs->DISP[i].DISPFB.FBW,
m_regs->DISP[i].DISPFB.PSM,
m_regs->DISP[i].DISPFB.DBX,
m_regs->DISP[i].DISPFB.DBY
);
fprintf(s_fp, "DISPLAY[%d] DX=%d DY=%d DW=%d DH=%d MAGH=%d MAGV=%d\n",
i,
m_regs->DISP[i].DISPLAY.DX,
m_regs->DISP[i].DISPLAY.DY,
m_regs->DISP[i].DISPLAY.DW,
m_regs->DISP[i].DISPLAY.DH,
m_regs->DISP[i].DISPLAY.MAGH,
m_regs->DISP[i].DISPLAY.MAGV
);
}
fprintf(s_fp, "PMODE EN1=%d EN2=%d CRTMD=%d MMOD=%d AMOD=%d SLBG=%d ALP=%d\n",
m_regs->PMODE.EN1,
m_regs->PMODE.EN2,
m_regs->PMODE.CRTMD,
m_regs->PMODE.MMOD,
m_regs->PMODE.AMOD,
m_regs->PMODE.SLBG,
m_regs->PMODE.ALP
);
fprintf(s_fp, "SMODE1 CLKSEL=%d CMOD=%d EX=%d GCONT=%d LC=%d NVCK=%d PCK2=%d PEHS=%d PEVS=%d PHS=%d PRST=%d PVS=%d RC=%d SINT=%d SLCK=%d SLCK2=%d SPML=%d T1248=%d VCKSEL=%d VHP=%d XPCK=%d\n",
m_regs->SMODE1.CLKSEL,
m_regs->SMODE1.CMOD,
m_regs->SMODE1.EX,
m_regs->SMODE1.GCONT,
m_regs->SMODE1.LC,
m_regs->SMODE1.NVCK,
m_regs->SMODE1.PCK2,
m_regs->SMODE1.PEHS,
m_regs->SMODE1.PEVS,
m_regs->SMODE1.PHS,
m_regs->SMODE1.PRST,
m_regs->SMODE1.PVS,
m_regs->SMODE1.RC,
m_regs->SMODE1.SINT,
m_regs->SMODE1.SLCK,
m_regs->SMODE1.SLCK2,
m_regs->SMODE1.SPML,
m_regs->SMODE1.T1248,
m_regs->SMODE1.VCKSEL,
m_regs->SMODE1.VHP,
m_regs->SMODE1.XPCK
);
fprintf(s_fp, "SMODE2 INT=%d FFMD=%d DPMS=%d\n",
m_regs->SMODE2.INT,
m_regs->SMODE2.FFMD,
m_regs->SMODE2.DPMS
);
fprintf(s_fp, "SRFSH %08x_%08x\n",
m_regs->SRFSH.u32[0],
m_regs->SRFSH.u32[1]
);
fprintf(s_fp, "SYNCH1 %08x_%08x\n",
m_regs->SYNCH1.u32[0],
m_regs->SYNCH1.u32[1]
);
fprintf(s_fp, "SYNCH2 %08x_%08x\n",
m_regs->SYNCH2.u32[0],
m_regs->SYNCH2.u32[1]
);
fprintf(s_fp, "SYNCV %08x_%08x\n",
m_regs->SYNCV.u32[0],
m_regs->SYNCV.u32[1]
);
fprintf(s_fp, "CSR %08x_%08x\n",
m_regs->CSR.u32[0],
m_regs->CSR.u32[1]
);
fflush(s_fp);
}
/*
int draw[8], sum = 0;
for(size_t i = 0; i < countof(draw); i++)
{
draw[i] = m_perfmon.CPU(GSPerfMon::WorkerDraw0 + i);
sum += draw[i];
}
printf("CPU %d Sync %d W %d %d %d %d %d %d %d %d (%d)\n",
m_perfmon.CPU(GSPerfMon::Main),
m_perfmon.CPU(GSPerfMon::Sync),
draw[0], draw[1], draw[2], draw[3], draw[4], draw[5], draw[6], draw[7], sum);
//
*/
GSRenderer::VSync(field);
m_tc->IncAge();
// if((m_perfmon.GetFrame() & 255) == 0) m_rl->PrintStats();
}
void GSRendererSW::ResetDevice()
{
for(size_t i = 0; i < countof(m_texture); i++)
{
delete m_texture[i];
m_texture[i] = NULL;
}
}
GSTexture* GSRendererSW::GetOutput(int i, int& y_offset)
{
Sync(1);
const GSRegDISPFB& DISPFB = m_regs->DISP[i].DISPFB;
int w = DISPFB.FBW * 64;
int h = GetFrameRect(i).bottom;
// TODO: round up bottom
if(m_dev->ResizeTexture(&m_texture[i], w, h))
{
static int pitch = 1024 * 4;
GSVector4i r(0, 0, w, h);
const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[DISPFB.PSM];
(m_mem.*psm.rtx)(m_mem.GetOffset(DISPFB.Block(), DISPFB.FBW, DISPFB.PSM), r.ralign<Align_Outside>(psm.bs), m_output, pitch, m_env.TEXA);
m_texture[i]->Update(r, m_output, pitch);
if(s_dump)
{
if(s_savef && s_n >= s_saven)
{
m_texture[i]->Save(m_dump_root + format("%05d_f%lld_fr%d_%05x_%d.bmp", s_n, m_perfmon.GetFrame(), i, (int)DISPFB.Block(), (int)DISPFB.PSM));
}
s_n++;
}
}
return m_texture[i];
}
template<uint32 primclass, uint32 tme, uint32 fst>
void GSRendererSW::ConvertVertexBuffer(GSVertexSW* RESTRICT dst, const GSVertex* RESTRICT src, size_t count)
{
#if 0//_M_SSE >= 0x501
// TODO: something isn't right here, this makes other functions slower (split load/store? old sse code in 3rd party lib?)
