pcsx2/tests/ctest/GS/swizzle_test_main.cpp

513 lines
12 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2021 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "PrecompiledHeader.h"
#include "GSBlock.h"
#include "GSClut.h"
#include <gtest/gtest.h>
#include <string.h>
static void swizzle(const u8* table, u8* dst, const u8* src, int bpp, bool deswizzle)
{
int pxbytes = bpp / 8;
for (int i = 0; i < (256 / pxbytes); i++)
{
int soff = (deswizzle ? table[i] : i) * pxbytes;
int doff = (deswizzle ? i : table[i]) * pxbytes;
memcpy(&dst[doff], &src[soff], pxbytes);
}
}
static void swizzle4(const u16* table, u8* dst, const u8* src, bool deswizzle)
{
for (int i = 0; i < 512; i++)
{
int soff = (deswizzle ? table[i] : i);
int doff = (deswizzle ? i : table[i]);
int spx = src[soff >> 1] >> ((soff & 1) * 4) & 0xF;
u8* dpx = &dst[doff >> 1];
int dshift = (doff & 1) * 4;
*dpx &= (0xF0 >> dshift);
*dpx |= (spx << dshift);
}
}
static void swizzleH(const u8* table, u32* dst, const u8* src, int bpp, int shift)
{
for (int i = 0; i < 64; i++)
{
int spx;
if (bpp == 8)
spx = src[i];
else
spx = (src[i >> 1] >> ((i & 1) * 4)) & 0xF;
spx <<= shift;
dst[table[i]] = spx;
}
}
static void expand16(u32* dst, const u16* src, const GIFRegTEXA& texa)
{
for (int i = 0; i < 128; i++)
{
int r = (src[i] << 3) & 0x0000F8;
int g = (src[i] << 6) & 0x00F800;
int b = (src[i] << 9) & 0xF80000;
dst[i] = r | g | b;
if (src[i] & 0x8000)
{
dst[i] |= texa.TA1 << 24;
}
else if (!texa.AEM || src[i])
{
dst[i] |= texa.TA0 << 24;
}
}
}
static void expand8(u32* dst, const u8* src, const u32* palette)
{
for (int i = 0; i < 256; i++)
{
dst[i] = palette[src[i]];
}
}
static void expand4(u32* dst, const u8* src, const u32* palette)
{
for (int i = 0; i < 512; i++)
{
dst[i] = palette[(src[i >> 1] >> ((i & 1) * 4)) & 0xF];
}
}
static void expand4P(u8* dst, const u8* src)
{
for (int i = 0; i < 512; i++)
{
dst[i] = (src[i >> 1] >> ((i & 1) * 4)) & 0xF;
}
}
static void expandH(u32* dst, const u32* src, const u32* palette, int shift, int mask)
{
for (int i = 0; i < 64; i++)
{
dst[i] = palette[(src[i] >> shift) & mask];
}
}
static void expandHP(u8* dst, const u32* src, int shift, int mask)
{
for (int i = 0; i < 64; i++)
{
dst[i] = (src[i] >> shift) & mask;
}
}
static std::string image2hex(const u8* bin, int rows, int columns, int bpp)
{
std::string out;
const char* hex = "0123456789ABCDEF";
for (int y = 0; y < rows; y++)
{
if (y != 0)
out.push_back('\n');
for (int x = 0; x < columns; x++)
{
if (x != 0)
out.push_back(' ');
if (bpp == 4)
{
if (x & 1)
{
out.push_back(hex[*bin >> 4]);
bin++;
}
else
{
out.push_back(hex[*bin & 0xF]);
}
}
else
{
for (int z = 0; z < (bpp / 8); z++)
{
out.push_back(hex[*bin >> 4]);
out.push_back(hex[*bin & 0xF]);
bin++;
}
}
}
}
return out;
}
struct TestData
{
alignas(64) u8 block[256];
alignas(64) u8 output[256 * (32 / 4)];
alignas(64) u32 clut32[256];
alignas(64) u64 clut64[256];
/// Get some input data with pixel values counting up from 0
static TestData Linear()
{
TestData output;
memset(output.output, 0, sizeof(output.output));
for (int i = 0; i < 256; i++)
{
output.block[i] = i;
output.clut32[i] = i | (i << 16);
}
GSClut::ExpandCLUT64_T32_I8(output.clut32, output.clut64);
return output;
}
/// Get some input data with random-ish (but consistent across runs) pixel values
static TestData Random()
{
srand(0);
TestData output;
memset(output.output, 0, sizeof(output.output));
for (int i = 0; i < 256; i++)
{
output.block[i] = rand();
output.clut32[i] = rand();
}
GSClut::ExpandCLUT64_T32_I8(output.clut32, output.clut64);
return output;
}
/// Move data from output back to block to run an expand
TestData prepareExpand()
{
TestData output = *this;
memcpy(output.block, output.output, sizeof(output.block));
return output;
}
};
static TestData swizzle(const u8* table, TestData data, int bpp, bool deswizzle)
