mirror of https://github.com/PCSX2/pcsx2.git
400 lines
11 KiB
C++
400 lines
11 KiB
C++
/* PCSX2 - PS2 Emulator for PCs
|
|
* Copyright (C) 2002-2010 PCSX2 Dev Team
|
|
*
|
|
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
|
|
* of the GNU Lesser General Public License as published by the Free Software Found-
|
|
* ation, either version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with PCSX2.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "PrecompiledHeader.h"
|
|
#include "Common.h"
|
|
|
|
#include <list>
|
|
|
|
#include "GS.h"
|
|
#include "Gif_Unit.h"
|
|
#include "Counters.h"
|
|
|
|
using namespace Threading;
|
|
using namespace R5900;
|
|
|
|
__aligned16 u8 g_RealGSMem[Ps2MemSize::GSregs];
|
|
|
|
void gsOnModeChanged( Fixed100 framerate, u32 newTickrate )
|
|
{
|
|
GetMTGS().SendSimplePacket( GS_RINGTYPE_MODECHANGE, framerate.Raw, newTickrate, 0 );
|
|
}
|
|
|
|
|
|
void gsSetVideoMode(GS_VideoMode mode )
|
|
{
|
|
if( gsVideoMode == mode )
|
|
return;
|
|
|
|
gsVideoMode = mode;
|
|
UpdateVSyncRate();
|
|
}
|
|
|
|
|
|
// Make sure framelimiter options are in sync with the plugin's capabilities.
|
|
void gsReset()
|
|
{
|
|
GetMTGS().ResetGS();
|
|
|
|
UpdateVSyncRate();
|
|
memzero(g_RealGSMem);
|
|
|
|
CSRreg.Reset();
|
|
GSIMR.reset();
|
|
}
|
|
|
|
static __fi void gsCSRwrite( const tGS_CSR& csr )
|
|
{
|
|
if (csr.RESET) {
|
|
GUNIT_WARN("GUNIT_WARN: csr.RESET");
|
|
//Console.Warning( "csr.RESET" );
|
|
//gifUnit.Reset(true); // Don't think gif should be reset...
|
|
gifUnit.gsSIGNAL.queued = false;
|
|
GetMTGS().SendSimplePacket(GS_RINGTYPE_RESET, 0, 0, 0);
|
|
|
|
CSRreg.Reset();
|
|
GSIMR.reset();
|
|
}
|
|
|
|
if(csr.FLUSH)
|
|
{
|
|
// Our emulated GS has no FIFO, but if it did, it would flush it here...
|
|
//Console.WriteLn("GS_CSR FLUSH GS fifo: %x (CSRr=%x)", value, GSCSRr);
|
|
}
|
|
|
|
if(csr.SIGNAL)
|
|
{
|
|
// SIGNAL : What's not known here is whether or not the SIGID register should be updated
|
|
// here or when the IMR is cleared (below).
|
|
GUNIT_LOG("csr.SIGNAL");
|
|
if (gifUnit.gsSIGNAL.queued) {
|
|
//DevCon.Warning("Firing pending signal");
|
|
GSSIGLBLID.SIGID = (GSSIGLBLID.SIGID & ~gifUnit.gsSIGNAL.data[1])
|
|
| (gifUnit.gsSIGNAL.data[0]&gifUnit.gsSIGNAL.data[1]);
|
|
|
|
if (!GSIMR.SIGMSK) gsIrq();
|
|
CSRreg.SIGNAL = true; // Just to be sure :p
|
|
}
|
|
else CSRreg.SIGNAL = false;
|
|
gifUnit.gsSIGNAL.queued = false;
|
|
gifUnit.Execute(false, true); // Resume paused transfers
|
|
}
|
|
|
|
if (csr.FINISH) {
|
|
CSRreg.FINISH = false;
|
|
gifUnit.gsFINISH.gsFINISHFired = false; //Clear the previously fired FINISH (YS, Indiecar 2005, MGS3)
|
|
}
|
|
if(csr.HSINT) CSRreg.HSINT = false;
|
|
if(csr.VSINT) CSRreg.VSINT = false;
|
|
if(csr.EDWINT) CSRreg.EDWINT = false;
|
|
}
|
|
|
|
static __fi void IMRwrite(u32 value)
|
|
{
|
|
GUNIT_LOG("IMRwrite()");
|
|
|
|
if (CSRreg.GetInterruptMask() & (~value & GSIMR._u32) >> 8)
|
|
gsIrq();
|
|
|
|
GSIMR._u32 = (value & 0x1f00)|0x6000;
|
|
}
|
|
|
|
__fi void gsWrite8(u32 mem, u8 value)
|
|
{
|
|
switch (mem)
|
|
{
|
|
// CSR 8-bit write handlers.