GSVector8i o2((GSVector4i)m_context->XYOFFSET);
GSVector8 tsize2(GSVector4(0x10000 << m_context->TEX0.TW, 0x10000 << m_context->TEX0.TH, 1, 0));
for(int i = (int)m_vertex.next; i > 0; i -= 2, src += 2, dst += 2) // ok to overflow, allocator makes sure there is one more dummy vertex
{
GSVector8i v0 = GSVector8i::load<true>(src[0].m);
GSVector8i v1 = GSVector8i::load<true>(src[1].m);
GSVector8 stcq = GSVector8::cast(v0.ac(v1));
GSVector8i xyzuvf = v0.bd(v1);
//GSVector8 stcq = GSVector8::load(&src[0].m[0], &src[1].m[0]);
//GSVector8i xyzuvf = GSVector8i::load(&src[0].m[1], &src[1].m[1]);
GSVector8i xy = xyzuvf.upl16() - o2;
GSVector8i zf = xyzuvf.ywww().min_u32(GSVector8i::xffffff00());
GSVector8 p = GSVector8(xy).xyxy(GSVector8(zf) + (GSVector8::m_x4f800000 & GSVector8::cast(zf.sra32(31)))) * m_pos_scale2;
GSVector8 c = GSVector8(GSVector8i::cast(stcq).uph8().upl16() << 7);
GSVector8 t = GSVector8::zero();
if(tme)
{
if(fst)
{
t = GSVector8(xyzuvf.uph16() << (16 - 4));
}
else
{
t = stcq.xyww() * tsize2;
}
}
if(primclass == GS_SPRITE_CLASS)
{
t = t.insert32<1, 3>(GSVector8::cast(xyzuvf));
}
GSVector8::storel(&dst[0].p, p);
if(tme || primclass == GS_SPRITE_CLASS)
{
GSVector8::store<true>(&dst[0].t, t.ac(c));
}
else
{
GSVector8::storel(&dst[0].c, c);
}
GSVector8::storeh(&dst[1].p, p);
if(tme || primclass == GS_SPRITE_CLASS)
{
GSVector8::store<true>(&dst[1].t, t.bd(c));
}
else
{
GSVector8::storeh(&dst[1].c, c);
}
}
#else
GSVector4i off = (GSVector4i)m_context->XYOFFSET;
GSVector4 tsize = GSVector4(0x10000 << m_context->TEX0.TW, 0x10000 << m_context->TEX0.TH, 1, 0);
for(int i = (int)m_vertex.next; i > 0; i--, src++, dst++)
{
GSVector4 stcq = GSVector4::load<true>(&src->m[0]); // s t rgba q
#if _M_SSE >= 0x401
GSVector4i xyzuvf(src->m[1]);
GSVector4i xy = xyzuvf.upl16() - off;
GSVector4i zf = xyzuvf.ywww().min_u32(GSVector4i::xffffff00());
#else
uint32 z = src->XYZ.Z;
GSVector4i xy = GSVector4i::load((int)src->XYZ.u32[0]).upl16() - off;
GSVector4i zf = GSVector4i((int)std::min<uint32>(z, 0xffffff00), src->FOG); // NOTE: larger values of z may roll over to 0 when converting back to uint32 later
#endif
dst->p = GSVector4(xy).xyxy(GSVector4(zf) + (GSVector4::m_x4f800000 & GSVector4::cast(zf.sra32(31)))) * m_pos_scale;
dst->c = GSVector4(GSVector4i::cast(stcq).zzzz().u8to32() << 7);
GSVector4 t = GSVector4::zero();
if(tme)
{
if(fst)
{
#if _M_SSE >= 0x401
t = GSVector4(xyzuvf.uph16() << (16 - 4));
#else
t = GSVector4(GSVector4i::load(src->UV).upl16() << (16 - 4));
#endif
}
else
{
t = stcq.xyww() * tsize;
}
}
if(primclass == GS_SPRITE_CLASS)
{
#if _M_SSE >= 0x401
t = t.insert32<1, 3>(GSVector4::cast(xyzuvf));
#else
t = t.insert32<0, 3>(GSVector4::cast(GSVector4i::load(z)));
#endif
}
dst->t = t;
#if 0 //_M_SSE >= 0x501
dst->_pad = GSVector4::zero();
#endif
}
#endif
}
void GSRendererSW::Draw()
{
const GSDrawingContext* context = m_context;
SharedData* sd = new SharedData(this);
shared_ptr<GSRasterizerData> data(sd);
sd->primclass = m_vt.m_primclass;
sd->buff = (uint8*)_aligned_malloc(sizeof(GSVertexSW) * ((m_vertex.next + 1) & ~1) + sizeof(uint32) * m_index.tail, 64);
sd->vertex = (GSVertexSW*)sd->buff;
sd->vertex_count = m_vertex.next;
sd->index = (uint32*)(sd->buff + sizeof(GSVertexSW) * ((m_vertex.next + 1) & ~1));
sd->index_count = m_index.tail;
(this->*m_cvb[m_vt.m_primclass][PRIM->TME][PRIM->FST])(sd->vertex, m_vertex.buff, m_vertex.next);
memcpy(sd->index, m_index.buff, sizeof(uint32) * m_index.tail);
GSVector4i scissor = GSVector4i(context->scissor.in);
GSVector4i bbox = GSVector4i(m_vt.m_min.p.floor().xyxy(m_vt.m_max.p.ceil()));
// points and lines may have zero area bbox (single line: 0, 0 - 256, 0)
if(m_vt.m_primclass == GS_POINT_CLASS || m_vt.m_primclass == GS_LINE_CLASS)
{
if(bbox.x == bbox.z) bbox.z++;
if(bbox.y == bbox.w) bbox.w++;
}
GSVector4i r = bbox.rintersect(scissor);
scissor.z = std::min<int>(scissor.z, (int)context->FRAME.FBW * 64); // TODO: find a game that overflows and check which one is the right behaviour
sd->scissor = scissor;
sd->bbox = bbox;
sd->frame = m_perfmon.GetFrame();
if(!GetScanlineGlobalData(sd))
{
s_n += 3; // Keep it sync with HW renderer
return;
}
if(0) if(LOG)
{
int n = GSUtil::GetVertexCount(PRIM->PRIM);
for(uint32 i = 0, j = 0; i < m_index.tail; i += n, j++)
{
for(int k = 0; k < n; k++)
{
GSVertex* v = &m_vertex.buff[m_index.buff[i + k]];
GSVertex* vn = &m_vertex.buff[m_index.buff[i + n - 1]];
fprintf(s_fp, "%d:%d %f %f %f %f\n",
j, k,
(float)(v->XYZ.X - context->XYOFFSET.OFX) / 16,
