pcsx2/plugins/GSdx/GSClut.cpp

801 lines
20 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSClut.h"
#include "GSLocalMemory.h"
#define CLUT_ALLOC_SIZE (2 * 4096)
GSClut::GSClut(GSLocalMemory* mem)
: m_mem(mem)
{
uint8* p = (uint8*)vmalloc(CLUT_ALLOC_SIZE, false);
m_clut = (uint16*)&p[0]; // 1k + 1k for mirrored area simulating wrapping memory
m_buff32 = (uint32*)&p[2048]; // 1k
m_buff64 = (uint64*)&p[4096]; // 2k
m_write.dirty = true;
m_read.dirty = true;
for (int i = 0; i < 16; i++)
{
for (int j = 0; j < 64; j++)
{
// The GS seems to check the lower 3 bits to tell if the format is 8/4bit
// for the reload.
const bool eight_bit = (j & 0x7) == 0x3;
const bool four_bit = (j & 0x7) == 0x4;
switch (i)
{
case PSM_PSMCT32:
case PSM_PSMCT24: // undocumented (KH?)
if (eight_bit)
m_wc[0][i][j] = &GSClut::WriteCLUT32_I8_CSM1;
else if (four_bit)
m_wc[0][i][j] = &GSClut::WriteCLUT32_I4_CSM1;
else
m_wc[0][i][j] = &GSClut::WriteCLUT_NULL;
break;
case PSM_PSMCT16:
if (eight_bit)
m_wc[0][i][j] = &GSClut::WriteCLUT16_I8_CSM1;
else if (four_bit)
m_wc[0][i][j] = &GSClut::WriteCLUT16_I4_CSM1;
else
m_wc[0][i][j] = &GSClut::WriteCLUT_NULL;
break;
case PSM_PSMCT16S:
if (eight_bit)
m_wc[0][i][j] = &GSClut::WriteCLUT16S_I8_CSM1;
else if (four_bit)
m_wc[0][i][j] = &GSClut::WriteCLUT16S_I4_CSM1;
else
m_wc[0][i][j] = &GSClut::WriteCLUT_NULL;
break;
default:
m_wc[0][i][j] = &GSClut::WriteCLUT_NULL;
}
// TODO: test this
m_wc[1][i][j] = &GSClut::WriteCLUT_NULL;
}
}
m_wc[1][PSM_PSMCT32][PSM_PSMT8] = &GSClut::WriteCLUT32_CSM2<256>;
m_wc[1][PSM_PSMCT32][PSM_PSMT8H] = &GSClut::WriteCLUT32_CSM2<256>;
m_wc[1][PSM_PSMCT32][PSM_PSMT4] = &GSClut::WriteCLUT32_CSM2<16>;
m_wc[1][PSM_PSMCT32][PSM_PSMT4HL] = &GSClut::WriteCLUT32_CSM2<16>;
m_wc[1][PSM_PSMCT32][PSM_PSMT4HH] = &GSClut::WriteCLUT32_CSM2<16>;
m_wc[1][PSM_PSMCT24][PSM_PSMT8] = &GSClut::WriteCLUT32_CSM2<256>;
m_wc[1][PSM_PSMCT24][PSM_PSMT8H] = &GSClut::WriteCLUT32_CSM2<256>;
m_wc[1][PSM_PSMCT24][PSM_PSMT4] = &GSClut::WriteCLUT32_CSM2<16>;
m_wc[1][PSM_PSMCT24][PSM_PSMT4HL] = &GSClut::WriteCLUT32_CSM2<16>;
m_wc[1][PSM_PSMCT24][PSM_PSMT4HH] = &GSClut::WriteCLUT32_CSM2<16>;
m_wc[1][PSM_PSMCT16][PSM_PSMT8] = &GSClut::WriteCLUT16_CSM2<256>;
m_wc[1][PSM_PSMCT16][PSM_PSMT8H] = &GSClut::WriteCLUT16_CSM2<256>;
m_wc[1][PSM_PSMCT16][PSM_PSMT4] = &GSClut::WriteCLUT16_CSM2<16>;
m_wc[1][PSM_PSMCT16][PSM_PSMT4HL] = &GSClut::WriteCLUT16_CSM2<16>;
