mirror of https://github.com/PCSX2/pcsx2.git
1922 lines
62 KiB
C++
1922 lines
62 KiB
C++
/* Copyright (c) 2007 MITSUNARI Shigeo
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* Neither the name of the copyright owner nor the names of its contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
#ifndef XBYAK_XBYAK_H_
|
|
#define XBYAK_XBYAK_H_
|
|
/*!
|
|
@file xbyak.h
|
|
@brief Xbyak ; JIT assembler for x86(IA32)/x64 by C++
|
|
@author herumi
|
|
@url https://github.com/herumi/xbyak, http://homepage1.nifty.com/herumi/soft/xbyak_e.html
|
|
@note modified new BSD license
|
|
http://opensource.org/licenses/BSD-3-Clause
|
|
*/
|
|
#ifndef XBYAK_NO_OP_NAMES
|
|
#if not +0 // trick to detect whether 'not' is operator or not
|
|
#error "use -fno-operator-names option if you want to use and(), or(), xor(), not() as function names, Or define XBYAK_NO_OP_NAMES and use and_(), or_(), xor_(), not_()."
|
|
#endif
|
|
#endif
|
|
|
|
#include <stdio.h> // for debug print
|
|
#include <assert.h>
|
|
#include <list>
|
|
#include <string>
|
|
#include <algorithm>
|
|
#if (__cplusplus >= 201103) || (_MSC_VER >= 1500) || defined(__GXX_EXPERIMENTAL_CXX0X__)
|
|
#include <unordered_map>
|
|
#if defined(_MSC_VER) && (_MSC_VER < 1600)
|
|
#define XBYAK_USE_TR1_UNORDERED_MAP
|
|
#else
|
|
#define XBYAK_USE_UNORDERED_MAP
|
|
#endif
|
|
#elif (__GNUC__ >= 4 && __GNUC_MINOR__ >= 5) || (__clang_major__ >= 3)
|
|
#include <tr1/unordered_map>
|
|
#define XBYAK_USE_TR1_UNORDERED_MAP
|
|
#else
|
|
#include <map>
|
|
#endif
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#include <malloc.h>
|
|
#elif defined(__GNUC__)
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#include <stdlib.h>
|
|
#endif
|
|
#if !defined(_MSC_VER) || (_MSC_VER >= 1600)
|
|
#include <stdint.h>
|
|
#endif
|
|
|
|
#if defined(__x86_64__) && !defined(__MINGW64__)
|
|
#define XBYAK64_GCC
|
|
#elif defined(_WIN64)
|
|
#define XBYAK64_WIN
|
|
#endif
|
|
#if !defined(XBYAK64) && !defined(XBYAK32)
|
|
#if defined(XBYAK64_GCC) || defined(XBYAK64_WIN)
|
|
#define XBYAK64
|
|
#else
|
|
#define XBYAK32
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4514) /* remove inline function */
|
|
#pragma warning(disable : 4786) /* identifier is too long */
|
|
#pragma warning(disable : 4503) /* name is too long */
|
|
#pragma warning(disable : 4127) /* constant expresison */
|
|
#endif
|
|
|
|
namespace Xbyak {
|
|
|
|
#include "xbyak_bin2hex.h"
|
|
|
|
enum {
|
|
DEFAULT_MAX_CODE_SIZE = 4096,
|
|
VERSION = 0x4000 /* 0xABCD = A.BC(D) */
|
|
};
|
|
/*
|
|
#ifndef MIE_INTEGER_TYPE_DEFINED
|
|
#define MIE_INTEGER_TYPE_DEFINED
|
|
#ifdef _MSC_VER
|
|
typedef unsigned __int64 uint64;
|
|
typedef __int64 sint64;
|
|
#else
|
|
typedef uint64_t uint64;
|
|
typedef int64_t sint64;
|
|
#endif
|
|
typedef unsigned int uint32;
|
|
typedef unsigned short uint16;
|
|
typedef unsigned char uint8;
|
|
#endif
|
|
*/
|
|
#ifndef MIE_ALIGN
|
|
#ifdef _MSC_VER
|
|
#define MIE_ALIGN(x) __declspec(align(x))
|
|
#else
|
|
#define MIE_ALIGN(x) __attribute__((aligned(x)))
|
|
#endif
|
|
#endif
|
|
#ifndef MIE_PACK // for shufps
|
|
#define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w))
|
|
#endif
|
|
|
|
enum Error {
|
|
ERR_NONE = 0,
|
|
ERR_BAD_ADDRESSING,
|
|
ERR_CODE_IS_TOO_BIG,
|
|
ERR_BAD_SCALE,
|
|
ERR_ESP_CANT_BE_INDEX,
|
|
ERR_BAD_COMBINATION,
|
|
ERR_BAD_SIZE_OF_REGISTER,
|
|
ERR_IMM_IS_TOO_BIG,
|
|
ERR_BAD_ALIGN,
|
|
ERR_LABEL_IS_REDEFINED,
|
|
ERR_LABEL_IS_TOO_FAR,
|
|
ERR_LABEL_IS_NOT_FOUND,
|
|
ERR_CODE_ISNOT_COPYABLE,
|
|
ERR_BAD_PARAMETER,
|
|
ERR_CANT_PROTECT,
|
|
ERR_CANT_USE_64BIT_DISP,
|
|
ERR_OFFSET_IS_TOO_BIG,
|
|
ERR_MEM_SIZE_IS_NOT_SPECIFIED,
|
|
ERR_BAD_MEM_SIZE,
|
|
ERR_BAD_ST_COMBINATION,
|
|
ERR_OVER_LOCAL_LABEL,
|
|
ERR_UNDER_LOCAL_LABEL,
|
|
ERR_CANT_ALLOC,
|
|
ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW,
|
|
ERR_BAD_PROTECT_MODE,
|
|
ERR_BAD_PNUM,
|
|
ERR_BAD_TNUM,
|
|
ERR_BAD_VSIB_ADDRESSING,
|
|
ERR_INTERNAL
|
|
};
|
|
|
|
inline const char *ConvertErrorToString(Error err)
|
|
{
|
|
static const char errTbl[][40] = {
|
|
"none",
|
|
"bad addressing",
|
|
"code is too big",
|
|
"bad scale",
|
|
"esp can't be index",
|
|
"bad combination",
|
|
"bad size of register",
|
|
"imm is too big",
|
|
"bad align",
|
|
"label is redefined",
|
|
"label is too far",
|
|
"label is not found",
|
|
"code is not copyable",
|
|
"bad parameter",
|
|
"can't protect",
|
|
"can't use 64bit disp(use (void*))",
|
|
"offset is too big",
|
|
"MEM size is not specified",
|
|
"bad mem size",
|
|
"bad st combination",
|
|
"over local label",
|
|
"under local label",
|
|
"can't alloc",
|
|
"T_SHORT is not supported in AutoGrow",
|
|
"bad protect mode",
|
|
"bad pNum",
|
|
"bad tNum",
|
|
"bad vsib addressing",
|
|
"internal error",
|
|
};
|
|
if (err < 0 || err > ERR_INTERNAL) return 0;
|
|
return errTbl[err];
|
|
}
|
|
|
|
inline void *AlignedMalloc(size_t size, size_t alignment)
|
|
{
|
|
#ifdef __MINGW32__
|
|
return __mingw_aligned_malloc(size, alignment);
|
|
#elif defined(_WIN32)
|
|
return _aligned_malloc(size, alignment);
|
|
#else
|
|
void *p;
|
|
int ret = posix_memalign(&p, alignment, size);
|
|
return (ret == 0) ? p : 0;
|
|
#endif
|
|
}
|
|
|
|
inline void AlignedFree(void *p)
|
|
{
|
|
#ifdef __MINGW32__
|
|
__mingw_aligned_free(p);
|
|
#elif defined(_MSC_VER)
|
|
_aligned_free(p);
|
|
#else
|
|
free(p);
|
|
#endif
|
|
}
|
|
|
|
template<class To, class From>
|
|
inline const To CastTo(From p) throw()
|
|
{
|
|
return (const To)(size_t)(p);
|
|
}
|
|
namespace inner {
|
|
|
|
enum { debug = 1 };
|
|
static const size_t ALIGN_PAGE_SIZE = 4096;
|
|
|
|
inline bool IsInDisp8(uint32 x) { return 0xFFFFFF80 <= x || x <= 0x7F; }
|
|
inline bool IsInInt32(uint64 x) { return ~uint64(0x7fffffffu) <= x || x <= 0x7FFFFFFFU; }
|
|
|
|
inline uint32 VerifyInInt32(uint64 x)
|
|
{
|
|
#ifdef XBYAK64
|
|
if (!IsInInt32(x)) throw ERR_OFFSET_IS_TOO_BIG;
|
|
#endif
|
|
return static_cast<uint32>(x);
|
|
}
|
|
|
|
enum LabelMode {
|
|
LasIs, // as is
|
|
Labs, // absolute
|
|
LaddTop // (addr + top) for mov(reg, label) with AutoGrow
|
|
};
|
|
|
|
} // inner
|
|
|
|
/*
|
|
custom allocator
|
|
*/
|
|
struct Allocator {
|
|
virtual uint8 *alloc(size_t size) { return reinterpret_cast<uint8*>(AlignedMalloc(size, inner::ALIGN_PAGE_SIZE)); }
|
|
virtual void free(uint8 *p) { AlignedFree(p); }
|
|
virtual ~Allocator() {}
|
|
/* override to return false if you call protect() manually */
|
|
virtual bool useProtect() const { return true; }
|
|
};
|
|
|
|
class Operand {
|
|
private:
|
|
uint8 idx_; // 0..15, MSB = 1 if spl/bpl/sil/dil
|
|
uint8 kind_;
|
|
uint16 bit_;
|
|
public:
|
|
enum Kind {
|
|
NONE = 0,
|
|
MEM = 1 << 1,
|
|
IMM = 1 << 2,
|
|
REG = 1 << 3,
|
|
MMX = 1 << 4,
|
|
XMM = 1 << 5,
|
|
FPU = 1 << 6,
|
|
YMM = 1 << 7
|
|
};
|
|
enum Code {
|
|
#ifdef XBYAK64
|
|
RAX = 0, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15,
|
|
R8D = 8, R9D, R10D, R11D, R12D, R13D, R14D, R15D,
|
|
R8W = 8, R9W, R10W, R11W, R12W, R13W, R14W, R15W,
|
|
R8B = 8, R9B, R10B, R11B, R12B, R13B, R14B, R15B,
|
|
SPL = 4, BPL, SIL, DIL,
|
|
#endif
|
|
EAX = 0, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
|
|
AX = 0, CX, DX, BX, SP, BP, SI, DI,
|
|
AL = 0, CL, DL, BL, AH, CH, DH, BH
|
|
};
|
|
Operand() : idx_(0), kind_(0), bit_(0) { }
|
|