(float)(v->XYZ.Y - context->XYOFFSET.OFY) / 16,
PRIM->FST ? (float)(v->U) / 16 : v->ST.S / (PRIM->PRIM == GS_SPRITE ? vn->RGBAQ.Q : v->RGBAQ.Q),
PRIM->FST ? (float)(v->V) / 16 : v->ST.T / (PRIM->PRIM == GS_SPRITE ? vn->RGBAQ.Q : v->RGBAQ.Q)
);
}
}
}
//
// GSScanlineGlobalData& gd = sd->global;
uint32* fb_pages = NULL;
uint32* zb_pages = NULL;
if(sd->global.sel.fb)
{
fb_pages = m_context->offset.fb->GetPages(r);
}
if(sd->global.sel.zb)
{
zb_pages = m_context->offset.zb->GetPages(r);
}
// check if there is an overlap between this and previous targets
if(CheckTargetPages(fb_pages, zb_pages, r))
{
sd->m_syncpoint = SharedData::SyncTarget;
}
// check if the texture is not part of a target currently in use
if(CheckSourcePages(sd))
{
sd->m_syncpoint = SharedData::SyncSource;
}
// addref source and target pages
sd->UsePages(fb_pages, m_context->offset.fb->psm, zb_pages, m_context->offset.zb->psm);
//
if(s_dump)
{
Sync(2);
uint64 frame = m_perfmon.GetFrame();
// Dump the texture in 32 bits format. It helps to debug texture shuffle effect
// It will breaks the few games that really uses 16 bits RT
bool texture_shuffle = ((context->FRAME.PSM & 0x2) && ((context->TEX0.PSM & 3) == 2) && (m_vt.m_primclass == GS_SPRITE_CLASS));
string s;
if(s_n >= s_saven)
{
// Dump Register state
s = format("%05d_context.txt", s_n);
m_env.Dump(m_dump_root+s);
m_context->Dump(m_dump_root+s);
}
if(s_savet && s_n >= s_saven && PRIM->TME)
{
if (texture_shuffle) {
// Dump the RT in 32 bits format. It helps to debug texture shuffle effect
s = format("%05d_f%lld_tex_%05x_32bits.bmp", s_n, frame, (int)m_context->TEX0.TBP0);
m_mem.SaveBMP(m_dump_root+s, m_context->TEX0.TBP0, m_context->TEX0.TBW, 0, 1 << m_context->TEX0.TW, 1 << m_context->TEX0.TH);
}
s = format("%05d_f%lld_tex_%05x_%d.bmp", s_n, frame, (int)m_context->TEX0.TBP0, (int)m_context->TEX0.PSM);
m_mem.SaveBMP(m_dump_root+s, m_context->TEX0.TBP0, m_context->TEX0.TBW, m_context->TEX0.PSM, 1 << m_context->TEX0.TW, 1 << m_context->TEX0.TH);
}
s_n++;
if(s_save && s_n >= s_saven)
{
if (texture_shuffle) {
// Dump the RT in 32 bits format. It helps to debug texture shuffle effect
s = format("%05d_f%lld_rt0_%05x_32bits.bmp", s_n, frame, m_context->FRAME.Block());
m_mem.SaveBMP(m_dump_root+s, m_context->FRAME.Block(), m_context->FRAME.FBW, 0, GetFrameRect().width(), 512);
}
s = format("%05d_f%lld_rt0_%05x_%d.bmp", s_n, frame, m_context->FRAME.Block(), m_context->FRAME.PSM);
m_mem.SaveBMP(m_dump_root+s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, GetFrameRect().width(), 512);
}
if(s_savez && s_n >= s_saven)
{
s = format("%05d_f%lld_rz0_%05x_%d.bmp", s_n, frame, m_context->ZBUF.Block(), m_context->ZBUF.PSM);
m_mem.SaveBMP(m_dump_root+s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, GetFrameRect().width(), 512);
}
s_n++;
Queue(data);
Sync(3);
if(s_save && s_n >= s_saven)
{
if (texture_shuffle) {
// Dump the RT in 32 bits format. It helps to debug texture shuffle effect
s = format("%05d_f%lld_rt1_%05x_32bits.bmp", s_n, frame, m_context->FRAME.Block());
m_mem.SaveBMP(m_dump_root+s, m_context->FRAME.Block(), m_context->FRAME.FBW, 0, GetFrameRect().width(), 512);
}
s = format("%05d_f%lld_rt1_%05x_%d.bmp", s_n, frame, m_context->FRAME.Block(), m_context->FRAME.PSM);
m_mem.SaveBMP(m_dump_root+s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, GetFrameRect().width(), 512);
}
if(s_savez && s_n >= s_saven)
{
s = format("%05d_f%lld_rz1_%05x_%d.bmp", s_n, frame, m_context->ZBUF.Block(), m_context->ZBUF.PSM);
m_mem.SaveBMP(m_dump_root+s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, GetFrameRect().width(), 512);
}
s_n++;
if(s_savel > 0 && (s_n - s_saven) > s_savel)
{
s_dump = 0;
}
}
else
{
Queue(data);
}
/*
if(0)//stats.ticks > 5000000)
{
printf("* [%lld | %012llx] ticks %lld prims %d (%d) pixels %d (%d)\n",
m_perfmon.GetFrame(), gd->sel.key,
stats.ticks,
stats.prims, stats.prims > 0 ? (int)(stats.ticks / stats.prims) : -1,
stats.pixels, stats.pixels > 0 ? (int)(stats.ticks / stats.pixels) : -1);
}
*/
}
void GSRendererSW::Queue(shared_ptr<GSRasterizerData>& item)
{
SharedData* sd = (SharedData*)item.get();
if(sd->m_syncpoint == SharedData::SyncSource)
{
Sync(4);
}
// update previously invalidated parts
sd->UpdateSource();
if(sd->m_syncpoint == SharedData::SyncTarget)
{
Sync(5);
}
if(LOG)
{
GSScanlineGlobalData& gd = ((SharedData*)item.get())->global;
fprintf(s_fp, "[%d] queue %05x %d (%d) %05x %d (%d) %05x %d %dx%d (%d %d %d) | %d %d %d\n",
sd->counter,
m_context->FRAME.Block(), m_context->FRAME.PSM, gd.sel.fwrite,