m_wc[1][PSM_PSMCT16][PSM_PSMT4HH] = &GSClut::WriteCLUT16_CSM2<16>;
m_wc[1][PSM_PSMCT16S][PSM_PSMT8] = &GSClut::WriteCLUT16S_CSM2<256>;
m_wc[1][PSM_PSMCT16S][PSM_PSMT8H] = &GSClut::WriteCLUT16S_CSM2<256>;
m_wc[1][PSM_PSMCT16S][PSM_PSMT4] = &GSClut::WriteCLUT16S_CSM2<16>;
m_wc[1][PSM_PSMCT16S][PSM_PSMT4HL] = &GSClut::WriteCLUT16S_CSM2<16>;
m_wc[1][PSM_PSMCT16S][PSM_PSMT4HH] = &GSClut::WriteCLUT16S_CSM2<16>;
}
GSClut::~GSClut()
{
vmfree(m_clut, CLUT_ALLOC_SIZE);
}
void GSClut::Invalidate()
{
m_write.dirty = true;
}
void GSClut::Invalidate(uint32 block)
{
if (block == m_write.TEX0.CBP)
{
m_write.dirty = true;
}
}
bool GSClut::WriteTest(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
switch (TEX0.CLD)
{
case 0:
return false;
case 1:
break;
case 2:
m_CBP[0] = TEX0.CBP;
break;
case 3:
m_CBP[1] = TEX0.CBP;
break;
case 4:
if (m_CBP[0] == TEX0.CBP)
return false;
m_CBP[0] = TEX0.CBP;
break;
case 5:
if (m_CBP[1] == TEX0.CBP)
return false;
m_CBP[1] = TEX0.CBP;
break;
case 6:
return false; // ffx2 menu
case 7:
return false; // ford mustang racing // Bouken Jidai Katsugeki Goemon
default:
__assume(0);
}
return m_write.IsDirty(TEX0, TEXCLUT);
}
void GSClut::Write(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
m_write.TEX0 = TEX0;
m_write.TEXCLUT = TEXCLUT;
m_write.dirty = false;
m_read.dirty = true;
(this->*m_wc[TEX0.CSM][TEX0.CPSM][TEX0.PSM])(TEX0, TEXCLUT);
// Mirror write to other half of buffer to simulate wrapping memory
int offset = (TEX0.CSA & (TEX0.CPSM < PSM_PSMCT16 ? 15 : 31)) * 16;
if (TEX0.PSM == PSM_PSMT8 || TEX0.PSM == PSM_PSMT8H)
{
int size = TEX0.CPSM < PSM_PSMCT16 ? 512 : 256;
memcpy(m_clut + 512 + offset, m_clut + offset, sizeof(*m_clut) * std::min(size, 512 - offset));
memcpy(m_clut, m_clut + 512, sizeof(*m_clut) * std::max(0, size + offset - 512));
}
else
{
int size = 16;
memcpy(m_clut + 512 + offset, m_clut + offset, sizeof(*m_clut) * size);
if (TEX0.CPSM < PSM_PSMCT16)
{
memcpy(m_clut + 512 + 256 + offset, m_clut + 256 + offset, sizeof(*m_clut) * size);
}
}
}
void GSClut::WriteCLUT32_I8_CSM1(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
ALIGN_STACK(32);
//FIXME: Romance of the Three Kingdoms VIII text doesn't like the offset
WriteCLUT_T32_I8_CSM1((uint32*)m_mem->BlockPtr32(0, 0, TEX0.CBP, 1), m_clut + ((TEX0.CSA & 15) << 4));
}
void GSClut::WriteCLUT32_I4_CSM1(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