Operand(int idx, Kind kind, int bit, bool ext8bit = 0)
|
|
: idx_(static_cast<uint8>(idx | (ext8bit ? 0x80 : 0)))
|
|
, kind_(static_cast<uint8>(kind))
|
|
, bit_(static_cast<uint16>(bit))
|
|
{
|
|
assert((bit_ & (bit_ - 1)) == 0); // bit must be power of two
|
|
}
|
|
Kind getKind() const { return static_cast<Kind>(kind_); }
|
|
int getIdx() const { return idx_ & 15; }
|
|
bool isNone() const { return kind_ == 0; }
|
|
bool isMMX() const { return is(MMX); }
|
|
bool isXMM() const { return is(XMM); }
|
|
bool isYMM() const { return is(YMM); }
|
|
bool isREG(int bit = 0) const { return is(REG, bit); }
|
|
bool isMEM(int bit = 0) const { return is(MEM, bit); }
|
|
bool isFPU() const { return is(FPU); }
|
|
bool isExt8bit() const { return (idx_ & 0x80) != 0; }
|
|
// any bit is accetable if bit == 0
|
|
bool is(int kind, uint32 bit = 0) const
|
|
{
|
|
return (kind_ & kind) && (bit == 0 || (bit_ & bit)); // cf. you can set (8|16)
|
|
}
|
|
bool isBit(uint32 bit) const { return (bit_ & bit) != 0; }
|
|
uint32 getBit() const { return bit_; }
|
|
const char *toString() const
|
|
{
|
|
const int idx = getIdx();
|
|
if (kind_ == REG) {
|
|
if (isExt8bit()) {
|
|
static const char tbl[4][4] = { "spl", "bpl", "sil", "dil" };
|
|
return tbl[idx - 4];
|
|
}
|
|
static const char tbl[4][16][5] = {
|
|
{ "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b" },
|
|
{ "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" },
|
|
{ "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d" },
|
|
{ "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" },
|
|
};
|
|
return tbl[bit_ == 8 ? 0 : bit_ == 16 ? 1 : bit_ == 32 ? 2 : 3][idx];
|
|
} else if (isYMM()) {
|
|
static const char tbl[16][5] = { "ym0", "ym1", "ym2", "ym3", "ym4", "ym5", "ym6", "ym7", "ym8", "ym9", "ym10", "ym11", "ym12", "ym13", "ym14", "ym15" };
|
|
return tbl[idx];
|
|
} else if (isXMM()) {
|
|
static const char tbl[16][5] = { "xm0", "xm1", "xm2", "xm3", "xm4", "xm5", "xm6", "xm7", "xm8", "xm9", "xm10", "xm11", "xm12", "xm13", "xm14", "xm15" };
|
|
return tbl[idx];
|
|
} else if (isMMX()) {
|
|
static const char tbl[8][4] = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" };
|
|
return tbl[idx];
|
|
} else if (isFPU()) {
|
|
static const char tbl[8][4] = { "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7" };
|
|
return tbl[idx];
|
|
}
|
|
throw ERR_INTERNAL;
|
|
}
|
|
bool operator==(const Operand& rhs) const { return idx_ == rhs.idx_ && kind_ == rhs.kind_ && bit_ == rhs.bit_; }
|
|
bool operator!=(const Operand& rhs) const { return !operator==(rhs); }
|
|
};
|
|
|
|
class Reg : public Operand {
|
|
bool hasRex() const { return isExt8bit() | isREG(64) | isExtIdx(); }
|
|
public:
|
|
Reg() { }
|
|
Reg(int idx, Kind kind, int bit = 0, bool ext8bit = false) : Operand(idx, kind, bit, ext8bit) { }
|
|
Reg changeBit(int bit) const { return Reg(getIdx(), getKind(), bit, isExt8bit()); }
|
|
bool isExtIdx() const { return getIdx() > 7; }
|
|
uint8 getRex(const Reg& base = Reg()) const
|
|
{
|
|
return (hasRex() || base.hasRex()) ? uint8(0x40 | ((isREG(64) | base.isREG(64)) ? 8 : 0) | (isExtIdx() ? 4 : 0)| (base.isExtIdx() ? 1 : 0)) : 0;
|
|
}
|
|
};
|
|
|
|
struct Reg8 : public Reg {
|
|
explicit Reg8(int idx = 0, bool ext8bit = false) : Reg(idx, Operand::REG, 8, ext8bit) { }
|
|
};
|
|
|
|
struct Reg16 : public Reg {
|
|
explicit Reg16(int idx = 0) : Reg(idx, Operand::REG, 16) { }
|
|
};
|
|
|
|
struct Mmx : public Reg {
|
|
explicit Mmx(int idx = 0, Kind kind = Operand::MMX, int bit = 64) : Reg(idx, kind, bit) { }
|
|
};
|
|
|
|
struct Xmm : public Mmx {
|
|
explicit Xmm(int idx = 0, Kind kind = Operand::XMM, int bit = 128) : Mmx(idx, kind, bit) { }
|
|
};
|
|
|
|
struct Ymm : public Xmm {
|
|
explicit Ymm(int idx = 0) : Xmm(idx, Operand::YMM, 256) { }
|
|
};
|
|
|
|
struct Fpu : public Reg {
|
|
explicit Fpu(int idx = 0) : Reg(idx, Operand::FPU, 32) { }
|
|
};
|
|
|
|
// register for addressing(32bit or 64bit)
|
|
class Reg32e : public Reg {
|
|
public:
|
|
// [base_(this) + index_ * scale_ + disp_]
|
|
Reg index_;
|
|
int scale_; // 0(index is none), 1, 2, 4, 8
|
|
uint32 disp_;
|
|
private:
|
|
friend class Address;
|
|
friend Reg32e operator+(const Reg32e& a, const Reg32e& b)
|
|
{
|
|
if (a.scale_ == 0) {
|
|
if (b.scale_ == 0) { // base + base
|
|
if (b.getIdx() == Operand::ESP) { // [reg + esp] => [esp + reg]
|
|
return Reg32e(b, a, 1, a.disp_ + b.disp_);
|
|
} else {
|
|
return Reg32e(a, b, 1, a.disp_ + b.disp_);
|
|
}
|
|
} else if (b.isNone()) { // base + index
|
|
return Reg32e(a, b.index_, b.scale_, a.disp_ + b.disp_);
|
|
}
|
|
}
|
|
throw ERR_BAD_ADDRESSING;
|
|
}
|
|
friend Reg32e operator*(const Reg32e& r, int scale)
|
|
{
|
|
if (r.scale_ == 0) {
|
|
if (scale == 1) {
|
|
return r;
|
|
} else if (scale == 2 || scale == 4 || scale == 8) {
|
|
return Reg32e(Reg(), r, scale, r.disp_);
|
|
}
|
|
}
|
|
throw ERR_BAD_SCALE;
|
|
}
|
|
friend Reg32e operator+(const Reg32e& r, unsigned int disp)
|
|
{
|
|
return Reg32e(r, r.index_, r.scale_, r.disp_ + disp);
|
|
}
|
|
friend Reg32e operator+(unsigned int disp, const Reg32e& r)
|
|
{
|
|
return operator+(r, disp);
|
|
}
|
|
friend Reg32e operator-(const Reg32e& r, unsigned int disp)
|
|
{
|
|
return operator+(r, -static_cast<int>(disp));
|
|
}
|
|
public:
|
|
explicit Reg32e(int idx, int bit)
|
|
: Reg(idx, REG, bit)
|
|
, index_()
|
|
, scale_(0)
|
|
, disp_(0)
|
|
{
|
|
}
|
|
Reg32e(const Reg& base, const Reg& index, int scale, unsigned int disp, bool allowUseEspIndex = false)
|
|
: Reg(base)
|
|
, index_(index)
|
|
, scale_(scale)
|
|
, disp_(disp)
|
|
{
|
|
if (scale != 0 && scale != 1 && scale != 2 && scale != 4 && scale != 8) throw ERR_BAD_SCALE;
|
|
if (!base.isNone() && !index.isNone() && base.getBit() != index.getBit()) throw ERR_BAD_COMBINATION;
|
|
if (!allowUseEspIndex && index.getIdx() == Operand::ESP) throw ERR_ESP_CANT_BE_INDEX;
|
|
}
|
|
Reg32e optimize() const // select smaller size
|
|
{
|
|
// [reg * 2] => [reg + reg]
|
|
if (isNone() && !index_.isNone() && scale_ == 2) {
|
|
const Reg index(index_.getIdx(), Operand::REG, index_.getBit());
|
|
return Reg32e(index, index, 1, disp_);
|
|
}
|
|
return *this;
|
|
}
|
|
bool operator==(const Reg32e& rhs) const
|
|
{
|
|
if (getIdx() == rhs.getIdx() && index_.getIdx() == rhs.getIdx() && scale_ == rhs.scale_ && disp_ == rhs.disp_) return true;
|
|
return false;
|
|
}
|
|
};
|
|
|
|
struct Reg32 : public Reg32e {
|
|
explicit Reg32(int idx = 0) : Reg32e(idx, 32) {}
|
|
};
|
|
#ifdef XBYAK64
|
|
struct Reg64 : public Reg32e {
|
|
explicit Reg64(int idx = 0) : Reg32e(idx, 64) {}
|
|
};
|
|
struct RegRip {
|
|
uint32 disp_;
|
|
RegRip(unsigned int disp = 0) : disp_(disp) {}
|
|
friend const RegRip operator+(const RegRip& r, unsigned int disp) {
|
|
return RegRip(r.disp_ + disp);
|
|
}
|
|
friend const RegRip operator-(const RegRip& r, unsigned int disp) {
|
|
return RegRip(r.disp_ - disp);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
// QQQ:need to refactor
|
|
struct Vsib {
|
|
// [index_ * scale_ + base_ + disp_]
|
|
uint8 indexIdx_; // xmm reg idx
|
|
uint8 scale_; // 0(none), 1, 2, 4, 8
|
|
uint8 baseIdx_; // base reg idx
|
|
uint8 baseBit_; // 0(none), 32, 64
|
|
uint32 disp_;
|
|
bool isYMM_; // idx is YMM
|
|
public:
|
|
static inline void verifyScale(int scale)
|
|
{
|
|