|
|
// I'm quite sure these would just write the CSR portion with the other
|
|
// bits set to 0 (no action). The previous implementation masked the 8-bit
|
|
// write value against the previous CSR write value, but that really doesn't
|
|
// make any sense, given that the real hardware's CSR circuit probably has no
|
|
// real "memory" where it saves anything. (for example, you can't write to
|
|
// and change the GS revision or ID portions -- they're all hard wired.) --air
|
|
|
|
case GS_CSR: // GS_CSR
|
|
gsCSRwrite( tGS_CSR((u32)value) ); break;
|
|
case GS_CSR + 1: // GS_CSR
|
|
gsCSRwrite( tGS_CSR(((u32)value) << 8) ); break;
|
|
case GS_CSR + 2: // GS_CSR
|
|
gsCSRwrite( tGS_CSR(((u32)value) << 16) ); break;
|
|
case GS_CSR + 3: // GS_CSR
|
|
gsCSRwrite( tGS_CSR(((u32)value) << 24) ); break;
|
|
|
|
default:
|
|
*PS2GS_BASE(mem) = value;
|
|
break;
|
|
}
|
|
GIF_LOG("GS write 8 at %8.8lx with data %8.8lx", mem, value);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// GS Write 16 bit
|
|
|
|
__fi void gsWrite16(u32 mem, u16 value)
|
|
{
|
|
GIF_LOG("GS write 16 at %8.8lx with data %8.8lx", mem, value);
|
|
|
|
switch (mem)
|
|
{
|
|
// See note above about CSR 8 bit writes, and handling them as zero'd bits
|
|
// for all but the written parts.
|
|
|
|
case GS_CSR:
|
|
gsCSRwrite( tGS_CSR((u32)value) );
|
|
return; // do not write to MTGS memory
|
|
|
|
case GS_CSR+2:
|
|
gsCSRwrite( tGS_CSR(((u32)value) << 16) );
|
|
return; // do not write to MTGS memory
|
|
|
|
case GS_IMR:
|
|
IMRwrite(value);
|
|
return; // do not write to MTGS memory
|
|
}
|
|
|
|
*(u16*)PS2GS_BASE(mem) = value;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// GS Write 32 bit
|
|
|
|
__fi void gsWrite32(u32 mem, u32 value)
|
|
{
|
|
pxAssume( (mem & 3) == 0 );
|
|
GIF_LOG("GS write 32 at %8.8lx with data %8.8lx", mem, value);
|
|
|
|
switch (mem)
|
|
{
|
|
case GS_CSR:
|
|
gsCSRwrite(tGS_CSR(value));
|
|
return;
|
|
|
|
case GS_IMR:
|
|
IMRwrite(value);
|
|
return;
|
|
}
|
|
|
|
*(u32*)PS2GS_BASE(mem) = value;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// GS Write 64 bit
|
|
|
|
void __fastcall gsWrite64_generic( u32 mem, const mem64_t* value )
|
|
{
|
|
const u32* const srcval32 = (u32*)value;
|
|
GIF_LOG("GS Write64 at %8.8lx with data %8.8x_%8.8x", mem, srcval32[1], srcval32[0]);
|
|
|
|
*(u64*)PS2GS_BASE(mem) = *value;
|
|
}
|
|
|
|
void __fastcall gsWrite64_page_00( u32 mem, const mem64_t* value )
|
|
{
|
|
gsWrite64_generic( mem, value );
|
|
}
|
|
|
|
void __fastcall gsWrite64_page_01( u32 mem, const mem64_t* value )
|
|
{
|
|
GIF_LOG("GS Write64 at %8.8lx with data %8.8x_%8.8x", mem, (u32*)value[1], (u32*)value[0]);
|
|
|
|
switch( mem )
|
|
{
|
|
case GS_BUSDIR:
|
|
|
|
gifUnit.stat.DIR = value[0] & 1;
|
|
if (gifUnit.stat.DIR) { // Assume will do local->host transfer
|
|
gifUnit.stat.OPH = true; // Should we set OPH here?