ALIGN_STACK(32);
WriteCLUT_T32_I4_CSM1((uint32*)m_mem->BlockPtr32(0, 0, TEX0.CBP, 1), m_clut + ((TEX0.CSA & 15) << 4));
}
void GSClut::WriteCLUT16_I8_CSM1(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
WriteCLUT_T16_I8_CSM1((uint16*)m_mem->BlockPtr16(0, 0, TEX0.CBP, 1), m_clut + (TEX0.CSA << 4));
}
void GSClut::WriteCLUT16_I4_CSM1(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
WriteCLUT_T16_I4_CSM1((uint16*)m_mem->BlockPtr16(0, 0, TEX0.CBP, 1), m_clut + (TEX0.CSA << 4));
}
void GSClut::WriteCLUT16S_I8_CSM1(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
WriteCLUT_T16_I8_CSM1((uint16*)m_mem->BlockPtr16S(0, 0, TEX0.CBP, 1), m_clut + (TEX0.CSA << 4));
}
void GSClut::WriteCLUT16S_I4_CSM1(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
WriteCLUT_T16_I4_CSM1((uint16*)m_mem->BlockPtr16S(0, 0, TEX0.CBP, 1), m_clut + (TEX0.CSA << 4));
}
template <int n>
void GSClut::WriteCLUT32_CSM2(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
GSOffset* off = m_mem->GetOffset(TEX0.CBP, TEXCLUT.CBW, PSM_PSMCT32);
uint32* RESTRICT s = &m_mem->m_vm32[off->pixel.row[TEXCLUT.COV]];
int* RESTRICT col = &off->pixel.col[0][TEXCLUT.COU << 4];
uint16* RESTRICT clut = m_clut + ((TEX0.CSA & 15) << 4);
for (int i = 0; i < n; i++)
{
uint32 c = s[col[i]];
clut[i] = (uint16)(c & 0xffff);
clut[i + 256] = (uint16)(c >> 16);
}
}
template <int n>
void GSClut::WriteCLUT16_CSM2(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
GSOffset* off = m_mem->GetOffset(TEX0.CBP, TEXCLUT.CBW, PSM_PSMCT16);
uint16* RESTRICT s = &m_mem->m_vm16[off->pixel.row[TEXCLUT.COV]];
int* RESTRICT col = &off->pixel.col[0][TEXCLUT.COU << 4];
uint16* RESTRICT clut = m_clut + (TEX0.CSA << 4);
for (int i = 0; i < n; i++)
{
clut[i] = s[col[i]];
}
}
template <int n>
void GSClut::WriteCLUT16S_CSM2(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
GSOffset* off = m_mem->GetOffset(TEX0.CBP, TEXCLUT.CBW, PSM_PSMCT16S);
uint16* RESTRICT s = &m_mem->m_vm16[off->pixel.row[TEXCLUT.COV]];
int* RESTRICT col = &off->pixel.col[0][TEXCLUT.COU << 4];
uint16* RESTRICT clut = m_clut + (TEX0.CSA << 4);
for (int i = 0; i < n; i++)
{
clut[i] = s[col[i]];
}
}
void GSClut::WriteCLUT_NULL(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
// xenosaga3, bios
GL_INS("[WARNING] CLUT write ignored (psm: %d, cpsm: %d)", TEX0.PSM, TEX0.CPSM);
}
#if 0