if (scale != 1 && scale != 2 && scale != 4 && scale != 8) throw ERR_BAD_SCALE;
|
|
}
|
|
int getIndexIdx() const { return indexIdx_; }
|
|
int getScale() const { return scale_; }
|
|
int getBaseIdx() const { return baseIdx_; }
|
|
int getBaseBit() const { return baseBit_; }
|
|
bool isYMM() const { return isYMM_; }
|
|
uint32 getDisp() const { return disp_; }
|
|
Vsib(int indexIdx, int scale, bool isYMM, int baseIdx = 0, int baseBit = 0, uint32 disp = 0)
|
|
: indexIdx_((uint8)indexIdx)
|
|
, scale_((uint8)scale)
|
|
, baseIdx_((uint8)baseIdx)
|
|
, baseBit_((uint8)baseBit)
|
|
, disp_(disp)
|
|
, isYMM_(isYMM)
|
|
{
|
|
}
|
|
};
|
|
inline Vsib operator*(const Xmm& x, int scale)
|
|
{
|
|
Vsib::verifyScale(scale);
|
|
return Vsib(x.getIdx(), scale, x.isYMM());
|
|
}
|
|
inline Vsib operator+(const Xmm& x, uint32 disp)
|
|
{
|
|
return Vsib(x.getIdx(), 1, x.isYMM(), 0, 0, disp);
|
|
}
|
|
inline Vsib operator+(const Xmm& x, const Reg32e& r)
|
|
{
|
|
if (!r.index_.isNone()) throw ERR_BAD_COMBINATION;
|
|
return Vsib(x.getIdx(), 1, x.isYMM(), r.getIdx(), r.getBit(), r.disp_);
|
|
}
|
|
inline Vsib operator+(const Vsib& vs, uint32 disp)
|
|
{
|
|
Vsib ret(vs);
|
|
ret.disp_ += disp;
|
|
return ret;
|
|
}
|
|
inline Vsib operator+(const Vsib& vs, const Reg32e& r)
|
|
{
|
|
if (vs.getBaseBit() || !r.index_.isNone()) throw ERR_BAD_COMBINATION;
|
|
Vsib ret(vs);
|
|
ret.baseIdx_ = (uint8)r.getIdx();
|
|
ret.baseBit_ = (uint8)r.getBit();
|
|
ret.disp_ += r.disp_;
|
|
return ret;
|
|
}
|
|
inline Vsib operator+(uint32 disp, const Xmm& x) { return x + disp; }
|
|
inline Vsib operator+(uint32 disp, const Vsib& vs) { return vs + disp; }
|
|
inline Vsib operator+(const Reg32e& r, const Xmm& x) { return x + r; }
|
|
inline Vsib operator+(const Reg32e& r, const Vsib& vs) { return vs + r; }
|
|
|
|
// 2nd parameter for constructor of CodeArray(maxSize, userPtr, alloc)
|
|
void *const AutoGrow = (void*)1;
|
|
|
|
class CodeArray {
|
|
enum {
|
|
MAX_FIXED_BUF_SIZE = 8
|
|
};
|
|
enum Type {
|
|
FIXED_BUF, // use buf_(non alignment, non protect)
|
|
USER_BUF, // use userPtr(non alignment, non protect)
|
|
ALLOC_BUF, // use new(alignment, protect)
|
|
AUTO_GROW // automatically move and grow memory if necessary
|
|
};
|
|
void operator=(const CodeArray&);
|
|
bool isAllocType() const { return type_ == ALLOC_BUF || type_ == AUTO_GROW; }
|
|
Type getType(size_t maxSize, void *userPtr) const
|
|
{
|
|
if (userPtr == AutoGrow) return AUTO_GROW;
|
|
if (userPtr) return USER_BUF;
|
|
if (maxSize <= MAX_FIXED_BUF_SIZE) return FIXED_BUF;
|
|
return ALLOC_BUF;
|
|
}
|
|
struct AddrInfo {
|
|
size_t codeOffset; // position to write
|
|
size_t jmpAddr; // value to write
|
|
int jmpSize; // size of jmpAddr
|
|
inner::LabelMode mode;
|
|
AddrInfo(size_t _codeOffset, size_t _jmpAddr, int _jmpSize, inner::LabelMode _mode)
|
|
: codeOffset(_codeOffset), jmpAddr(_jmpAddr), jmpSize(_jmpSize), mode(_mode) {}
|
|
uint64 getVal(const uint8 *top) const
|
|
{
|
|
uint64 disp = (mode == inner::LaddTop) ? jmpAddr + size_t(top) : (mode == inner::LasIs) ? jmpAddr : jmpAddr - size_t(top);
|
|
if (jmpSize == 4) disp = inner::VerifyInInt32(disp);
|
|
return disp;
|
|
}
|
|
};
|
|
typedef std::list<AddrInfo> AddrInfoList;
|
|
AddrInfoList addrInfoList_;
|
|
const Type type_;
|
|
Allocator defaultAllocator_;
|
|
Allocator *alloc_;
|
|
uint8 buf_[MAX_FIXED_BUF_SIZE]; // for FIXED_BUF
|
|
protected:
|
|
size_t maxSize_;
|
|
uint8 *top_;
|
|
size_t size_;
|
|
|
|
/*
|
|
allocate new memory and copy old data to the new area
|
|
*/
|
|
void growMemory()
|
|
{
|
|
const size_t newSize = (std::max<size_t>)(DEFAULT_MAX_CODE_SIZE, maxSize_ * 2);
|
|
uint8 *newTop = alloc_->alloc(newSize);
|
|
if (newTop == 0) throw ERR_CANT_ALLOC;
|
|
for (size_t i = 0; i < size_; i++) newTop[i] = top_[i];
|
|
alloc_->free(top_);
|
|
top_ = newTop;
|
|
maxSize_ = newSize;
|
|
}
|
|
/*
|
|
calc jmp address for AutoGrow mode
|
|
*/
|
|
void calcJmpAddress()
|
|
{
|
|
for (AddrInfoList::const_iterator i = addrInfoList_.begin(), ie = addrInfoList_.end(); i != ie; ++i) {
|
|
uint64 disp = i->getVal(top_);
|
|
rewrite(i->codeOffset, disp, i->jmpSize);
|
|
}
|
|
if (alloc_->useProtect() && !protect(top_, size_, true)) throw ERR_CANT_PROTECT;
|
|
}
|
|
public:
|
|
CodeArray(size_t maxSize = MAX_FIXED_BUF_SIZE, void *userPtr = 0, Allocator *allocator = 0)
|
|
: type_(getType(maxSize, userPtr))
|
|
, alloc_(allocator ? allocator : &defaultAllocator_)
|
|
, maxSize_(maxSize)
|
|
, top_(isAllocType() ? alloc_->alloc((std::max<size_t>)(maxSize, 1)) : type_ == USER_BUF ? reinterpret_cast<uint8*>(userPtr) : buf_)
|
|
, size_(0)
|
|
{
|
|
if (maxSize_ > 0 && top_ == 0) throw ERR_CANT_ALLOC;
|
|
if ((type_ == ALLOC_BUF && alloc_->useProtect()) && !protect(top_, maxSize, true)) {
|
|
alloc_->free(top_);
|
|
throw ERR_CANT_PROTECT;
|
|
}
|
|
}
|
|
virtual ~CodeArray()
|
|
{
|
|
if (isAllocType()) {
|
|
if (alloc_->useProtect()) protect(top_, maxSize_, false);
|
|
alloc_->free(top_);
|
|
}
|
|
}
|
|
CodeArray(const CodeArray& rhs)
|
|
: type_(rhs.type_)
|
|
, defaultAllocator_(rhs.defaultAllocator_)
|
|
, maxSize_(rhs.maxSize_)
|
|
, top_(buf_)
|
|
, size_(rhs.size_)
|
|
{
|
|
if (type_ != FIXED_BUF) throw ERR_CODE_ISNOT_COPYABLE;
|
|
for (size_t i = 0; i < size_; i++) top_[i] = rhs.top_[i];
|
|
}
|
|
void resetSize()
|
|
{
|
|
size_ = 0;
|
|
addrInfoList_.clear();
|
|
}
|
|
void db(int code)
|
|
{
|
|
if (size_ >= maxSize_) {
|
|
if (type_ == AUTO_GROW) {
|
|
growMemory();
|
|
} else {
|
|
throw ERR_CODE_IS_TOO_BIG;
|
|
}
|
|
}
|
|
top_[size_++] = static_cast<uint8>(code);
|
|
}
|
|
void db(const uint8 *code, int codeSize)
|
|
{
|
|
for (int i = 0; i < codeSize; i++) db(code[i]);
|
|
}
|
|
void db(uint64 code, int codeSize)
|
|
{
|
|
if (codeSize > 8) throw ERR_BAD_PARAMETER;
|
|
for (int i = 0; i < codeSize; i++) db(static_cast<uint8>(code >> (i * 8)));
|
|
}
|
|
void dw(uint32 code) { db(code, 2); }
|
|
void dd(uint32 code) { db(code, 4); }
|
|
const uint8 *getCode() const { return top_; }
|
|
template<class F>
|
|
const F getCode() const { return CastTo<F>(top_); }
|
|
const uint8 *getCurr() const { return &top_[size_]; }
|
|
template<class F>
|
|
const F getCurr() const { return CastTo<F>(&top_[size_]); }
|
|
size_t getSize() const { return size_; }
|
|
void setSize(size_t size)
|
|
{
|
|
if (size >= maxSize_) throw ERR_OFFSET_IS_TOO_BIG;
|
|
size_ = size;
|
|
}
|
|
void dump() const
|
|
{
|
|
const uint8 *p = getCode();
|
|
size_t bufSize = getSize();
|
|
size_t remain = bufSize;
|
|
for (int i = 0; i < 4; i++) {
|
|
size_t disp = 16;
|
|
if (remain < 16) {
|
|
disp = remain;
|
|
}
|
|
for (size_t j = 0; j < 16; j++) {
|
|
if (j < disp) {
|
|
printf("%02X", p[i * 16 + j]);
|
|
}
|
|
}
|
|
putchar('\n');
|
|
remain -= disp;
|
|
if (remain <= 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
@param offset [in] offset from top
|
|
@param disp [in] offset from the next of jmp
|
|
@param size [in] write size(1, 2, 4, 8)
|
|
*/
|
|
void rewrite(size_t offset, uint64 disp, size_t size)
|
|
{
|
|
assert(offset < maxSize_);
|
|
if (size != 1 && size != 2 && size != 4 && size != 8) throw ERR_BAD_PARAMETER;
|
|
uint8 *const data = top_ + offset;
|
|
for (size_t i = 0; i < size; i++) {
|
|
data[i] = static_cast<uint8>(disp >> (i * 8));
|
|
}
|
|
}
|
|