|
|
gifUnit.FlushToMTGS(); // Send any pending GS Primitives to the GS
|
|
GUNIT_LOG("Busdir - GS->EE Download");
|
|
}
|
|
else {
|
|
GUNIT_LOG("Busdir - EE->GS Upload");
|
|
}
|
|
|
|
//=========================================================================
|
|
// BUSDIR INSANITY !! MTGS FLUSH NEEDED
|
|
//
|
|
// Yup folks. BUSDIR is evil. The only safe way to handle it is to flush the whole MTGS
|
|
// and ensure complete MTGS and EEcore thread synchronization This is very slow, no doubt,
|
|
// but on the bright side BUSDIR is used quite rarely, indeed.
|
|
|
|
// Important: writeback to gsRegs area *prior* to flushing the MTGS. The flush will sync
|
|
// the GS and MTGS register states, and upload our screwy busdir register in the process. :)
|
|
gsWrite64_generic( mem, value );
|
|
GetMTGS().WaitGS();
|
|
return;
|
|
|
|
case GS_CSR:
|
|
gsCSRwrite(tGS_CSR(*value));
|
|
return;
|
|
|
|
case GS_IMR:
|
|
IMRwrite((u32)value[0]);
|
|
return;
|
|
}
|
|
|
|
gsWrite64_generic( mem, value );
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// GS Write 128 bit
|
|
|
|
void __fastcall gsWrite128_page_00( u32 mem, const mem128_t* value )
|
|
{
|
|
gsWrite128_generic( mem, value );
|
|
}
|
|
|
|
void __fastcall gsWrite128_page_01( u32 mem, const mem128_t* value )
|
|
{
|
|
switch( mem )
|
|
{
|
|
case GS_CSR:
|
|
gsCSRwrite((u32)value[0]);
|
|
return;
|
|
|
|
case GS_IMR:
|
|
IMRwrite((u32)value[0]);
|
|
return;
|
|
}
|
|
|
|
gsWrite128_generic( mem, value );
|
|
}
|
|
|
|
void __fastcall gsWrite128_generic( u32 mem, const mem128_t* value )
|
|
{
|
|
const u32* const srcval32 = (u32*)value;
|
|
|
|
GIF_LOG("GS Write128 at %8.8lx with data %8.8x_%8.8x_%8.8x_%8.8x", mem,
|
|
srcval32[3], srcval32[2], srcval32[1], srcval32[0]);
|
|
|
|
CopyQWC(PS2GS_BASE(mem), value);
|
|
}
|
|
|
|
__fi u8 gsRead8(u32 mem)
|
|
{
|
|
GIF_LOG("GS read 8 from %8.8lx value: %8.8lx", mem, *(u8*)PS2GS_BASE(mem));
|
|
return *(u8*)PS2GS_BASE(mem);
|
|
}
|
|
|
|
__fi u16 gsRead16(u32 mem)
|
|
{
|
|
GIF_LOG("GS read 16 from %8.8lx value: %8.8lx", mem, *(u16*)PS2GS_BASE(mem));
|
|
return *(u16*)PS2GS_BASE(mem);
|
|
}
|
|
|
|
__fi u32 gsRead32(u32 mem)
|
|
{
|
|
GIF_LOG("GS read 32 from %8.8lx value: %8.8lx", mem, *(u32*)PS2GS_BASE(mem));
|
|
return *(u32*)PS2GS_BASE(mem);
|
|
}
|
|
|
|
__fi u64 gsRead64(u32 mem)
|
|
{
|
|
// fixme - PS2GS_BASE(mem+4) = (g_RealGSMem+(mem + 4 & 0x13ff))
|
|
GIF_LOG("GS read 64 from %8.8lx value: %8.8lx_%8.8lx", mem, *(u32*)PS2GS_BASE(mem+4), *(u32*)PS2GS_BASE(mem) );
|
|
return *(u64*)PS2GS_BASE(mem);
|
|
}
|
|
|
|
void gsIrq() {
|
|
hwIntcIrq(INTC_GS);
|
|
}
|
|
|
|
// --------------------------------------------------------------------------------------
|
|
// gsFrameSkip
|
|
// --------------------------------------------------------------------------------------
|
|
// This function regulates the frameskipping status of the GS. Our new frameskipper for
|
|
// 0.9.7 is a very simple logic pattern compared to the old mess. The goal now is to provide
|
|
// the most compatible and efficient frameskip, instead of doing the adaptive logic of
|
|
// 0.9.6. This is almost a necessity because of how many games treat the GS: they upload
|
|
// great amounts of data while rendering 2 frames at a time (using double buffering), and
|
|
// then use a simple pageswap to display the contents of the second frame for that vsync.