void GSClut::Read(const GIFRegTEX0& TEX0)
{
if(m_read.IsDirty(TEX0))
{
m_read.TEX0 = TEX0;
m_read.dirty = false;
uint16* clut = m_clut;
if(TEX0.CPSM == PSM_PSMCT32 || TEX0.CPSM == PSM_PSMCT24)
{
switch(TEX0.PSM)
{
case PSM_PSMT8:
case PSM_PSMT8H:
clut += (TEX0.CSA & 15) << 4;
ReadCLUT_T32_I8(clut, m_buff32);
break;
case PSM_PSMT4:
case PSM_PSMT4HL:
case PSM_PSMT4HH:
clut += (TEX0.CSA & 15) << 4;
ReadCLUT_T32_I4(clut, m_buff32, m_buff64);
break;
}
}
else if(TEX0.CPSM == PSM_PSMCT16 || TEX0.CPSM == PSM_PSMCT16S)
{
switch(TEX0.PSM)
{
case PSM_PSMT8:
case PSM_PSMT8H:
clut += TEX0.CSA << 4;
ReadCLUT_T16_I8(clut, m_buff32);
break;
case PSM_PSMT4:
case PSM_PSMT4HL:
case PSM_PSMT4HH:
clut += TEX0.CSA << 4;
ReadCLUT_T16_I4(clut, m_buff32, m_buff64);
break;
}
}
}
}
#endif
void GSClut::Read32(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA)
{
if (m_read.IsDirty(TEX0, TEXA))
{
m_read.TEX0 = TEX0;
m_read.TEXA = TEXA;
m_read.dirty = false;
m_read.adirty = true;
uint16* clut = m_clut;
if (TEX0.CPSM == PSM_PSMCT32 || TEX0.CPSM == PSM_PSMCT24)
{
switch (TEX0.PSM)
{
case PSM_PSMT8:
case PSM_PSMT8H:
clut += (TEX0.CSA & 15) << 4; // disney golf title screen
ReadCLUT_T32_I8(clut, m_buff32);
break;
case PSM_PSMT4:
case PSM_PSMT4HL:
case PSM_PSMT4HH:
clut += (TEX0.CSA & 15) << 4;
// TODO: merge these functions
ReadCLUT_T32_I4(clut, m_buff32);
ExpandCLUT64_T32_I8(m_buff32, (uint64*)m_buff64); // sw renderer does not need m_buff64 anymore
break;
}
}
else if (TEX0.CPSM == PSM_PSMCT16 || TEX0.CPSM == PSM_PSMCT16S)
{
switch (TEX0.PSM)
{
case PSM_PSMT8:
case PSM_PSMT8H:
clut += TEX0.CSA << 4;
Expand16(clut, m_buff32, 256, TEXA);
break;
case PSM_PSMT4:
case PSM_PSMT4HL:
case PSM_PSMT4HH:
clut += TEX0.CSA << 4;
// TODO: merge these functions
Expand16(clut, m_buff32, 16, TEXA);
ExpandCLUT64_T32_I8(m_buff32, (uint64*)m_buff64); // sw renderer does not need m_buff64 anymore
break;
}
}
}
}
void GSClut::GetAlphaMinMax32(int& amin_out, int& amax_out)
{
// call only after Read32
ASSERT(!m_read.dirty);
if (m_read.adirty)
{
m_read.adirty = false;
if (GSLocalMemory::m_psm[m_read.TEX0.CPSM].trbpp == 24 && m_read.TEXA.AEM == 0)
{
m_read.amin = m_read.TEXA.TA0;
m_read.amax = m_read.TEXA.TA0;
}
else
{
const GSVector4i* p = (const GSVector4i*)m_buff32;
GSVector4i amin, amax;
if (GSLocalMemory::m_psm[m_read.TEX0.PSM].pal == 256)
{
amin = GSVector4i::xffffffff();
amax = GSVector4i::zero();