void save(size_t offset, size_t val, int size, inner::LabelMode mode)
|
|
{
|
|
addrInfoList_.push_back(AddrInfo(offset, val, size, mode));
|
|
}
|
|
bool isAutoGrow() const { return type_ == AUTO_GROW; }
|
|
void updateRegField(uint8 regIdx) const
|
|
{
|
|
*top_ = (*top_ & B11000111) | ((regIdx << 3) & B00111000);
|
|
}
|
|
/**
|
|
change exec permission of memory
|
|
@param addr [in] buffer address
|
|
@param size [in] buffer size
|
|
@param canExec [in] true(enable to exec), false(disable to exec)
|
|
@return true(success), false(failure)
|
|
*/
|
|
static inline bool protect(const void *addr, size_t size, bool canExec)
|
|
{
|
|
#if defined(_WIN32)
|
|
DWORD oldProtect;
|
|
return VirtualProtect(const_cast<void*>(addr), size, canExec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE, &oldProtect) != 0;
|
|
#elif defined(__GNUC__)
|
|
size_t pageSize = sysconf(_SC_PAGESIZE);
|
|
size_t iaddr = reinterpret_cast<size_t>(addr);
|
|
size_t roundAddr = iaddr & ~(pageSize - static_cast<size_t>(1));
|
|
int mode = PROT_READ | PROT_WRITE | (canExec ? PROT_EXEC : 0);
|
|
return mprotect(reinterpret_cast<void*>(roundAddr), size + (iaddr - roundAddr), mode) == 0;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
/**
|
|
get aligned memory pointer
|
|
@param addr [in] address
|
|
@param alingedSize [in] power of two
|
|
@return aligned addr by alingedSize
|
|
*/
|
|
static inline uint8 *getAlignedAddress(uint8 *addr, size_t alignedSize = 16)
|
|
{
|
|
return reinterpret_cast<uint8*>((reinterpret_cast<size_t>(addr) + alignedSize - 1) & ~(alignedSize - static_cast<size_t>(1)));
|
|
}
|
|
};
|
|
|
|
class Address : public Operand, public CodeArray {
|
|
void operator=(const Address&);
|
|
uint64 disp_;
|
|
uint8 rex_;
|
|
bool isOnlyDisp_;
|
|
bool is64bitDisp_;
|
|
mutable bool isVsib_;
|
|
bool isYMM_;
|
|
void verify() const { if (isVsib_) throw ERR_BAD_VSIB_ADDRESSING; }
|
|
const bool is32bit_;
|
|
public:
|
|
Address(uint32 sizeBit, bool isOnlyDisp, uint64 disp, bool is32bit, bool is64bitDisp = false, bool isVsib = false, bool isYMM = false)
|
|
: Operand(0, MEM, sizeBit)
|
|
, CodeArray(6) // 6 = 1(ModRM) + 1(SIB) + 4(disp)
|
|
, disp_(disp)
|
|
, rex_(0)
|
|
, isOnlyDisp_(isOnlyDisp)
|
|
, is64bitDisp_(is64bitDisp)
|
|
, isVsib_(isVsib)
|
|
, isYMM_(isYMM)
|
|
, is32bit_(is32bit)
|
|
{
|
|
}
|
|
void setVsib(bool isVsib) const { isVsib_ = isVsib; }
|
|
bool isVsib() const { return isVsib_; }
|
|
bool isYMM() const { return isYMM_; }
|
|
bool is32bit() const { verify(); return is32bit_; }
|
|
bool isOnlyDisp() const { verify(); return isOnlyDisp_; } // for mov eax
|
|
uint64 getDisp() const { verify(); return disp_; }
|
|
uint8 getRex() const { verify(); return rex_; }
|
|
bool is64bitDisp() const { verify(); return is64bitDisp_; } // for moffset
|
|
void setRex(uint8 rex) { rex_ = rex; }
|
|
};
|
|
|
|
class AddressFrame {
|
|
private:
|
|
void operator=(const AddressFrame&);
|
|
Address makeAddress(const Reg32e& r, bool isVsib, bool isYMM) const
|
|
{
|
|
Address frame(bit_, (r.isNone() && r.index_.isNone()), r.disp_, r.isBit(32) || r.index_.isBit(32), false, isVsib, isYMM);
|
|
enum {
|
|
mod00 = 0, mod01 = 1, mod10 = 2
|
|
};
|
|
int mod;
|
|
if (r.isNone() || ((r.getIdx() & 7) != Operand::EBP && r.disp_ == 0)) {
|
|
mod = mod00;
|
|
} else if (inner::IsInDisp8(r.disp_)) {
|
|
mod = mod01;
|
|
} else {
|
|
mod = mod10;
|
|
}
|
|
const int base = r.isNone() ? Operand::EBP : (r.getIdx() & 7);
|
|
/* ModR/M = [2:3:3] = [Mod:reg/code:R/M] */
|
|
bool hasSIB = !r.index_.isNone() || (r.getIdx() & 7) == Operand::ESP;
|
|
#ifdef XBYAK64
|
|
if (r.isNone() && r.index_.isNone()) hasSIB = true;
|
|
#endif
|
|
if (!hasSIB) {
|
|
frame.db((mod << 6) | base);
|
|
} else {
|
|
frame.db((mod << 6) | Operand::ESP);
|
|
/* SIB = [2:3:3] = [SS:index:base(=rm)] */
|
|
int index = r.index_.isNone() ? Operand::ESP : (r.index_.getIdx() & 7);
|
|
int ss = (r.scale_ == 8) ? 3 : (r.scale_ == 4) ? 2 : (r.scale_ == 2) ? 1 : 0;
|
|
frame.db((ss << 6) | (index << 3) | base);
|
|
}
|
|
if (mod == mod01) {
|
|
frame.db(r.disp_);
|
|
} else if (mod == mod10 || (mod == mod00 && r.isNone())) {
|
|
frame.dd(r.disp_);
|
|
}
|
|
uint8 rex = ((r.getIdx() | r.index_.getIdx()) < 8) ? 0 : uint8(0x40 | ((r.index_.getIdx() >> 3) << 1) | (r.getIdx() >> 3));
|
|
frame.setRex(rex);
|
|
return frame;
|
|
}
|
|
public:
|
|
const uint32 bit_;
|
|
explicit AddressFrame(uint32 bit) : bit_(bit) { }
|
|
Address operator[](const void *disp) const
|
|
{
|
|
size_t adr = reinterpret_cast<size_t>(disp);
|
|
#ifdef XBYAK64
|
|
if (adr > 0xFFFFFFFFU) throw ERR_OFFSET_IS_TOO_BIG;
|
|
#endif
|
|
Reg32e r(Reg(), Reg(), 0, static_cast<uint32>(adr));
|
|
return operator[](r);
|
|
}
|
|
#ifdef XBYAK64
|
|
Address operator[](uint64 disp) const
|
|
{
|
|
return Address(64, true, disp, false, true);
|
|
}
|
|
Address operator[](const RegRip& addr) const
|
|
{
|
|
Address frame(bit_, true, addr.disp_, false);
|
|
frame.db(B00000101);
|
|
frame.dd(addr.disp_);
|
|
return frame;
|
|
}
|
|
#endif
|
|
Address operator[](const Reg32e& in) const
|
|
{
|
|
return makeAddress(in.optimize(), false, false);
|
|
}
|
|
Address operator[](const Vsib& vs) const
|
|
{
|
|
if (vs.getBaseBit() == 0) {
|
|
#ifdef XBYAK64
|
|
const int bit = 64;
|
|
#else
|
|
const int bit = 32;
|
|
#endif
|
|
const Reg32e r(Reg(), Reg32e(vs.getIndexIdx(), bit), vs.getScale(), vs.getDisp(), true);
|
|
return makeAddress(r, true, vs.isYMM());
|
|
} else {
|
|
const Reg32e r(Reg32e(vs.getBaseIdx(), vs.getBaseBit()), Reg32e(vs.getIndexIdx(), vs.getBaseBit()), vs.getScale(), vs.getDisp(), true);
|
|
return makeAddress(r, true, vs.isYMM());
|
|
}
|
|
}
|
|
Address operator[](const Xmm& x) const
|
|
{
|
|
return operator[](x + 0);
|
|
}
|
|
};
|
|
|
|
struct JmpLabel {
|
|
size_t endOfJmp; /* offset from top to the end address of jmp */
|
|
int jmpSize;
|
|
inner::LabelMode mode;
|
|
};
|
|
|
|
class Label {
|
|
CodeArray *base_;
|
|
int anonymousCount_; // for @@, @f, @b
|
|
enum {
|
|
maxStack = 10
|
|
};
|
|
int stack_[maxStack];
|
|
int stackPos_;
|
|
int usedCount_;
|
|
int localCount_; // for .***
|
|
public:
|
|
private:
|
|
#ifdef XBYAK_USE_UNORDERED_MAP
|
|
typedef std::unordered_map<std::string, size_t> DefinedList;
|
|
typedef std::unordered_multimap<std::string, const JmpLabel> UndefinedList;
|
|
#elif defined(XBYAK_USE_TR1_UNORDERED_MAP)
|
|
typedef std::tr1::unordered_map<std::string, size_t> DefinedList;
|
|
typedef std::tr1::unordered_multimap<std::string, const JmpLabel> UndefinedList;
|
|
#else
|
|
typedef std::map<std::string, size_t> DefinedList;
|
|
typedef std::multimap<std::string, const JmpLabel> UndefinedList;
|
|
#endif
|
|
DefinedList definedList_;
|
|
UndefinedList undefinedList_;
|
|
|
|
/*
|
|
@@ --> @@.<num>
|
|
@b --> @@.<num>
|
|
@f --> @@.<num + 1>
|
|
.*** -> .***.<num>
|
|
*/
|
|
std::string convertLabel(const char *label) const
|
|
{
|
|
std::string newLabel(label);
|
|
if (newLabel == "@f" || newLabel == "@F") {
|
|
newLabel = std::string("@@") + toStr(anonymousCount_ + 1);
|
|
} else if (newLabel == "@b" || newLabel == "@B") {
|
|
newLabel = std::string("@@") + toStr(anonymousCount_);
|
|
} else if (*label == '.') {
|
|
newLabel += toStr(localCount_);
|
|
}
|
|
return newLabel;
|
|
}
|
|
public:
|
|
Label()
|
|
: base_(0)
|
|
, anonymousCount_(0)
|
|