m_context->ZBUF.Block(), m_context->ZBUF.PSM, gd.sel.zwrite,
PRIM->TME ? m_context->TEX0.TBP0 : 0xfffff, m_context->TEX0.PSM, (int)m_context->TEX0.TW, (int)m_context->TEX0.TH, m_context->TEX0.CSM, m_context->TEX0.CPSM, m_context->TEX0.CSA,
PRIM->PRIM, sd->vertex_count, sd->index_count);
fflush(s_fp);
}
m_rl->Queue(item);
// invalidate new parts rendered onto
if(sd->global.sel.fwrite)
{
m_tc->InvalidatePages(sd->m_fb_pages, sd->m_fpsm);
}
if(sd->global.sel.zwrite)
{
m_tc->InvalidatePages(sd->m_zb_pages, sd->m_zpsm);
}
}
void GSRendererSW::Sync(int reason)
{
//printf("sync %d\n", reason);
GSPerfMonAutoTimer pmat(&m_perfmon, GSPerfMon::Sync);
uint64 t = __rdtsc();
m_rl->Sync();
if(0) if(LOG)
{
s_n++;
std::string s;
if(s_save)
{
s = format("%05d_f%lld_rt1_%05x_%d.bmp", s_n, m_perfmon.GetFrame(), m_context->FRAME.Block(), m_context->FRAME.PSM);
m_mem.SaveBMP(m_dump_root+s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, GetFrameRect().width(), 512);
}
if(s_savez)
{
s = format("%05d_f%lld_zb1_%05x_%d.bmp", s_n, m_perfmon.GetFrame(), m_context->ZBUF.Block(), m_context->ZBUF.PSM);
m_mem.SaveBMP(m_dump_root+s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, GetFrameRect().width(), 512);
}
}
t = __rdtsc() - t;
int pixels = m_rl->GetPixels();
if(LOG) {fprintf(s_fp, "sync n=%d r=%d t=%lld p=%d %c\n", s_n, reason, t, pixels, t > 10000000 ? '*' : ' '); fflush(s_fp);}
m_perfmon.Put(GSPerfMon::Fillrate, pixels);
}
void GSRendererSW::InvalidateVideoMem(const GIFRegBITBLTBUF& BITBLTBUF, const GSVector4i& r)
{
if(LOG) {fprintf(s_fp, "w %05x %d %d, %d %d %d %d\n", BITBLTBUF.DBP, BITBLTBUF.DBW, BITBLTBUF.DPSM, r.x, r.y, r.z, r.w); fflush(s_fp);}
GSOffset* off = m_mem.GetOffset(BITBLTBUF.DBP, BITBLTBUF.DBW, BITBLTBUF.DPSM);
off->GetPages(r, m_tmp_pages);
// check if the changing pages either used as a texture or a target
if(!m_rl->IsSynced())
{
for(uint32* RESTRICT p = m_tmp_pages; *p != GSOffset::EOP; p++)
{
if(m_fzb_pages[*p] | m_tex_pages[*p])
{
Sync(6);
break;
}
}
}
m_tc->InvalidatePages(m_tmp_pages, off->psm); // if texture update runs on a thread and Sync(5) happens then this must come later
}
void GSRendererSW::InvalidateLocalMem(const GIFRegBITBLTBUF& BITBLTBUF, const GSVector4i& r, bool clut)
{
if(LOG) {fprintf(s_fp, "%s %05x %d %d, %d %d %d %d\n", clut ? "rp" : "r", BITBLTBUF.SBP, BITBLTBUF.SBW, BITBLTBUF.SPSM, r.x, r.y, r.z, r.w); fflush(s_fp);}
if(!m_rl->IsSynced())
{
GSOffset* off = m_mem.GetOffset(BITBLTBUF.SBP, BITBLTBUF.SBW, BITBLTBUF.SPSM);
off->GetPages(r, m_tmp_pages);
for(uint32* RESTRICT p = m_tmp_pages; *p != GSOffset::EOP; p++)
{
if(m_fzb_pages[*p])
{
Sync(7);
break;
}
}
}
}
void GSRendererSW::UsePages(const uint32* pages, const int type)
{
for(const uint32* p = pages; *p != GSOffset::EOP; p++) {
switch (type) {
case 0:
ASSERT((m_fzb_pages[*p] & 0xFFFF) < USHRT_MAX);
m_fzb_pages[*p] += 1;
break;
case 1:
ASSERT((m_fzb_pages[*p] >> 16) < USHRT_MAX);
m_fzb_pages[*p] += 0x10000;
break;
case 2:
ASSERT(m_tex_pages[*p] < USHRT_MAX);
m_tex_pages[*p] += 1;
break;
default:break;
}
}
}
void GSRendererSW::ReleasePages(const uint32* pages, const int type)
{
for(const uint32* p = pages; *p != GSOffset::EOP; p++) {
switch (type) {
case 0:
ASSERT((m_fzb_pages[*p] & 0xFFFF) > 0);
m_fzb_pages[*p] -= 1;
break;
case 1:
ASSERT((m_fzb_pages[*p] >> 16) > 0);
m_fzb_pages[*p] -= 0x10000;
break;
case 2:
ASSERT(m_tex_pages[*p] > 0);
m_tex_pages[*p] -= 1;
break;
default:break;
}
}
}
bool GSRendererSW::CheckTargetPages(const uint32* fb_pages, const uint32* zb_pages, const GSVector4i& r)
{
bool synced = m_rl->IsSynced();
bool fb = fb_pages != NULL;
bool zb = zb_pages != NULL;
bool res = false;
if(m_fzb != m_context->offset.fzb4)
{
// targets changed, check everything
m_fzb = m_context->offset.fzb4;
m_fzb_bbox = r;
if(fb_pages == NULL) fb_pages = m_context->offset.fb->GetPages(r);
if(zb_pages == NULL) zb_pages = m_context->offset.zb->GetPages(r);
memset(m_fzb_cur_pages, 0, sizeof(m_fzb_cur_pages));
uint32 used = 0;
for(const uint32* p = fb_pages; *p != GSOffset::EOP; p++)
{
uint32 i = *p;
uint32 row = i >> 5;
uint32 col = 1 << (i & 31);
m_fzb_cur_pages[row] |= col;
used |= m_fzb_pages[i];
}
for(const uint32* p = zb_pages; *p != GSOffset::EOP; p++)
{
uint32 i = *p;
uint32 row = i >> 5;
uint32 col = 1 << (i & 31);
m_fzb_cur_pages[row] |= col;
used |= m_fzb_pages[i];
}
if(!synced)
{
if(used)
{
if(LOG) {fprintf(s_fp, "syncpoint 0\n"); fflush(s_fp);}
res = true;
}
//if(LOG) {fprintf(s_fp, "no syncpoint *\n"); fflush(s_fp);}