for (int i = 0; i < 16; i++)
{
GSVector4i v0 = (p[i * 4 + 0] >> 24).ps32(p[i * 4 + 1] >> 24);
GSVector4i v1 = (p[i * 4 + 2] >> 24).ps32(p[i * 4 + 3] >> 24);
GSVector4i v2 = v0.pu16(v1);
amin = amin.min_u8(v2);
amax = amax.max_u8(v2);
}
}
else
{
ASSERT(GSLocalMemory::m_psm[m_read.TEX0.PSM].pal == 16);
GSVector4i v0 = (p[0] >> 24).ps32(p[1] >> 24);
GSVector4i v1 = (p[2] >> 24).ps32(p[3] >> 24);
GSVector4i v2 = v0.pu16(v1);
amin = v2;
amax = v2;
}
amin = amin.min_u8(amin.zwxy());
amax = amax.max_u8(amax.zwxy());
amin = amin.min_u8(amin.zwxyl());
amax = amax.max_u8(amax.zwxyl());
amin = amin.min_u8(amin.yxwzl());
amax = amax.max_u8(amax.yxwzl());
GSVector4i v0 = amin.upl8(amax).u8to16();
GSVector4i v1 = v0.yxwz();
m_read.amin = v0.min_i16(v1).extract16<0>();
m_read.amax = v0.max_i16(v1).extract16<1>();
}
}
amin_out = m_read.amin;
amax_out = m_read.amax;
}
//
void GSClut::WriteCLUT_T32_I8_CSM1(const uint32* RESTRICT src, uint16* RESTRICT clut)
{
// 4 blocks
for (int i = 0; i < 64; i += 16)
{
WriteCLUT_T32_I4_CSM1(&src[i + 0], &clut[i * 2 + 0]);
WriteCLUT_T32_I4_CSM1(&src[i + 64], &clut[i * 2 + 16]);
WriteCLUT_T32_I4_CSM1(&src[i + 128], &clut[i * 2 + 128]);
WriteCLUT_T32_I4_CSM1(&src[i + 192], &clut[i * 2 + 144]);
}
}
__forceinline void GSClut::WriteCLUT_T32_I4_CSM1(const uint32* RESTRICT src, uint16* RESTRICT clut)
{
// 1 block
#if _M_SSE >= 0x501
GSVector8i* s = (GSVector8i*)src;
GSVector8i* d = (GSVector8i*)clut;
GSVector8i v0 = s[0].acbd();
GSVector8i v1 = s[1].acbd();
GSVector8i::sw16(v0, v1);
GSVector8i::sw16(v0, v1);
GSVector8i::sw16(v0, v1);
d[0] = v0;
d[16] = v1;
#else
GSVector4i* s = (GSVector4i*)src;
GSVector4i* d = (GSVector4i*)clut;
GSVector4i v0 = s[0];
GSVector4i v1 = s[1];
GSVector4i v2 = s[2];
GSVector4i v3 = s[3];
GSVector4i::sw16(v0, v1, v2, v3);
GSVector4i::sw32(v0, v1, v2, v3);
GSVector4i::sw16(v0, v2, v1, v3);
d[0] = v0;
d[1] = v2;
d[32] = v1;
d[33] = v3;
#endif
}
void GSClut::WriteCLUT_T16_I8_CSM1(const uint16* RESTRICT src, uint16* RESTRICT clut)
{
// 2 blocks
GSVector4i* s = (GSVector4i*)src;
GSVector4i* d = (GSVector4i*)clut;
for (int i = 0; i < 32; i += 4)
{
GSVector4i v0 = s[i + 0];
GSVector4i v1 = s[i + 1];
GSVector4i v2 = s[i + 2];
GSVector4i v3 = s[i + 3];
GSVector4i::sw16(v0, v1, v2, v3);
GSVector4i::sw32(v0, v1, v2, v3);
GSVector4i::sw16(v0, v2, v1, v3);
d[i + 0] = v0;
d[i + 1] = v2;
d[i + 2] = v1;