{
swizzle(table, data.output, data.block, bpp, deswizzle);
return data;
}
static TestData swizzle4(const u16* table, TestData data, bool deswizzle)
{
swizzle4(table, data.output, data.block, deswizzle);
return data;
}
static TestData swizzleH(const u8* table, TestData data, int bpp, int shift)
{
swizzleH(table, reinterpret_cast<u32*>(data.output), data.block, bpp, shift);
return data;
}
static TestData expand16(TestData data, const GIFRegTEXA& texa)
{
expand16(reinterpret_cast<u32*>(data.output), reinterpret_cast<const u16*>(data.block), texa);
return data;
}
static TestData expand8(TestData data)
{
expand8(reinterpret_cast<u32*>(data.output), data.block, data.clut32);
return data;
}
static TestData expand4(TestData data)
{
expand4(reinterpret_cast<u32*>(data.output), data.block, data.clut32);
return data;
}
static TestData expand4P(TestData data)
{
expand4P(data.output, data.block);
return data;
}
static TestData expandH(TestData data, int shift, int mask)
{
expandH(reinterpret_cast<u32*>(data.output), reinterpret_cast<const u32*>(data.block), data.clut32, shift, mask);
return data;
}
static TestData expandHP(TestData data, int shift, int mask)
{
expandHP(data.output, reinterpret_cast<u32*>(data.block), shift, mask);
return data;
}
static void runTest(void (*fn)(TestData))
{
fn(TestData::Linear());
fn(TestData::Random());
}
static void assertEqual(const TestData& expected, const TestData& actual, const char* name, int rows, int columns, int bpp)
{
std::string estr = image2hex(expected.output, rows, columns, bpp);
std::string astr = image2hex(actual.output, rows, columns, bpp);
EXPECT_STREQ(estr.c_str(), astr.c_str()) << "Unexpected " << name;
}
TEST(ReadTest, Read32)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable32[0][0], data, 32, true);
GSBlock::ReadBlock32(data.block, data.output, 32);
assertEqual(expected, data, "Read32", 8, 8, 32);
});
}
TEST(WriteTest, Write32)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable32[0][0], data, 32, false);
GSBlock::WriteBlock32<32, 0xFFFFFFFF>(data.output, data.block, 32);
assertEqual(expected, data, "Write32", 8, 8, 32);
});
}
TEST(ReadTest, Read16)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable16[0][0], data, 16, true);
GSBlock::ReadBlock16(data.block, data.output, 32);
assertEqual(expected, data, "Read16", 8, 16, 16);
});
}
TEST(ReadAndExpandTest, Read16)
{
runTest([](TestData data)
{
GIFRegTEXA texa = {0};
texa.TA0 = 1;
texa.TA1 = 2;
TestData expected = swizzle(&columnTable16[0][0], data, 16, true);
expected = expand16(expected.prepareExpand(), texa);
GSBlock::ReadAndExpandBlock16<false>(data.block, data.output, 64, texa);
assertEqual(expected, data, "ReadAndExpand16", 8, 16, 32);
});
}
TEST(ReadAndExpandTest, Read16AEM)
{
runTest([](TestData data)
{
// Actually test AEM
u8 idx = data.block[0] >> 1;
data.block[idx * 2 + 0] = 0;
data.block[idx * 2 + 1] = 0;
GIFRegTEXA texa = {0};
texa.TA0 = 1;
texa.TA1 = 2;
texa.AEM = 1;
TestData expected = swizzle(&columnTable16[0][0], data, 16, true);
expected = expand16(expected.prepareExpand(), texa);
GSBlock::ReadAndExpandBlock16<true>(data.block, data.output, 64, texa);
assertEqual(expected, data, "ReadAndExpand16AEM", 8, 16, 32);
});
}
TEST(WriteTest, Write16)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable16[0][0], data, 16, false);
GSBlock::WriteBlock16<32>(data.output, data.block, 32);
assertEqual(expected, data, "Read16", 8, 16, 16);
});
}
TEST(ReadTest, Read8)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable8[0][0], data, 8, true);
GSBlock::ReadBlock8(data.block, data.output, 16);
assertEqual(expected, data, "Read8", 16, 16, 8);
});
}
TEST(ReadAndExpandTest, Read8)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable8[0][0], data, 8, true);
expected = expand8(expected.prepareExpand());