, stackPos_(1)
|
|
, usedCount_(0)
|
|
, localCount_(0)
|
|
{
|
|
}
|
|
void reset()
|
|
{
|
|
base_ = 0;
|
|
anonymousCount_ = 0;
|
|
stackPos_ = 1;
|
|
usedCount_ = 0;
|
|
localCount_ = 0;
|
|
definedList_.clear();
|
|
undefinedList_.clear();
|
|
}
|
|
void enterLocal()
|
|
{
|
|
if (stackPos_ == maxStack) throw ERR_OVER_LOCAL_LABEL;
|
|
localCount_ = stack_[stackPos_++] = ++usedCount_;
|
|
}
|
|
void leaveLocal()
|
|
{
|
|
if (stackPos_ == 1) throw ERR_UNDER_LOCAL_LABEL;
|
|
localCount_ = stack_[--stackPos_ - 1];
|
|
}
|
|
void set(CodeArray *base) { base_ = base; }
|
|
void define(const char *label, size_t addrOffset, const uint8 *addr)
|
|
{
|
|
std::string newLabel(label);
|
|
if (newLabel == "@@") {
|
|
newLabel += toStr(++anonymousCount_);
|
|
} else if (*label == '.') {
|
|
newLabel += toStr(localCount_);
|
|
}
|
|
label = newLabel.c_str();
|
|
// add label
|
|
DefinedList::value_type item(label, addrOffset);
|
|
std::pair<DefinedList::iterator, bool> ret = definedList_.insert(item);
|
|
if (!ret.second) throw ERR_LABEL_IS_REDEFINED;
|
|
// search undefined label
|
|
for (;;) {
|
|
UndefinedList::iterator itr = undefinedList_.find(label);
|
|
if (itr == undefinedList_.end()) break;
|
|
const JmpLabel *jmp = &itr->second;
|
|
const size_t offset = jmp->endOfJmp - jmp->jmpSize;
|
|
size_t disp;
|
|
if (jmp->mode == inner::LaddTop) {
|
|
disp = addrOffset;
|
|
} else if (jmp->mode == inner::Labs) {
|
|
disp = size_t(addr);
|
|
} else {
|
|
disp = addrOffset - jmp->endOfJmp;
|
|
if (jmp->jmpSize <= 4) disp = inner::VerifyInInt32(disp);
|
|
if (jmp->jmpSize == 1 && !inner::IsInDisp8((uint32)disp)) throw ERR_LABEL_IS_TOO_FAR;
|
|
}
|
|
if (base_->isAutoGrow()) {
|
|
base_->save(offset, disp, jmp->jmpSize, jmp->mode);
|
|
} else {
|
|
base_->rewrite(offset, disp, jmp->jmpSize);
|
|
}
|
|
undefinedList_.erase(itr);
|
|
}
|
|
}
|
|
bool getOffset(size_t *offset, const char *label) const
|
|
{
|
|
std::string newLabel = convertLabel(label);
|
|
DefinedList::const_iterator itr = definedList_.find(newLabel);
|
|
if (itr != definedList_.end()) {
|
|
*offset = itr->second;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
void addUndefinedLabel(const char *label, const JmpLabel& jmp)
|
|
{
|
|
std::string newLabel = convertLabel(label);
|
|
undefinedList_.insert(UndefinedList::value_type(newLabel, jmp));
|
|
}
|
|
bool hasUndefinedLabel() const
|
|
{
|
|
if (inner::debug) {
|
|
for (UndefinedList::const_iterator i = undefinedList_.begin(); i != undefinedList_.end(); ++i) {
|
|
fprintf(stderr, "undefined label:%s\n", i->first.c_str());
|
|
}
|
|
}
|
|
return !undefinedList_.empty();
|
|
}
|
|
static inline std::string toStr(int num)
|
|
{
|
|
char buf[16];
|
|
#ifdef _MSC_VER
|
|
_snprintf_s
|
|
#else
|
|
snprintf
|
|
#endif
|
|
(buf, sizeof(buf), ".%08x", num);
|
|
return buf;
|
|
}
|
|
};
|
|
|
|
class CodeGenerator : public CodeArray {
|
|
public:
|
|
enum LabelType {
|
|
T_SHORT,
|
|
T_NEAR,
|
|
T_AUTO // T_SHORT if possible
|
|
};
|
|
private:
|
|
CodeGenerator operator=(const CodeGenerator&); // don't call
|
|
#ifdef XBYAK64
|
|
enum { i32e = 32 | 64, BIT = 64 };
|
|
#else
|
|
enum { i32e = 32, BIT = 32 };
|
|
#endif
|
|
// (XMM, XMM|MEM)
|
|
static inline bool isXMM_XMMorMEM(const Operand& op1, const Operand& op2)
|
|
{
|
|
return op1.isXMM() && (op2.isXMM() || op2.isMEM());
|
|
}
|
|
// (MMX, MMX|MEM) or (XMM, XMM|MEM)
|
|
static inline bool isXMMorMMX_MEM(const Operand& op1, const Operand& op2)
|
|
{
|
|
return (op1.isMMX() && (op2.isMMX() || op2.isMEM())) || isXMM_XMMorMEM(op1, op2);
|
|
}
|
|
// (XMM, MMX|MEM)
|
|
static inline bool isXMM_MMXorMEM(const Operand& op1, const Operand& op2)
|
|
{
|
|
return op1.isXMM() && (op2.isMMX() || op2.isMEM());
|
|
}
|
|
// (MMX, XMM|MEM)
|
|
static inline bool isMMX_XMMorMEM(const Operand& op1, const Operand& op2)
|
|
{
|
|
return op1.isMMX() && (op2.isXMM() || op2.isMEM());
|
|
}
|
|
// (XMM, REG32|MEM)
|
|
static inline bool isXMM_REG32orMEM(const Operand& op1, const Operand& op2)
|
|
{
|
|
return op1.isXMM() && (op2.isREG(i32e) || op2.isMEM());
|
|
}
|
|
// (REG32, XMM|MEM)
|
|
static inline bool isREG32_XMMorMEM(const Operand& op1, const Operand& op2)
|
|
{
|
|
return op1.isREG(i32e) && (op2.isXMM() || op2.isMEM());
|
|
}
|
|
void rex(const Operand& op1, const Operand& op2 = Operand())
|
|
{
|
|
uint8 rex = 0;
|
|
const Operand *p1 = &op1, *p2 = &op2;
|
|
if (p1->isMEM()) std::swap(p1, p2);
|
|
if (p1->isMEM()) throw ERR_BAD_COMBINATION;
|
|
if (p2->isMEM()) {
|
|
const Address& addr = static_cast<const Address&>(*p2);
|
|
if (BIT == 64 && addr.is32bit()) db(0x67);
|
|
rex = addr.getRex() | static_cast<const Reg&>(*p1).getRex();
|
|
} else {
|
|
// ModRM(reg, base);
|
|
rex = static_cast<const Reg&>(op2).getRex(static_cast<const Reg&>(op1));
|
|
}
|
|
// except movsx(16bit, 32/64bit)
|
|
if ((op1.isBit(16) && !op2.isBit(i32e)) || (op2.isBit(16) && !op1.isBit(i32e))) db(0x66);
|
|
if (rex) db(rex);
|
|
}
|
|
enum AVXtype {
|
|
PP_NONE = 1 << 0,
|
|
PP_66 = 1 << 1,
|
|
PP_F3 = 1 << 2,
|
|
PP_F2 = 1 << 3,
|
|
MM_RESERVED = 1 << 4,
|
|
MM_0F = 1 << 5,
|
|
MM_0F38 = 1 << 6,
|
|
MM_0F3A = 1 << 7
|
|
};
|
|
void vex(bool r, int idx, bool is256, int type, bool x = false, bool b = false, int w = 1)
|
|
{
|
|
uint32 pp = (type & PP_66) ? 1 : (type & PP_F3) ? 2 : (type & PP_F2) ? 3 : 0;
|
|
uint32 vvvv = (((~idx) & 15) << 3) | (is256 ? 4 : 0) | pp;
|
|
if (!b && !x && !w && (type & MM_0F)) {
|
|
db(0xC5); db((r ? 0 : 0x80) | vvvv);
|
|
} else {
|
|
uint32 mmmm = (type & MM_0F) ? 1 : (type & MM_0F38) ? 2 : (type & MM_0F3A) ? 3 : 0;
|
|
db(0xC4); db((r ? 0 : 0x80) | (x ? 0 : 0x40) | (b ? 0 : 0x20) | mmmm); db((w << 7) | vvvv);
|
|
}
|
|
}
|
|
Label label_;
|
|
bool isInDisp16(uint32 x) const { return 0xFFFF8000 <= x || x <= 0x7FFF; }
|
|
uint8 getModRM(int mod, int r1, int r2) const { return static_cast<uint8>((mod << 6) | ((r1 & 7) << 3) | (r2 & 7)); }
|
|
void opModR(const Reg& reg1, const Reg& reg2, int code0, int code1 = NONE, int code2 = NONE)
|
|
{
|
|
rex(reg2, reg1);
|
|
db(code0 | (reg1.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2);
|
|
db(getModRM(3, reg1.getIdx(), reg2.getIdx()));
|
|
}
|
|
void opModM(const Address& addr, const Reg& reg, int code0, int code1 = NONE, int code2 = NONE)
|
|
{
|
|
if (addr.is64bitDisp()) throw ERR_CANT_USE_64BIT_DISP;
|
|
rex(addr, reg);
|
|
db(code0 | (reg.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2);
|
|
addr.updateRegField(static_cast<uint8>(reg.getIdx()));
|
|
db(addr.getCode(), static_cast<int>(addr.getSize()));
|
|
}
|
|
void makeJmp(uint32 disp, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref)
|
|
{
|
|
const int shortJmpSize = 2;
|
|
const int longHeaderSize = longPref ? 2 : 1;
|
|
const int longJmpSize = longHeaderSize + 4;
|
|
if (type != T_NEAR && inner::IsInDisp8(disp - shortJmpSize)) {
|
|
db(shortCode); db(disp - shortJmpSize);
|
|
} else {
|
|
if (type == T_SHORT) throw ERR_LABEL_IS_TOO_FAR;
|
|
if (longPref) db(longPref);
|
|
db(longCode); dd(disp - longJmpSize);
|
|
}
|
|
}
|
|
void opJmp(const char *label, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref)
|
|
{
|
|
if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); /* avoid splitting code of jmp */
|
|
size_t offset = 0;
|
|
if (label_.getOffset(&offset, label)) { /* label exists */