d[i + 3] = v3;
}
}
__forceinline void GSClut::WriteCLUT_T16_I4_CSM1(const uint16* RESTRICT src, uint16* RESTRICT clut)
{
// 1 block (half)
for (int i = 0; i < 16; i++)
{
clut[i] = src[clutTableT16I4[i]];
}
}
void GSClut::ReadCLUT_T32_I8(const uint16* RESTRICT clut, uint32* RESTRICT dst)
{
for (int i = 0; i < 256; i += 16)
{
ReadCLUT_T32_I4(&clut[i], &dst[i]);
}
}
__forceinline void GSClut::ReadCLUT_T32_I4(const uint16* RESTRICT clut, uint32* RESTRICT dst)
{
GSVector4i* s = (GSVector4i*)clut;
GSVector4i* d = (GSVector4i*)dst;
GSVector4i v0 = s[0];
GSVector4i v1 = s[1];
GSVector4i v2 = s[32];
GSVector4i v3 = s[33];
GSVector4i::sw16(v0, v2, v1, v3);
d[0] = v0;
d[1] = v1;
d[2] = v2;
d[3] = v3;
}
#if 0
__forceinline void GSClut::ReadCLUT_T32_I4(const uint16* RESTRICT clut, uint32* RESTRICT dst32, uint64* RESTRICT dst64)
{
GSVector4i* s = (GSVector4i*)clut;
GSVector4i* d32 = (GSVector4i*)dst32;
GSVector4i* d64 = (GSVector4i*)dst64;
GSVector4i s0 = s[0];
GSVector4i s1 = s[1];
GSVector4i s2 = s[32];
GSVector4i s3 = s[33];
GSVector4i::sw16(s0, s2, s1, s3);
d32[0] = s0;
d32[1] = s1;
d32[2] = s2;
d32[3] = s3;
ExpandCLUT64_T32(s0, s0, s1, s2, s3, &d64[0]);
ExpandCLUT64_T32(s1, s0, s1, s2, s3, &d64[32]);
ExpandCLUT64_T32(s2, s0, s1, s2, s3, &d64[64]);
ExpandCLUT64_T32(s3, s0, s1, s2, s3, &d64[96]);
}
#endif
#if 0
void GSClut::ReadCLUT_T16_I8(const uint16* RESTRICT clut, uint32* RESTRICT dst)
{
for(int i = 0; i < 256; i += 16)
{
ReadCLUT_T16_I4(&clut[i], &dst[i]);
}
}
#endif
#if 0
__forceinline void GSClut::ReadCLUT_T16_I4(const uint16* RESTRICT clut, uint32* RESTRICT dst)
{
GSVector4i* s = (GSVector4i*)clut;
GSVector4i* d = (GSVector4i*)dst;
GSVector4i v0 = s[0];
GSVector4i v1 = s[1];
d[0] = v0.upl16();
d[1] = v0.uph16();
d[2] = v1.upl16();
d[3] = v1.uph16();
}
#endif
#if 0
__forceinline void GSClut::ReadCLUT_T16_I4(const uint16* RESTRICT clut, uint32* RESTRICT dst32, uint64* RESTRICT dst64)
{
GSVector4i* s = (GSVector4i*)clut;
GSVector4i* d32 = (GSVector4i*)dst32;
GSVector4i* d64 = (GSVector4i*)dst64;
GSVector4i v0 = s[0];
GSVector4i v1 = s[1];
GSVector4i s0 = v0.upl16();
GSVector4i s1 = v0.uph16();
GSVector4i s2 = v1.upl16();
GSVector4i s3 = v1.uph16();
d32[0] = s0;
d32[1] = s1;
d32[2] = s2;
d32[3] = s3;
ExpandCLUT64_T16(s0, s0, s1, s2, s3, &d64[0]);
ExpandCLUT64_T16(s1, s0, s1, s2, s3, &d64[32]);
ExpandCLUT64_T16(s2, s0, s1, s2, s3, &d64[64]);