GSBlock::ReadAndExpandBlock8_32(data.block, data.output, 64, data.clut32);
assertEqual(expected, data, "ReadAndExpand8", 16, 16, 32);
});
}
TEST(WriteTest, Write8)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable8[0][0], data, 8, false);
GSBlock::WriteBlock8<32>(data.output, data.block, 16);
assertEqual(expected, data, "Write8", 16, 16, 8);
});
}
TEST(ReadTest, Read8H)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable32[0][0], data, 32, true);
expected = expandHP(expected.prepareExpand(), 24, 0xFF);
GSBlock::ReadBlock8HP(data.block, data.output, 8);
assertEqual(expected, data, "Read8H", 8, 8, 8);
});
}
TEST(ReadAndExpandTest, Read8H)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable32[0][0], data, 32, true);
expected = expandH(expected.prepareExpand(), 24, 0xFF);
GSBlock::ReadAndExpandBlock8H_32(data.block, data.output, 32, data.clut32);
assertEqual(expected, data, "ReadAndExpand8H", 8, 8, 32);
});
}
TEST(WriteTest, Write8H)
{
runTest([](TestData data)
{
TestData expected = swizzleH(&columnTable32[0][0], data, 8, 24);
GSBlock::UnpackAndWriteBlock8H(data.block, 8, data.output);
assertEqual(expected, data, "Write8H", 8, 8, 32);
});
}
TEST(ReadTest, Read4)
{
runTest([](TestData data)
{
TestData expected = swizzle4(&columnTable4[0][0], data, true);
GSBlock::ReadBlock4(data.block, data.output, 16);
assertEqual(expected, data, "Read4", 16, 32, 4);
});
}
TEST(ReadTest, Read4P)
{
runTest([](TestData data)
{
TestData expected = swizzle4(&columnTable4[0][0], data, true);
expected = expand4P(expected.prepareExpand());
GSBlock::ReadBlock4P(data.block, data.output, 32);
assertEqual(expected, data, "Read4P", 16, 32, 8);
});
}
TEST(ReadAndExpandTest, Read4)
{
runTest([](TestData data)
{
TestData expected = swizzle4(&columnTable4[0][0], data, true);
expected = expand4(expected.prepareExpand());
GSBlock::ReadAndExpandBlock4_32(data.block, data.output, 128, data.clut32);
assertEqual(expected, data, "ReadAndExpand4", 16, 32, 32);
});
}
TEST(WriteTest, Write4)
{
runTest([](TestData data)
{
TestData expected = swizzle4(&columnTable4[0][0], data, false);
GSBlock::WriteBlock4<32>(data.output, data.block, 16);
assertEqual(expected, data, "Write4", 16, 16, 4);
});
}
TEST(ReadTest, Read4HH)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable32[0][0], data, 32, true);
expected = expandHP(expected.prepareExpand(), 28, 0xF);
GSBlock::ReadBlock4HHP(data.block, data.output, 8);
assertEqual(expected, data, "Read4HH", 8, 8, 8);
});
}
TEST(ReadAndExpandTest, Read4HH)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable32[0][0], data, 32, true);
expected = expandH(expected.prepareExpand(), 28, 0xF);
GSBlock::ReadAndExpandBlock4HH_32(data.block, data.output, 32, data.clut32);
assertEqual(expected, data, "ReadAndExpand4HH", 8, 8, 32);
});
}
TEST(WriteTest, Write4HH)
{
runTest([](TestData data)
{
TestData expected = swizzleH(&columnTable32[0][0], data, 4, 28);
GSBlock::UnpackAndWriteBlock4HH(data.block, 4, data.output);
assertEqual(expected, data, "Write4HH", 8, 8, 32);
});
}
TEST(ReadTest, Read4HL)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable32[0][0], data, 32, true);
expected = expandHP(expected.prepareExpand(), 24, 0xF);
GSBlock::ReadBlock4HLP(data.block, data.output, 8);
assertEqual(expected, data, "Read4HL", 8, 8, 8);
});
}
TEST(ReadAndExpandTest, Read4HL)
{
runTest([](TestData data)
{
TestData expected = swizzle(&columnTable32[0][0], data, 32, true);
expected = expandH(expected.prepareExpand(), 24, 0xF);
GSBlock::ReadAndExpandBlock4HL_32(data.block, data.output, 32, data.clut32);
assertEqual(expected, data, "ReadAndExpand4HL", 8, 8, 32);
});
}
TEST(WriteTest, Write4HL)
{
runTest([](TestData data)
{
TestData expected = swizzleH(&columnTable32[0][0], data, 4, 24);
GSBlock::UnpackAndWriteBlock4HL(data.block, 4, data.output);
assertEqual(expected, data, "Write4HL", 8, 8, 32);
});
}