}
}
else
{
// same target, only check new areas and cross-rendering between frame and z-buffer
GSVector4i bbox = m_fzb_bbox.runion(r);
bool check = !m_fzb_bbox.eq(bbox);
m_fzb_bbox = bbox;
if(check)
{
// drawing area is larger than previous time, check new parts only to avoid false positives (m_fzb_cur_pages guards)
if(fb_pages == NULL) fb_pages = m_context->offset.fb->GetPages(r);
if(zb_pages == NULL) zb_pages = m_context->offset.zb->GetPages(r);
uint32 used = 0;
for(const uint32* p = fb_pages; *p != GSOffset::EOP; p++)
{
uint32 i = *p;
uint32 row = i >> 5;
uint32 col = 1 << (i & 31);
if((m_fzb_cur_pages[row] & col) == 0)
{
m_fzb_cur_pages[row] |= col;
used |= m_fzb_pages[i];
}
}
for(const uint32* p = zb_pages; *p != GSOffset::EOP; p++)
{
uint32 i = *p;
uint32 row = i >> 5;
uint32 col = 1 << (i & 31);
if((m_fzb_cur_pages[row] & col) == 0)
{
m_fzb_cur_pages[row] |= col;
used |= m_fzb_pages[i];
}
}
if(!synced)
{
if(used)
{
if(LOG) {fprintf(s_fp, "syncpoint 1\n"); fflush(s_fp);}
res = true;
}
}
}
if(!synced)
{
// chross-check frame and z-buffer pages, they cannot overlap with eachother and with previous batches in queue,
// have to be careful when the two buffers are mutually enabled/disabled and alternating (Bully FBP/ZBP = 0x2300)
if(fb && !res)
{
for(const uint32* p = fb_pages; *p != GSOffset::EOP; p++)
{
if(m_fzb_pages[*p] & 0xffff0000)
{
if(LOG) {fprintf(s_fp, "syncpoint 2\n"); fflush(s_fp);}
res = true;
break;
}
}
}
if(zb && !res)
{
for(const uint32* p = zb_pages; *p != GSOffset::EOP; p++)
{
if(m_fzb_pages[*p] & 0x0000ffff)
{
if(LOG) {fprintf(s_fp, "syncpoint 3\n"); fflush(s_fp);}
res = true;
break;
}
}
}
}
}
if(!fb && fb_pages != NULL) delete [] fb_pages;
if(!zb && zb_pages != NULL) delete [] zb_pages;
return res;
}
bool GSRendererSW::CheckSourcePages(SharedData* sd)
{
if(!m_rl->IsSynced())
{
for(size_t i = 0; sd->m_tex[i].t != NULL; i++)
{
sd->m_tex[i].t->m_offset->GetPages(sd->m_tex[i].r, m_tmp_pages);
uint32* pages = m_tmp_pages; // sd->m_tex[i].t->m_pages.n;
for(const uint32* p = pages; *p != GSOffset::EOP; p++)
{
// TODO: 8H 4HL 4HH texture at the same place as the render target (24 bit, or 32-bit where the alpha channel is masked, Valkyrie Profile 2)
if(m_fzb_pages[*p]) // currently being drawn to? => sync
{
return true;
}
}
}
}
return false;
}
#include "GSTextureSW.h"
bool GSRendererSW::GetScanlineGlobalData(SharedData* data)
{
GSScanlineGlobalData& gd = data->global;
const GSDrawingEnvironment& env = m_env;
const GSDrawingContext* context = m_context;
const GS_PRIM_CLASS primclass = m_vt.m_primclass;
gd.vm = m_mem.m_vm8;
gd.fbr = context->offset.fb->pixel.row;
gd.zbr = context->offset.zb->pixel.row;
gd.fbc = context->offset.fb->pixel.col[0];
gd.zbc = context->offset.zb->pixel.col[0];
gd.fzbr = context->offset.fzb4->row;
gd.fzbc = context->offset.fzb4->col;
gd.sel.key = 0;
gd.sel.fpsm = 3;
gd.sel.zpsm = 3;
gd.sel.atst = ATST_ALWAYS;
gd.sel.tfx = TFX_NONE;
gd.sel.ababcd = 0xff;
gd.sel.prim = primclass;
uint32 fm = context->FRAME.FBMSK;
uint32 zm = context->ZBUF.ZMSK || context->TEST.ZTE == 0 ? 0xffffffff : 0;
if(context->TEST.ZTE && context->TEST.ZTST == ZTST_NEVER)
{
fm = 0xffffffff;
zm = 0xffffffff;
}
if(PRIM->TME)
{
if(GSLocalMemory::m_psm[context->TEX0.PSM].pal > 0)
{
m_mem.m_clut.Read32(context->TEX0, env.TEXA);
}
}
if(context->TEST.ATE)
{
if(!TryAlphaTest(fm, zm))
{
gd.sel.atst = context->TEST.ATST;
gd.sel.afail = context->TEST.AFAIL;
gd.aref = GSVector4i((int)context->TEST.AREF);
switch(gd.sel.atst)
{
case ATST_LESS:
gd.sel.atst = ATST_LEQUAL;
gd.aref -= GSVector4i::x00000001();
break;
case ATST_GREATER:
gd.sel.atst = ATST_GEQUAL;
gd.aref += GSVector4i::x00000001();
break;
}
}
}
bool fwrite = fm != 0xffffffff;
bool ftest = gd.sel.atst != ATST_ALWAYS || context->TEST.DATE && context->FRAME.PSM != PSM_PSMCT24;
bool zwrite = zm != 0xffffffff;
bool ztest = context->TEST.ZTE && context->TEST.ZTST > ZTST_ALWAYS;
/*
printf("%05x %d %05x %d %05x %d %dx%d\n",
fwrite || ftest ? m_context->FRAME.Block() : 0xfffff, m_context->FRAME.PSM,
zwrite || ztest ? m_context->ZBUF.Block() : 0xfffff, m_context->ZBUF.PSM,
PRIM->TME ? m_context->TEX0.TBP0 : 0xfffff, m_context->TEX0.PSM, (int)m_context->TEX0.TW, (int)m_context->TEX0.TH);
*/
if(!fwrite && !zwrite) return false;
gd.sel.fwrite = fwrite;
gd.sel.ftest = ftest;
if(fwrite || ftest)
{
gd.sel.fpsm = GSLocalMemory::m_psm[context->FRAME.PSM].fmt;
if((primclass == GS_LINE_CLASS || primclass == GS_TRIANGLE_CLASS) && m_vt.m_eq.rgba != 0xffff)
{
gd.sel.iip = PRIM->IIP;