|
|
// (this approach is mostly seen on interlace games; progressive games less so)
|
|
// The result is that any skip pattern besides a fully consistent 2on,2off would reuslt in
|
|
// tons of missing geometry, rendering frameskip useless.
|
|
//
|
|
// So instead we use a simple "always skipping" or "never skipping" logic.
|
|
//
|
|
// EE vs MTGS:
|
|
// This function does not regulate frame limiting, meaning it does no stalling. Stalling
|
|
// functions are performed by the EE, which itself uses thread sleep logic to avoid spin
|
|
// waiting as much as possible (maximizes CPU resource availability for the GS).
|
|
|
|
__fi void gsFrameSkip()
|
|
{
|
|
static int consec_skipped = 0;
|
|
static int consec_drawn = 0;
|
|
static bool isSkipping = false;
|
|
|
|
if( !EmuConfig.GS.FrameSkipEnable )
|
|
{
|
|
if( isSkipping )
|
|
{
|
|
// Frameskipping disabled on-the-fly .. make sure the GS is restored to non-skip
|
|
// behavior.
|
|
GSsetFrameSkip( false );
|
|
isSkipping = false;
|
|
}
|
|
return;
|
|
}
|
|
|
|
GSsetFrameSkip( isSkipping );
|
|
|
|
if( isSkipping )
|
|
{
|
|
++consec_skipped;
|
|
if( consec_skipped >= EmuConfig.GS.FramesToSkip )
|
|
{
|
|
consec_skipped = 0;
|
|
isSkipping = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
++consec_drawn;
|
|
if( consec_drawn >= EmuConfig.GS.FramesToDraw )
|
|
{
|
|
consec_drawn = 0;
|
|
isSkipping = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
//These are done at VSync Start. Drawing is done when VSync is off, then output the screen when Vsync is on
|
|
//The GS needs to be told at the start of a vsync else it loses half of its picture (could be responsible for some halfscreen issues)
|
|
//We got away with it before i think due to our awful GS timing, but now we have it right (ish)
|
|
void gsPostVsyncStart()
|
|
{
|
|
//gifUnit.FlushToMTGS(); // Needed for some (broken?) homebrew game loaders
|
|
|
|
GetMTGS().PostVsyncStart();
|
|
}
|
|
|
|
void _gs_ResetFrameskip()
|
|
{
|
|
GSsetFrameSkip( 0 );
|
|
}
|
|
|
|
// Disables the GS Frameskip at runtime without any racy mess...
|
|
void gsResetFrameSkip()
|
|
{
|
|
GetMTGS().SendSimplePacket(GS_RINGTYPE_FRAMESKIP, 0, 0, 0);
|
|
}
|
|
|
|
void SaveStateBase::gsFreeze()
|
|
{
|
|
FreezeMem(PS2MEM_GS, 0x2000);
|
|
Freeze(gsVideoMode);
|
|
}
|