|
|
makeJmp(inner::VerifyInInt32(offset - size_), type, shortCode, longCode, longPref);
|
|
} else {
|
|
JmpLabel jmp;
|
|
if (type == T_NEAR) {
|
|
jmp.jmpSize = 4;
|
|
if (longPref) db(longPref);
|
|
db(longCode); dd(0);
|
|
} else {
|
|
jmp.jmpSize = 1;
|
|
db(shortCode); db(0);
|
|
}
|
|
jmp.mode = inner::LasIs;
|
|
jmp.endOfJmp = size_;
|
|
label_.addUndefinedLabel(label, jmp);
|
|
}
|
|
}
|
|
void opJmpAbs(const void *addr, LabelType type, uint8 shortCode, uint8 longCode)
|
|
{
|
|
if (isAutoGrow()) {
|
|
if (type != T_NEAR) throw ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW;
|
|
if (size_ + 16 >= maxSize_) growMemory();
|
|
db(longCode);
|
|
dd(0);
|
|
save(size_ - 4, size_t(addr) - size_, 4, inner::Labs);
|
|
} else {
|
|
makeJmp(inner::VerifyInInt32(reinterpret_cast<const uint8*>(addr) - getCurr()), type, shortCode, longCode, 0);
|
|
}
|
|
|
|
}
|
|
/* preCode is for SSSE3/SSE4 */
|
|
void opGen(const Operand& reg, const Operand& op, int code, int pref, bool isValid(const Operand&, const Operand&), int imm8 = NONE, int preCode = NONE)
|
|
{
|
|
if (isValid && !isValid(reg, op)) throw ERR_BAD_COMBINATION;
|
|
if (pref != NONE) db(pref);
|
|
if (op.isMEM()) {
|
|
opModM(static_cast<const Address&>(op), static_cast<const Reg&>(reg), 0x0F, preCode, code);
|
|
} else {
|
|
opModR(static_cast<const Reg&>(reg), static_cast<const Reg&>(op), 0x0F, preCode, code);
|
|
}
|
|
if (imm8 != NONE) db(imm8);
|
|
}
|
|
void opMMX_IMM(const Mmx& mmx, int imm8, int code, int ext)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModR(Reg32(ext), mmx, 0x0F, code);
|
|
db(imm8);
|
|
}
|
|
void opMMX(const Mmx& mmx, const Operand& op, int code, int pref = 0x66, int imm8 = NONE, int preCode = NONE)
|
|
{
|
|
opGen(mmx, op, code, mmx.isXMM() ? pref : NONE, isXMMorMMX_MEM, imm8, preCode);
|
|
}
|
|
void opMovXMM(const Operand& op1, const Operand& op2, int code, int pref)
|
|
{
|
|
if (pref != NONE) db(pref);
|
|
if (op1.isXMM() && op2.isMEM()) {
|
|
opModM(static_cast<const Address&>(op2), static_cast<const Reg&>(op1), 0x0F, code);
|
|
} else if (op1.isMEM() && op2.isXMM()) {
|
|
opModM(static_cast<const Address&>(op1), static_cast<const Reg&>(op2), 0x0F, code | 1);
|
|
} else {
|
|
throw ERR_BAD_COMBINATION;
|
|
}
|
|
}
|
|
void opExt(const Operand& op, const Mmx& mmx, int code, int imm, bool hasMMX2 = false)
|
|
{
|
|
if (hasMMX2 && op.isREG(i32e)) { /* pextrw is special */
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModR(static_cast<const Reg&>(op), mmx, 0x0F, B11000101); db(imm);
|
|
} else {
|
|
opGen(mmx, op, code, 0x66, isXMM_REG32orMEM, imm, B00111010);
|
|
}
|
|
}
|
|
void opR_ModM(const Operand& op, int bit, int ext, int code0, int code1 = NONE, int code2 = NONE, bool disableRex = false)
|
|
{
|
|
int opBit = op.getBit();
|
|
if (disableRex && opBit == 64) opBit = 32;
|
|
if (op.isREG(bit)) {
|
|
opModR(Reg(ext, Operand::REG, opBit), static_cast<const Reg&>(op).changeBit(opBit), code0, code1, code2);
|
|
} else if (op.isMEM()) {
|
|
opModM(static_cast<const Address&>(op), Reg(ext, Operand::REG, opBit), code0, code1, code2);
|
|
} else {
|
|
throw ERR_BAD_COMBINATION;
|
|
}
|
|
}
|
|
void opShift(const Operand& op, int imm, int ext)
|
|
{
|
|
verifyMemHasSize(op);
|
|
opR_ModM(op, 0, ext, (B11000000 | ((imm == 1 ? 1 : 0) << 4)));
|
|
if (imm != 1) db(imm);
|
|
}
|
|
void opShift(const Operand& op, const Reg8& cl, int ext)
|
|
{
|
|
if (cl.getIdx() != Operand::CL) throw ERR_BAD_COMBINATION;
|
|
opR_ModM(op, 0, ext, B11010010);
|
|
}
|
|
void opModRM(const Operand& op1, const Operand& op2, bool condR, bool condM, int code0, int code1 = NONE, int code2 = NONE)
|
|
{
|
|
if (condR) {
|
|
opModR(static_cast<const Reg&>(op1), static_cast<const Reg&>(op2), code0, code1, code2);
|
|
} else if (condM) {
|
|
opModM(static_cast<const Address&>(op2), static_cast<const Reg&>(op1), code0, code1, code2);
|
|
} else {
|
|
throw ERR_BAD_COMBINATION;
|
|
}
|
|
}
|
|
void opShxd(const Operand& op, const Reg& reg, uint8 imm, int code, const Reg8 *cl = 0)
|
|
{
|
|
if (cl && cl->getIdx() != Operand::CL) throw ERR_BAD_COMBINATION;
|
|
opModRM(reg, op, (op.isREG(16 | i32e) && op.getBit() == reg.getBit()), op.isMEM() && (reg.isREG(16 | i32e)), 0x0F, code | (cl ? 1 : 0));
|
|
if (!cl) db(imm);
|
|
}
|
|
// (REG, REG|MEM), (MEM, REG)
|
|
void opRM_RM(const Operand& op1, const Operand& op2, int code)
|
|
{
|
|
if (op1.isREG() && op2.isMEM()) {
|
|
opModM(static_cast<const Address&>(op2), static_cast<const Reg&>(op1), code | 2);
|
|
} else {
|
|
opModRM(op2, op1, op1.isREG() && op1.getKind() == op2.getKind(), op1.isMEM() && op2.isREG(), code);
|
|
}
|
|
}
|
|
// (REG|MEM, IMM)
|
|
void opRM_I(const Operand& op, uint32 imm, int code, int ext)
|
|
{
|
|
verifyMemHasSize(op);
|
|
uint32 immBit = inner::IsInDisp8(imm) ? 8 : isInDisp16(imm) ? 16 : 32;
|
|
if (op.isBit(8)) immBit = 8;
|
|
if (op.getBit() < immBit) throw ERR_IMM_IS_TOO_BIG;
|
|
if (op.isBit(32|64) && immBit == 16) immBit = 32; /* don't use MEM16 if 32/64bit mode */
|
|
if (op.isREG() && op.getIdx() == 0 && (op.getBit() == immBit || (op.isBit(64) && immBit == 32))) { // rax, eax, ax, al
|
|
rex(op);
|
|
db(code | 4 | (immBit == 8 ? 0 : 1));
|
|
} else {
|
|
int tmp = immBit < (std::min)(op.getBit(), 32U) ? 2 : 0;
|
|
opR_ModM(op, 0, ext, B10000000 | tmp);
|
|
}
|
|
db(imm, immBit / 8);
|
|
}
|
|
void opIncDec(const Operand& op, int code, int ext)
|
|
{
|
|
verifyMemHasSize(op);
|
|
#ifndef XBYAK64
|
|
if (op.isREG() && !op.isBit(8)) {
|
|
rex(op); db(code | op.getIdx());
|
|
return;
|
|
}
|
|
#endif
|
|
code = B11111110;
|
|
if (op.isREG()) {
|
|
opModR(Reg(ext, Operand::REG, op.getBit()), static_cast<const Reg&>(op), code);
|
|
} else {
|
|
opModM(static_cast<const Address&>(op), Reg(ext, Operand::REG, op.getBit()), code);
|
|
}
|
|
}
|
|
void opPushPop(const Operand& op, int code, int ext, int alt)
|
|
{
|
|
if (op.isREG()) {
|
|
if (op.isBit(16)) db(0x66);
|
|
if (static_cast<const Reg&>(op).getIdx() >= 8) db(0x41);
|
|
db(alt | (op.getIdx() & 7));
|
|
} else if (op.isMEM()) {
|
|
opModM(static_cast<const Address&>(op), Reg(ext, Operand::REG, op.getBit()), code);
|
|
} else {
|
|
throw ERR_BAD_COMBINATION;
|
|
}
|
|
}
|
|
void verifyMemHasSize(const Operand& op) const
|
|
{
|
|
if (op.isMEM() && op.getBit() == 0) throw ERR_MEM_SIZE_IS_NOT_SPECIFIED;
|
|
}
|
|
void opMovxx(const Reg& reg, const Operand& op, uint8 code)
|
|
{
|
|
if (op.isBit(32)) throw ERR_BAD_COMBINATION;
|
|
int w = op.isBit(16);
|
|
bool cond = reg.isREG() && (reg.getBit() > op.getBit());
|
|
opModRM(reg, op, cond && op.isREG(), cond && op.isMEM(), 0x0F, code | w);
|
|
}
|
|
void opFpuMem(const Address& addr, uint8 m16, uint8 m32, uint8 m64, uint8 ext, uint8 m64ext)
|
|
{
|
|
if (addr.is64bitDisp()) throw ERR_CANT_USE_64BIT_DISP;
|
|
uint8 code = addr.isBit(16) ? m16 : addr.isBit(32) ? m32 : addr.isBit(64) ? m64 : 0;
|
|
if (!code) throw ERR_BAD_MEM_SIZE;
|
|
if (m64ext && addr.isBit(64)) ext = m64ext;
|
|
|
|
rex(addr, st0);
|
|
db(code);
|
|
addr.updateRegField(ext);
|
|
db(addr.getCode(), static_cast<int>(addr.getSize()));
|
|
}
|
|
// use code1 if reg1 == st0
|
|
// use code2 if reg1 != st0 && reg2 == st0
|
|
void opFpuFpu(const Fpu& reg1, const Fpu& reg2, uint32 code1, uint32 code2)
|
|
{
|
|
uint32 code = reg1.getIdx() == 0 ? code1 : reg2.getIdx() == 0 ? code2 : 0;