}
if(PRIM->TME)
{
gd.sel.tfx = context->TEX0.TFX;
gd.sel.tcc = context->TEX0.TCC;
gd.sel.fst = PRIM->FST;
gd.sel.ltf = m_vt.IsLinear();
if(GSLocalMemory::m_psm[context->TEX0.PSM].pal > 0)
{
gd.sel.tlu = 1;
gd.clut = (uint32*)_aligned_malloc(sizeof(uint32) * 256, 32); // FIXME: might address uninitialized data of the texture (0xCD) that is not in 0-15 range for 4-bpp formats
memcpy(gd.clut, (const uint32*)m_mem.m_clut, sizeof(uint32) * GSLocalMemory::m_psm[context->TEX0.PSM].pal);
}
gd.sel.wms = context->CLAMP.WMS;
gd.sel.wmt = context->CLAMP.WMT;
if(gd.sel.tfx == TFX_MODULATE && gd.sel.tcc && m_vt.m_eq.rgba == 0xffff && m_vt.m_min.c.eq(GSVector4i(128)))
{
// modulate does not do anything when vertex color is 0x80
gd.sel.tfx = TFX_DECAL;
}
bool mipmap = IsMipMapActive();
GIFRegTEX0 TEX0 = m_context->GetSizeFixedTEX0(s_n, m_vt.m_min.t.xyxy(m_vt.m_max.t), m_vt.IsLinear(), mipmap);
GSVector4i r;
GetTextureMinMax(r, TEX0, context->CLAMP, gd.sel.ltf);
GSTextureCacheSW::Texture* t = m_tc->Lookup(TEX0, env.TEXA);
if(t == NULL) {ASSERT(0); return false;}
data->SetSource(t, r, 0);
gd.sel.tw = t->m_tw - 3;
if(mipmap)
{
// TEX1.MMIN
// 000 p
// 001 l
// 010 p round
// 011 p tri
// 100 l round
// 101 l tri
if(m_vt.m_lod.x > 0)
{
gd.sel.ltf = context->TEX1.MMIN >> 2;
}
else
{
// TODO: isbilinear(mmag) != isbilinear(mmin) && m_vt.m_lod.x <= 0 && m_vt.m_lod.y > 0
}
gd.sel.mmin = (context->TEX1.MMIN & 1) + 1; // 1: round, 2: tri
gd.sel.lcm = context->TEX1.LCM;
int mxl = std::min<int>((int)context->TEX1.MXL, 6) << 16;
int k = context->TEX1.K << 12;
if((int)m_vt.m_lod.x >= (int)context->TEX1.MXL)
{
k = (int)m_vt.m_lod.x << 16; // set lod to max level
gd.sel.lcm = 1; // lod is constant
gd.sel.mmin = 1; // tri-linear is meaningless
}
if(gd.sel.mmin == 2)
{
mxl--; // don't sample beyond the last level (TODO: add a dummy level instead?)
}
if(gd.sel.fst)
{
ASSERT(gd.sel.lcm == 1);
ASSERT(((m_vt.m_min.t.uph(m_vt.m_max.t) == GSVector4::zero()).mask() & 3) == 3); // ratchet and clank (menu)
gd.sel.lcm = 1;
}
if(gd.sel.lcm)
{
int lod = std::max<int>(std::min<int>(k, mxl), 0);
if(gd.sel.mmin == 1)
{
lod = (lod + 0x8000) & 0xffff0000; // rounding
}
gd.lod.i = GSVector4i(lod >> 16);
gd.lod.f = GSVector4i(lod & 0xffff).xxxxl().xxzz();
// TODO: lot to optimize when lod is constant
}
else
{
gd.mxl = GSVector4((float)mxl);
gd.l = GSVector4((float)(-0x10000 << context->TEX1.L));
gd.k = GSVector4((float)k);
}
GIFRegTEX0 MIP_TEX0 = TEX0;
GIFRegCLAMP MIP_CLAMP = context->CLAMP;
GSVector4 tmin = m_vt.m_min.t;
GSVector4 tmax = m_vt.m_max.t;
static int s_counter = 0;
for(int i = 1, j = std::min<int>((int)context->TEX1.MXL, 6); i <= j; i++)
{
switch(i)
{
case 1:
MIP_TEX0.TBP0 = context->MIPTBP1.TBP1;
MIP_TEX0.TBW = context->MIPTBP1.TBW1;
break;
case 2:
MIP_TEX0.TBP0 = context->MIPTBP1.TBP2;
MIP_TEX0.TBW = context->MIPTBP1.TBW2;
break;
case 3:
MIP_TEX0.TBP0 = context->MIPTBP1.TBP3;
MIP_TEX0.TBW = context->MIPTBP1.TBW3;
break;
case 4:
MIP_TEX0.TBP0 = context->MIPTBP2.TBP4;
MIP_TEX0.TBW = context->MIPTBP2.TBW4;
break;
case 5:
MIP_TEX0.TBP0 = context->MIPTBP2.TBP5;
MIP_TEX0.TBW = context->MIPTBP2.TBW5;
break;
case 6:
MIP_TEX0.TBP0 = context->MIPTBP2.TBP6;
MIP_TEX0.TBW = context->MIPTBP2.TBW6;
break;
default:
__assume(0);
}
if(MIP_TEX0.TW > 0) MIP_TEX0.TW--;
if(MIP_TEX0.TH > 0) MIP_TEX0.TH--;
MIP_CLAMP.MINU >>= 1;
MIP_CLAMP.MINV >>= 1;
MIP_CLAMP.MAXU >>= 1;
MIP_CLAMP.MAXV >>= 1;
m_vt.m_min.t *= 0.5f;
m_vt.m_max.t *= 0.5f;
GSTextureCacheSW::Texture* t = m_tc->Lookup(MIP_TEX0, env.TEXA, gd.sel.tw + 3);
if(t == NULL) {ASSERT(0); return false;}
GSVector4i r;
GetTextureMinMax(r, MIP_TEX0, MIP_CLAMP, gd.sel.ltf);
data->SetSource(t, r, i);
}
s_counter++;
m_vt.m_min.t = tmin;
m_vt.m_max.t = tmax;
}
else
{
if(gd.sel.fst == 0)
{
// skip per pixel division if q is constant
GSVertexSW* RESTRICT v = data->vertex;
if(m_vt.m_eq.q)
{
gd.sel.fst = 1;
const GSVector4& t = v[data->index[0]].t;
if(t.z != 1.0f)
{
GSVector4 w = t.zzzz().rcpnr();
for(int i = 0, j = data->vertex_count; i < j; i++)
{
GSVector4 t = v[i].t;
v[i].t = (t * w).xyzw(t);
}
}
}
else if(primclass == GS_SPRITE_CLASS)
{
gd.sel.fst = 1;
for(int i = 0, j = data->vertex_count; i < j; i += 2)
{
GSVector4 t0 = v[i + 0].t;
GSVector4 t1 = v[i + 1].t;
GSVector4 w = t1.zzzz().rcpnr();
v[i + 0].t = (t0 * w).xyzw(t0);
v[i + 1].t = (t1 * w).xyzw(t1);
}
}
}
if(gd.sel.ltf && gd.sel.fst)
{
// if q is constant we can do the half pel shift for bilinear sampling on the vertices
// TODO: but not when mipmapping is used!!!