ExpandCLUT64_T16(s3, s0, s1, s2, s3, &d64[96]);
}
#endif
void GSClut::ExpandCLUT64_T32_I8(const uint32* RESTRICT src, uint64* RESTRICT dst)
{
GSVector4i* s = (GSVector4i*)src;
GSVector4i* d = (GSVector4i*)dst;
GSVector4i s0 = s[0];
GSVector4i s1 = s[1];
GSVector4i s2 = s[2];
GSVector4i s3 = s[3];
ExpandCLUT64_T32(s0, s0, s1, s2, s3, &d[0]);
ExpandCLUT64_T32(s1, s0, s1, s2, s3, &d[32]);
ExpandCLUT64_T32(s2, s0, s1, s2, s3, &d[64]);
ExpandCLUT64_T32(s3, s0, s1, s2, s3, &d[96]);
}
__forceinline void GSClut::ExpandCLUT64_T32(const GSVector4i& hi, const GSVector4i& lo0, const GSVector4i& lo1, const GSVector4i& lo2, const GSVector4i& lo3, GSVector4i* dst)
{
ExpandCLUT64_T32(hi.xxxx(), lo0, &dst[0]);
ExpandCLUT64_T32(hi.xxxx(), lo1, &dst[2]);
ExpandCLUT64_T32(hi.xxxx(), lo2, &dst[4]);
ExpandCLUT64_T32(hi.xxxx(), lo3, &dst[6]);
ExpandCLUT64_T32(hi.yyyy(), lo0, &dst[8]);
ExpandCLUT64_T32(hi.yyyy(), lo1, &dst[10]);
ExpandCLUT64_T32(hi.yyyy(), lo2, &dst[12]);
ExpandCLUT64_T32(hi.yyyy(), lo3, &dst[14]);
ExpandCLUT64_T32(hi.zzzz(), lo0, &dst[16]);
ExpandCLUT64_T32(hi.zzzz(), lo1, &dst[18]);
ExpandCLUT64_T32(hi.zzzz(), lo2, &dst[20]);
ExpandCLUT64_T32(hi.zzzz(), lo3, &dst[22]);
ExpandCLUT64_T32(hi.wwww(), lo0, &dst[24]);
ExpandCLUT64_T32(hi.wwww(), lo1, &dst[26]);
ExpandCLUT64_T32(hi.wwww(), lo2, &dst[28]);
ExpandCLUT64_T32(hi.wwww(), lo3, &dst[30]);
}
__forceinline void GSClut::ExpandCLUT64_T32(const GSVector4i& hi, const GSVector4i& lo, GSVector4i* dst)
{
dst[0] = lo.upl32(hi);
dst[1] = lo.uph32(hi);
}
#if 0
void GSClut::ExpandCLUT64_T16_I8(const uint32* RESTRICT src, uint64* RESTRICT dst)
{
GSVector4i* s = (GSVector4i*)src;
GSVector4i* d = (GSVector4i*)dst;
GSVector4i s0 = s[0];
GSVector4i s1 = s[1];
GSVector4i s2 = s[2];
GSVector4i s3 = s[3];
ExpandCLUT64_T16(s0, s0, s1, s2, s3, &d[0]);
ExpandCLUT64_T16(s1, s0, s1, s2, s3, &d[32]);
ExpandCLUT64_T16(s2, s0, s1, s2, s3, &d[64]);
ExpandCLUT64_T16(s3, s0, s1, s2, s3, &d[96]);
}
#endif
__forceinline void GSClut::ExpandCLUT64_T16(const GSVector4i& hi, const GSVector4i& lo0, const GSVector4i& lo1, const GSVector4i& lo2, const GSVector4i& lo3, GSVector4i* dst)
{
ExpandCLUT64_T16(hi.xxxx(), lo0, &dst[0]);
ExpandCLUT64_T16(hi.xxxx(), lo1, &dst[2]);
ExpandCLUT64_T16(hi.xxxx(), lo2, &dst[4]);
ExpandCLUT64_T16(hi.xxxx(), lo3, &dst[6]);
ExpandCLUT64_T16(hi.yyyy(), lo0, &dst[8]);
ExpandCLUT64_T16(hi.yyyy(), lo1, &dst[10]);