|
|
if (!code) throw ERR_BAD_ST_COMBINATION;
|
|
db(uint8(code >> 8));
|
|
db(uint8(code | (reg1.getIdx() | reg2.getIdx())));
|
|
}
|
|
void opFpu(const Fpu& reg, uint8 code1, uint8 code2)
|
|
{
|
|
db(code1); db(code2 | reg.getIdx());
|
|
}
|
|
void opVex(const Reg& r, const Operand *p1, const Operand *p2, int type, int code, int w)
|
|
{
|
|
bool x, b;
|
|
if (p2->isMEM()) {
|
|
const Address& addr = static_cast<const Address&>(*p2);
|
|
uint8 rex = addr.getRex();
|
|
x = (rex & 2) != 0;
|
|
b = (rex & 1) != 0;
|
|
if (BIT == 64 && addr.is32bit()) db(0x67);
|
|
if (BIT == 64 && w == -1) w = (rex & 4) ? 1 : 0;
|
|
} else {
|
|
x = false;
|
|
b = static_cast<const Reg&>(*p2).isExtIdx();
|
|
}
|
|
if (w == -1) w = 0;
|
|
vex(r.isExtIdx(), p1->getIdx(), r.isYMM(), type, x, b, w);
|
|
db(code);
|
|
if (p2->isMEM()) {
|
|
const Address& addr = static_cast<const Address&>(*p2);
|
|
addr.updateRegField(static_cast<uint8>(r.getIdx()));
|
|
db(addr.getCode(), static_cast<int>(addr.getSize()));
|
|
} else {
|
|
db(getModRM(3, r.getIdx(), p2->getIdx()));
|
|
}
|
|
}
|
|
// (r, r, r/m) if isR_R_RM
|
|
// (r, r/m, r)
|
|
void opGpr(const Reg32e& r, const Operand& op1, const Operand& op2, int type, uint8 code, bool isR_R_RM)
|
|
{
|
|
const Operand *p1 = &op1;
|
|
const Operand *p2 = &op2;
|
|
if (!isR_R_RM) std::swap(p1, p2);
|
|
const unsigned int bit = r.getBit();
|
|
if (p1->getBit() != bit || (p2->isREG() && p2->getBit() != bit)) throw ERR_BAD_COMBINATION;
|
|
int w = bit == 64;
|
|
opVex(r, p1, p2, type, code, w);
|
|
}
|
|
void opAVX_X_X_XM(const Xmm& x1, const Operand& op1, const Operand& op2, int type, int code0, bool supportYMM, int w = -1)
|
|
{
|
|
const Xmm *x2;
|
|
const Operand *op;
|
|
if (op2.isNone()) {
|
|
x2 = &x1;
|
|
op = &op1;
|
|
} else {
|
|
if (!(op1.isXMM() || (supportYMM && op1.isYMM()))) throw ERR_BAD_COMBINATION;
|
|
x2 = static_cast<const Xmm*>(&op1);
|
|
op = &op2;
|
|
}
|
|
// (x1, x2, op)
|
|
if (!((x1.isXMM() && x2->isXMM()) || (supportYMM && x1.isYMM() && x2->isYMM()))) throw ERR_BAD_COMBINATION;
|
|
opVex(x1, x2, op, type, code0, w);
|
|
}
|
|
// if cvt then return pointer to Xmm(idx) (or Ymm(idx)), otherwise return op
|
|
void opAVX_X_X_XMcvt(const Xmm& x1, const Operand& op1, const Operand& op2, bool cvt, Operand::Kind kind, int type, int code0, bool supportYMM, int w = -1)
|
|
{
|
|
// use static_cast to avoid calling unintentional copy constructor on gcc
|
|
opAVX_X_X_XM(x1, op1, cvt ? kind == Operand::XMM ? static_cast<const Operand&>(Xmm(op2.getIdx())) : static_cast<const Operand&>(Ymm(op2.getIdx())) : op2, type, code0, supportYMM, w);
|
|
}
|
|
// support (x, x/m, imm), (y, y/m, imm)
|
|
void opAVX_X_XM_IMM(const Xmm& x, const Operand& op, int type, int code, bool supportYMM, int w = -1, int imm = NONE)
|
|
{
|
|
opAVX_X_X_XM(x, x.isXMM() ? xm0 : ym0, op, type, code, supportYMM, w); if (imm != NONE) db((uint8)imm);
|
|
}
|
|
// QQQ:need to refactor
|
|
void opSp1(const Reg& reg, const Operand& op, uint8 pref, uint8 code0, uint8 code1)
|
|
{
|
|
if (reg.isBit(8)) throw ERR_BAD_SIZE_OF_REGISTER;
|
|
bool is16bit = reg.isREG(16) && (op.isREG(16) || op.isMEM());
|
|
if (!is16bit && !(reg.isREG(i32e) && (op.isREG(reg.getBit()) || op.isMEM()))) throw ERR_BAD_COMBINATION;
|
|
if (is16bit) db(0x66);
|
|
db(pref); opModRM(reg.changeBit(i32e == 32 ? 32 : reg.getBit()), op, op.isREG(), true, code0, code1);
|
|
}
|
|
void opGather(const Xmm& x1, const Address& addr, const Xmm& x2, int type, uint8 code, int w, int mode)
|
|
{
|
|
if (!addr.isVsib()) throw ERR_BAD_VSIB_ADDRESSING;
|
|
const int y_vx_y = 0;
|
|
const int y_vy_y = 1;
|
|
// const int x_vy_x = 2;
|
|
const bool isAddrYMM = addr.isYMM();
|
|
if (!x1.isXMM() || isAddrYMM || !x2.isXMM()) {
|
|
bool isOK = false;
|
|
if (mode == y_vx_y) {
|
|
isOK = x1.isYMM() && !isAddrYMM && x2.isYMM();
|
|
} else if (mode == y_vy_y) {
|
|
isOK = x1.isYMM() && isAddrYMM && x2.isYMM();
|
|
} else { // x_vy_x
|
|
isOK = !x1.isYMM() && isAddrYMM && !x2.isYMM();
|
|
}
|
|
if (!isOK) throw ERR_BAD_VSIB_ADDRESSING;
|
|
}
|
|
addr.setVsib(false);
|
|
opAVX_X_X_XM(isAddrYMM ? Ymm(x1.getIdx()) : x1, isAddrYMM ? Ymm(x2.getIdx()) : x2, addr, type, code, true, w);
|
|
addr.setVsib(true);
|
|
}
|
|
public:
|
|
unsigned int getVersion() const { return VERSION; }
|
|
using CodeArray::db;
|
|
const Mmx mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7;
|
|
const Xmm xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
|
const Ymm ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7;
|
|
const Xmm &xm0, &xm1, &xm2, &xm3, &xm4, &xm5, &xm6, &xm7;
|
|
const Ymm &ym0, &ym1, &ym2, &ym3, &ym4, &ym5, &ym6, &ym7;
|
|
const Reg32 eax, ecx, edx, ebx, esp, ebp, esi, edi;
|
|
const Reg16 ax, cx, dx, bx, sp, bp, si, di;
|
|
const Reg8 al, cl, dl, bl, ah, ch, dh, bh;
|
|
const AddressFrame ptr, byte, word, dword, qword;
|
|
const Fpu st0, st1, st2, st3, st4, st5, st6, st7;
|
|
#ifdef XBYAK64
|
|
const Reg64 rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15;
|
|
const Reg32 r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d;
|
|
const Reg16 r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w;
|
|
const Reg8 r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b;
|
|
const Reg8 spl, bpl, sil, dil;
|
|
const Xmm xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
|
const Ymm ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15;
|
|
const Xmm &xm8, &xm9, &xm10, &xm11, &xm12, &xm13, &xm14, &xm15; // for my convenience
|
|
const Ymm &ym8, &ym9, &ym10, &ym11, &ym12, &ym13, &ym14, &ym15;
|
|
const RegRip rip;
|
|
#endif
|
|
void L(const char *label)
|
|
{
|
|
label_.define(label, getSize(), getCurr());
|
|
}
|
|
void inLocalLabel() { label_.enterLocal(); }
|
|
void outLocalLabel() { label_.leaveLocal(); }
|
|
void jmp(const char *label, LabelType type = T_AUTO)
|
|
{
|
|
opJmp(label, type, B11101011, B11101001, 0);
|
|
}
|
|
void jmp(const void *addr, LabelType type = T_AUTO)
|
|
{
|
|
opJmpAbs(addr, type, B11101011, B11101001);
|
|
}
|
|
void jmp(const Operand& op)
|
|
{
|
|
opR_ModM(op, BIT, 4, 0xFF, NONE, NONE, true);
|
|
}
|
|
void call(const Operand& op)
|
|
{
|
|
opR_ModM(op, 16 | i32e, 2, 0xFF, NONE, NONE, true);
|
|
}
|
|
// (REG|MEM, REG)
|
|
void test(const Operand& op, const Reg& reg)
|
|
{
|
|
opModRM(reg, op, op.isREG() && (op.getKind() == reg.getKind()), op.isMEM(), B10000100);
|
|
}
|
|
// (REG|MEM, IMM)
|
|
void test(const Operand& op, uint32 imm)
|
|
{
|
|
verifyMemHasSize(op);
|
|
if (op.isREG() && op.getIdx() == 0) { // al, ax, eax
|
|
rex(op);
|
|
db(B10101000 | (op.isBit(8) ? 0 : 1));
|
|
} else {
|
|
opR_ModM(op, 0, 0, B11110110);
|
|
}
|
|
db(imm, (std::min)(op.getBit() / 8, 4U));
|
|
}
|
|
void ret(int imm = 0)
|
|
{
|
|
if (imm) {
|
|
db(B11000010); dw(imm);
|
|
} else {
|
|
db(B11000011);
|
|
}
|
|
}
|
|
// (REG16|REG32, REG16|REG32|MEM)
|
|
void imul(const Reg& reg, const Operand& op)
|
|
{
|
|
opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), 0x0F, B10101111);
|
|
}
|
|
void imul(const Reg& reg, const Operand& op, int imm)
|
|
{
|
|
int s = inner::IsInDisp8(imm) ? 1 : 0;
|
|
opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), B01101001 | (s << 1));
|
|
int size = s ? 1 : reg.isREG(16) ? 2 : 4;
|
|
db(imm, size);
|
|
}
|
|
void pop(const Operand& op)