GSVector4 half(0x8000, 0x8000);
GSVertexSW* RESTRICT v = data->vertex;
for(int i = 0, j = data->vertex_count; i < j; i++)
{
GSVector4 t = v[i].t;
v[i].t = (t - half).xyzw(t);
}
}
}
uint16 tw = 1u << TEX0.TW;
uint16 th = 1u << TEX0.TH;
switch(context->CLAMP.WMS)
{
case CLAMP_REPEAT:
gd.t.min.u16[0] = gd.t.minmax.u16[0] = tw - 1;
gd.t.max.u16[0] = gd.t.minmax.u16[2] = 0;
gd.t.mask.u32[0] = 0xffffffff;
break;
case CLAMP_CLAMP:
gd.t.min.u16[0] = gd.t.minmax.u16[0] = 0;
gd.t.max.u16[0] = gd.t.minmax.u16[2] = tw - 1;
gd.t.mask.u32[0] = 0;
break;
case CLAMP_REGION_CLAMP:
gd.t.min.u16[0] = gd.t.minmax.u16[0] = std::min<uint16>(context->CLAMP.MINU, tw - 1);
gd.t.max.u16[0] = gd.t.minmax.u16[2] = std::min<uint16>(context->CLAMP.MAXU, tw - 1);
gd.t.mask.u32[0] = 0;
break;
case CLAMP_REGION_REPEAT:
gd.t.min.u16[0] = gd.t.minmax.u16[0] = context->CLAMP.MINU & (tw - 1);
gd.t.max.u16[0] = gd.t.minmax.u16[2] = context->CLAMP.MAXU & (tw - 1);
gd.t.mask.u32[0] = 0xffffffff;
break;
default:
__assume(0);
}
switch(context->CLAMP.WMT)
{
case CLAMP_REPEAT:
gd.t.min.u16[4] = gd.t.minmax.u16[1] = th - 1;
gd.t.max.u16[4] = gd.t.minmax.u16[3] = 0;
gd.t.mask.u32[2] = 0xffffffff;
break;
case CLAMP_CLAMP:
gd.t.min.u16[4] = gd.t.minmax.u16[1] = 0;
gd.t.max.u16[4] = gd.t.minmax.u16[3] = th - 1;
gd.t.mask.u32[2] = 0;
break;
case CLAMP_REGION_CLAMP:
gd.t.min.u16[4] = gd.t.minmax.u16[1] = std::min<uint16>(context->CLAMP.MINV, th - 1);
gd.t.max.u16[4] = gd.t.minmax.u16[3] = std::min<uint16>(context->CLAMP.MAXV, th - 1); // ffx anima summon scene, when the anchor appears (th = 256, maxv > 256)
gd.t.mask.u32[2] = 0;
break;
case CLAMP_REGION_REPEAT:
gd.t.min.u16[4] = gd.t.minmax.u16[1] = context->CLAMP.MINV & (th - 1); // skygunner main menu water texture 64x64, MINV = 127
gd.t.max.u16[4] = gd.t.minmax.u16[3] = context->CLAMP.MAXV & (th - 1);
gd.t.mask.u32[2] = 0xffffffff;
break;
default:
__assume(0);
}
gd.t.min = gd.t.min.xxxxlh();
gd.t.max = gd.t.max.xxxxlh();
gd.t.mask = gd.t.mask.xxzz();
gd.t.invmask = ~gd.t.mask;
}
if(PRIM->FGE)
{
gd.sel.fge = 1;
gd.frb = env.FOGCOL.u32[0] & 0x00ff00ff;
gd.fga = (env.FOGCOL.u32[0] >> 8) & 0x00ff00ff;
}
if(context->FRAME.PSM != PSM_PSMCT24)
{
gd.sel.date = context->TEST.DATE;
gd.sel.datm = context->TEST.DATM;
}
if(!IsOpaque())
{
gd.sel.abe = PRIM->ABE;
gd.sel.ababcd = context->ALPHA.u32[0];
if(env.PABE.PABE)
{
gd.sel.pabe = 1;
}
if(m_aa1 && PRIM->AA1 && (primclass == GS_LINE_CLASS || primclass == GS_TRIANGLE_CLASS))
{
gd.sel.aa1 = 1;
}
gd.afix = GSVector4i((int)context->ALPHA.FIX << 7).xxzzlh();
}
if(gd.sel.date
|| gd.sel.aba == 1 || gd.sel.abb == 1 || gd.sel.abc == 1 || gd.sel.abd == 1
|| gd.sel.atst != ATST_ALWAYS && gd.sel.afail == AFAIL_RGB_ONLY
|| gd.sel.fpsm == 0 && fm != 0 && fm != 0xffffffff
|| gd.sel.fpsm == 1 && (fm & 0x00ffffff) != 0 && (fm & 0x00ffffff) != 0x00ffffff
|| gd.sel.fpsm == 2 && (fm & 0x80f8f8f8) != 0 && (fm & 0x80f8f8f8) != 0x80f8f8f8)
{
gd.sel.rfb = 1;
}
gd.sel.colclamp = env.COLCLAMP.CLAMP;
gd.sel.fba = context->FBA.FBA;
if(env.DTHE.DTHE)
{
gd.sel.dthe = 1;
gd.dimx = (GSVector4i*)_aligned_malloc(sizeof(env.dimx), 32);
memcpy(gd.dimx, env.dimx, sizeof(env.dimx));
}
}
gd.sel.zwrite = zwrite;
gd.sel.ztest = ztest;
if(zwrite || ztest)
{
gd.sel.zpsm = GSLocalMemory::m_psm[context->ZBUF.PSM].fmt;
gd.sel.ztst = ztest ? context->TEST.ZTST : ZTST_ALWAYS;
gd.sel.zoverflow = (uint32)GSVector4i(m_vt.m_max.p).z == 0x80000000U;
}
#if _M_SSE >= 0x501
gd.fm = fm;
gd.zm = zm;
if(gd.sel.fpsm == 1)
{
gd.fm |= 0xff000000;
}
else if(gd.sel.fpsm == 2)
{
uint32 rb = gd.fm & 0x00f800f8;
uint32 ga = gd.fm & 0x8000f800;
gd.fm = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3) | 0xffff0000;
}
if(gd.sel.zpsm == 1)
{
gd.zm |= 0xff000000;
}
else if(gd.sel.zpsm == 2)