ExpandCLUT64_T16(hi.yyyy(), lo2, &dst[12]);
ExpandCLUT64_T16(hi.yyyy(), lo3, &dst[14]);
ExpandCLUT64_T16(hi.zzzz(), lo0, &dst[16]);
ExpandCLUT64_T16(hi.zzzz(), lo1, &dst[18]);
ExpandCLUT64_T16(hi.zzzz(), lo2, &dst[20]);
ExpandCLUT64_T16(hi.zzzz(), lo3, &dst[22]);
ExpandCLUT64_T16(hi.wwww(), lo0, &dst[24]);
ExpandCLUT64_T16(hi.wwww(), lo1, &dst[26]);
ExpandCLUT64_T16(hi.wwww(), lo2, &dst[28]);
ExpandCLUT64_T16(hi.wwww(), lo3, &dst[30]);
}
__forceinline void GSClut::ExpandCLUT64_T16(const GSVector4i& hi, const GSVector4i& lo, GSVector4i* dst)
{
dst[0] = lo.upl16(hi);
dst[1] = lo.uph16(hi);
}
// TODO
GSVector4i GSClut::m_bm;
GSVector4i GSClut::m_gm;
GSVector4i GSClut::m_rm;
void GSClut::InitVectors()
{
m_bm = GSVector4i(0x00007c00);
m_gm = GSVector4i(0x000003e0);
m_rm = GSVector4i(0x0000001f);
}
void GSClut::Expand16(const uint16* RESTRICT src, uint32* RESTRICT dst, int w, const GIFRegTEXA& TEXA)
{
ASSERT((w & 7) == 0);
const GSVector4i rm = m_rm;
const GSVector4i gm = m_gm;
const GSVector4i bm = m_bm;
GSVector4i TA0(TEXA.TA0 << 24);
GSVector4i TA1(TEXA.TA1 << 24);
GSVector4i c, cl, ch;
const GSVector4i* s = (const GSVector4i*)src;
GSVector4i* d = (GSVector4i*)dst;
if (!TEXA.AEM)
{
for (int i = 0, j = w >> 3; i < j; i++)
{
c = s[i];
cl = c.upl16(c);
ch = c.uph16(c);
d[i * 2 + 0] = ((cl & rm) << 3) | ((cl & gm) << 6) | ((cl & bm) << 9) | TA0.blend8(TA1, cl.sra16(15));
d[i * 2 + 1] = ((ch & rm) << 3) | ((ch & gm) << 6) | ((ch & bm) << 9) | TA0.blend8(TA1, ch.sra16(15));
}
}
else
{
for (int i = 0, j = w >> 3; i < j; i++)
{
c = s[i];
cl = c.upl16(c);
ch = c.uph16(c);
d[i * 2 + 0] = ((cl & rm) << 3) | ((cl & gm) << 6) | ((cl & bm) << 9) | TA0.blend8(TA1, cl.sra16(15)).andnot(cl == GSVector4i::zero());
d[i * 2 + 1] = ((ch & rm) << 3) | ((ch & gm) << 6) | ((ch & bm) << 9) | TA0.blend8(TA1, ch.sra16(15)).andnot(ch == GSVector4i::zero());
}
}
}
//
bool GSClut::WriteState::IsDirty(const GIFRegTEX0& TEX0, const GIFRegTEXCLUT& TEXCLUT)
{
return dirty || !GSVector4i::load<true>(this).eq(GSVector4i::load(&TEX0, &TEXCLUT));
}
bool GSClut::ReadState::IsDirty(const GIFRegTEX0& TEX0)
{
return dirty || !GSVector4i::load<true>(this).eq(GSVector4i::load(&TEX0, &this->TEXA));
}
bool GSClut::ReadState::IsDirty(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA)
{
return dirty || !GSVector4i::load<true>(this).eq(GSVector4i::load(&TEX0, &TEXA));
}