{
gd.zm |= 0xffff0000;
}
#else
gd.fm = GSVector4i(fm);
gd.zm = GSVector4i(zm);
if(gd.sel.fpsm == 1)
{
gd.fm |= GSVector4i::xff000000();
}
else if(gd.sel.fpsm == 2)
{
GSVector4i rb = gd.fm & 0x00f800f8;
GSVector4i ga = gd.fm & 0x8000f800;
gd.fm = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3) | GSVector4i::xffff0000();
}
if(gd.sel.zpsm == 1)
{
gd.zm |= GSVector4i::xff000000();
}
else if(gd.sel.zpsm == 2)
{
gd.zm |= GSVector4i::xffff0000();
}
#endif
if(gd.sel.prim == GS_SPRITE_CLASS && !gd.sel.ftest && !gd.sel.ztest && data->bbox.eq(data->bbox.rintersect(data->scissor))) // TODO: check scissor horizontally only
{
gd.sel.notest = 1;
uint32 ofx = context->XYOFFSET.OFX;
for(int i = 0, j = m_vertex.tail; i < j; i++)
{
#if _M_SSE >= 0x501
if((((m_vertex.buff[i].XYZ.X - ofx) + 15) >> 4) & 7) // aligned to 8
#else
if((((m_vertex.buff[i].XYZ.X - ofx) + 15) >> 4) & 3) // aligned to 4
#endif
{
gd.sel.notest = 0;
break;
}
}
}
return true;
}
GSRendererSW::SharedData::SharedData(GSRendererSW* parent)
: m_parent(parent)
, m_fb_pages(NULL)
, m_zb_pages(NULL)
, m_fpsm(0)
, m_zpsm(0)
, m_using_pages(false)
, m_syncpoint(SyncNone)
{
m_tex[0].t = NULL;
global.sel.key = 0;
global.clut = NULL;
global.dimx = NULL;
}
GSRendererSW::SharedData::~SharedData()
{
ReleasePages();
if(global.clut) _aligned_free(global.clut);
if(global.dimx) _aligned_free(global.dimx);
if(LOG) {fprintf(s_fp, "[%d] done t=%lld p=%d | %d %d %d | %08x_%08x\n",
counter,
__rdtsc() - start, pixels,
primclass, vertex_count, index_count,
global.sel.hi, global.sel.lo
);
fflush(s_fp);}
}
//static TransactionScope::Lock s_lock;
void GSRendererSW::SharedData::UsePages(const uint32* fb_pages, int fpsm, const uint32* zb_pages, int zpsm)
{
if(m_using_pages) return;
{
//TransactionScope scope(s_lock);
if(global.sel.fb && fb_pages != NULL)
{
m_parent->UsePages(fb_pages, 0);
}
if(global.sel.zb && zb_pages != NULL)
{
m_parent->UsePages(zb_pages, 1);
}
for(size_t i = 0; m_tex[i].t != NULL; i++)
{
m_parent->UsePages(m_tex[i].t->m_pages.n, 2);
}
}
m_fb_pages = fb_pages;
m_zb_pages = zb_pages;
m_fpsm = fpsm;
m_zpsm = zpsm;
m_using_pages = true;
}
void GSRendererSW::SharedData::ReleasePages()
{
if(!m_using_pages) return;
{
//TransactionScope scope(s_lock);
if(global.sel.fb)
{
m_parent->ReleasePages(m_fb_pages, 0);
}
if(global.sel.zb)
{
m_parent->ReleasePages(m_zb_pages, 1);
}
for(size_t i = 0; m_tex[i].t != NULL; i++)
{
m_parent->ReleasePages(m_tex[i].t->m_pages.n, 2);
}
}
delete [] m_fb_pages;
delete [] m_zb_pages;
m_fb_pages = NULL;
m_zb_pages = NULL;
m_using_pages = false;
}
void GSRendererSW::SharedData::SetSource(GSTextureCacheSW::Texture* t, const GSVector4i& r, int level)
{
ASSERT(m_tex[level].t == NULL);
m_tex[level].t = t;
m_tex[level].r = r;
m_tex[level + 1].t = NULL;
}
void GSRendererSW::SharedData::UpdateSource()
{
for(size_t i = 0; m_tex[i].t != NULL; i++)
{
if(m_tex[i].t->Update(m_tex[i].r))
{
global.tex[i] = m_tex[i].t->m_buff;
}
else
{
printf("GSdx: out-of-memory, texturing temporarily disabled\n");
global.sel.tfx = TFX_NONE;
}
}
// TODO
if(m_parent->s_dump)
{
uint64 frame = m_parent->m_perfmon.GetFrame();
string s;
if(m_parent->s_savet && m_parent->s_n >= m_parent->s_saven)
{
for(size_t i = 0; m_tex[i].t != NULL; i++)
{
s = format("%05d_f%lld_tex%d_%05x_%d.bmp", m_parent->s_n - 2, frame, i, (int)m_parent->m_context->TEX0.TBP0, (int)m_parent->m_context->TEX0.PSM);
m_tex[i].t->Save(root_sw+s);
}
if(global.clut != NULL)
{
GSTextureSW* t = new GSTextureSW(0, 256, 1);
t->Update(GSVector4i(0, 0, 256, 1), global.clut, sizeof(uint32) * 256);
s = format("%05d_f%lld_texp_%05x_%d.bmp", m_parent->s_n - 2, frame, (int)m_parent->m_context->TEX0.TBP0, (int)m_parent->m_context->TEX0.PSM);
t->Save(root_sw+s);
delete t;
}
}
}
}