|
|
{
|
|
opPushPop(op, B10001111, 0, B01011000);
|
|
}
|
|
void push(const Operand& op)
|
|
{
|
|
opPushPop(op, B11111111, 6, B01010000);
|
|
}
|
|
void push(const AddressFrame& af, uint32 imm)
|
|
{
|
|
if (af.bit_ == 8 && inner::IsInDisp8(imm)) {
|
|
db(B01101010); db(imm);
|
|
} else if (af.bit_ == 16 && isInDisp16(imm)) {
|
|
db(0x66); db(B01101000); dw(imm);
|
|
} else {
|
|
db(B01101000); dd(imm);
|
|
}
|
|
}
|
|
/* use "push(word, 4)" if you want "push word 4" */
|
|
void push(uint32 imm)
|
|
{
|
|
if (inner::IsInDisp8(imm)) {
|
|
push(byte, imm);
|
|
} else {
|
|
push(dword, imm);
|
|
}
|
|
}
|
|
void bswap(const Reg32e& reg)
|
|
{
|
|
opModR(Reg32(1), reg, 0x0F);
|
|
}
|
|
void mov(const Operand& reg1, const Operand& reg2)
|
|
{
|
|
const Reg *reg = 0;
|
|
const Address *addr = 0;
|
|
uint8 code = 0;
|
|
if (reg1.isREG() && reg1.getIdx() == 0 && reg2.isMEM()) { // mov eax|ax|al, [disp]
|
|
reg = &static_cast<const Reg&>(reg1);
|
|
addr= &static_cast<const Address&>(reg2);
|
|
code = B10100000;
|
|
} else
|
|
if (reg1.isMEM() && reg2.isREG() && reg2.getIdx() == 0) { // mov [disp], eax|ax|al
|
|
reg = &static_cast<const Reg&>(reg2);
|
|
addr= &static_cast<const Address&>(reg1);
|
|
code = B10100010;
|
|
}
|
|
#ifdef XBYAK64
|
|
if (addr && addr->is64bitDisp()) {
|
|
if (code) {
|
|
rex(*reg);
|
|
db(reg1.isREG(8) ? 0xA0 : reg1.isREG() ? 0xA1 : reg2.isREG(8) ? 0xA2 : 0xA3);
|
|
db(addr->getDisp(), 8);
|
|
} else {
|
|
throw ERR_BAD_COMBINATION;
|
|
}
|
|
} else
|
|
#else
|
|
if (code && addr->isOnlyDisp()) {
|
|
rex(*reg, *addr);
|
|
db(code | (reg->isBit(8) ? 0 : 1));
|
|
dd(static_cast<uint32>(addr->getDisp()));
|
|
} else
|
|
#endif
|
|
{
|
|
opRM_RM(reg1, reg2, B10001000);
|
|
}
|
|
}
|
|
void mov(const Operand& op,
|
|
#ifdef XBYAK64
|
|
uint64 imm, bool opti = true
|
|
#else
|
|
uint32 imm, bool = true
|
|
#endif
|
|
)
|
|
{
|
|
verifyMemHasSize(op);
|
|
if (op.isREG()) {
|
|
rex(op);
|
|
int code, size;
|
|
#ifdef XBYAK64
|
|
if (opti && op.isBit(64) && inner::IsInInt32(imm)) {
|
|
db(B11000111);
|
|
code = B11000000;
|
|
size = 4;
|
|
} else
|
|
#endif
|
|
{
|
|
code = B10110000 | ((op.isBit(8) ? 0 : 1) << 3);
|
|
size = op.getBit() / 8;
|
|
}
|
|
|
|
db(code | (op.getIdx() & 7));
|
|
db(imm, size);
|
|
} else if (op.isMEM()) {
|
|
opModM(static_cast<const Address&>(op), Reg(0, Operand::REG, op.getBit()), B11000110);
|
|
int size = op.getBit() / 8; if (size > 4) size = 4;
|
|
db(static_cast<uint32>(imm), size);
|
|
} else {
|
|
throw ERR_BAD_COMBINATION;
|
|
}
|
|
}
|
|
void mov(
|
|
#ifdef XBYAK64
|
|
const Reg64& reg,
|
|
#else
|
|
const Reg32& reg,
|
|
#endif
|
|
const char *label)
|
|
{
|
|
if (label == 0) {
|
|
mov(reg, 0, true);
|
|
return;
|
|
}
|
|
const int jmpSize = (int)sizeof(size_t);
|
|
#ifdef XBYAK64
|
|
const size_t dummyAddr = (size_t(0x11223344) << 32) | 55667788;
|
|
#else
|
|
const size_t dummyAddr = 0x12345678;
|
|
#endif
|
|
if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory();
|
|
size_t offset = 0;
|
|
if (label_.getOffset(&offset, label)) {
|
|
if (isAutoGrow()) {
|
|
mov(reg, dummyAddr);
|
|
save(size_ - jmpSize, offset, jmpSize, inner::LaddTop);
|
|
} else {
|
|
mov(reg, size_t(top_) + offset, false); // not to optimize 32-bit imm
|
|
}
|
|
return;
|
|
}
|
|
mov(reg, dummyAddr);
|
|
JmpLabel jmp;
|
|
jmp.endOfJmp = size_;
|
|
jmp.jmpSize = jmpSize;
|
|
jmp.mode = isAutoGrow() ? inner::LaddTop : inner::Labs;
|
|
label_.addUndefinedLabel(label, jmp);
|
|
}
|
|
void cmpxchg8b(const Address& addr) { opModM(addr, Reg32(1), 0x0F, B11000111); }
|
|
#ifdef XBYAK64
|
|
void cmpxchg16b(const Address& addr) { opModM(addr, Reg64(1), 0x0F, B11000111); }
|
|
#endif
|
|
void xadd(const Operand& op, const Reg& reg)
|
|
{
|
|
opModRM(reg, op, (op.isREG() && reg.isREG() && op.getBit() == reg.getBit()), op.isMEM(), 0x0F, B11000000 | (reg.isBit(8) ? 0 : 1));
|
|
}
|
|
void xchg(const Operand& op1, const Operand& op2)
|
|
{
|
|
const Operand *p1 = &op1, *p2 = &op2;
|
|
if (p1->isMEM() || (p2->isREG(16 | i32e) && p2->getIdx() == 0)) {
|
|
p1 = &op2; p2 = &op1;
|
|
}
|
|
if (p1->isMEM()) throw ERR_BAD_COMBINATION;
|
|
if (p2->isREG() && (p1->isREG(16 | i32e) && p1->getIdx() == 0)
|
|
#ifdef XBYAK64
|
|
&& (p2->getIdx() != 0 || !p1->isREG(32))
|
|
#endif
|
|
) {
|
|
rex(*p2, *p1); db(0x90 | (p2->getIdx() & 7));
|
|
return;
|
|
}
|
|
opModRM(*p1, *p2, (p1->isREG() && p2->isREG() && (p1->getBit() == p2->getBit())), p2->isMEM(), B10000110 | (p1->isBit(8) ? 0 : 1));
|
|
}
|
|
void call(const char *label)
|
|
{
|
|
opJmp(label, T_NEAR, 0, B11101000, 0);
|
|
}
|
|
void call(const void *addr)
|
|
{
|
|
opJmpAbs(addr, T_NEAR, 0, B11101000);
|
|
}
|
|
// special case
|
|
void movd(const Address& addr, const Mmx& mmx)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModM(addr, mmx, 0x0F, B01111110);
|
|
}
|
|
void movd(const Reg32& reg, const Mmx& mmx)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModR(mmx, reg, 0x0F, B01111110);
|
|
}
|
|
void movd(const Mmx& mmx, const Address& addr)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModM(addr, mmx, 0x0F, B01101110);
|
|
}
|
|
void movd(const Mmx& mmx, const Reg32& reg)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModR(mmx, reg, 0x0F, B01101110);
|
|
}
|
|
void movq2dq(const Xmm& xmm, const Mmx& mmx)
|
|
{
|
|
db(0xF3); opModR(xmm, mmx, 0x0F, B11010110);
|
|
}
|
|
void movdq2q(const Mmx& mmx, const Xmm& xmm)
|
|
{
|
|
db(0xF2); opModR(mmx, xmm, 0x0F, B11010110);
|
|
}
|
|
void movq(const Mmx& mmx, const Operand& op)
|
|
{
|
|
if (mmx.isXMM()) db(0xF3);
|
|
opModRM(mmx, op, (mmx.getKind() == op.getKind()), op.isMEM(), 0x0F, mmx.isXMM() ? B01111110 : B01101111);
|
|
}
|
|
void movq(const Address& addr, const Mmx& mmx)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModM(addr, mmx, 0x0F, mmx.isXMM() ? B11010110 : B01111111);
|
|
}
|
|
#ifdef XBYAK64
|
|
void movq(const Reg64& reg, const Mmx& mmx)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModR(mmx, reg, 0x0F, B01111110);
|
|
}
|
|
void movq(const Mmx& mmx, const Reg64& reg)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModR(mmx, reg, 0x0F, B01101110);
|
|
}
|
|
void pextrq(const Operand& op, const Xmm& xmm, uint8 imm)
|
|
{
|
|
if (!op.isREG(64) && !op.isMEM()) throw ERR_BAD_COMBINATION;
|
|
opGen(Reg64(xmm.getIdx()), op, 0x16, 0x66, 0, imm, B00111010); // force to 64bit
|
|
}
|
|
void pinsrq(const Xmm& xmm, const Operand& op, uint8 imm)
|
|
{
|
|
if (!op.isREG(64) && !op.isMEM()) throw ERR_BAD_COMBINATION;
|
|
opGen(Reg64(xmm.getIdx()), op, 0x22, 0x66, 0, imm, B00111010); // force to 64bit
|
|
}
|
|
void movsxd(const Reg64& reg, const Operand& op)
|
|
{
|
|
if (!op.isBit(32)) throw ERR_BAD_COMBINATION;
|
|
opModRM(reg, op, op.isREG(), op.isMEM(), 0x63);
|
|
}
|
|
#endif
|
|
// MMX2 : pextrw : reg, mmx/xmm, imm
|
|
// SSE4 : pextrw, pextrb, pextrd, extractps : reg/mem, mmx/xmm, imm
|
|
void pextrw(const Operand& op, const Mmx& xmm, uint8 imm) { opExt(op, xmm, 0x15, imm, true); }
|
|
void pextrb(const Operand& op, const Xmm& xmm, uint8 imm) { opExt(op, xmm, 0x14, imm); }
|
|
void pextrd(const Operand& op, const Xmm& xmm, uint8 imm) { opExt(op, xmm, 0x16, imm); }
|
|
void extractps(const Operand& op, const Xmm& xmm, uint8 imm) { opExt(op, xmm, 0x17, imm); }
|
|
void pinsrw(const Mmx& mmx, const Operand& op, int imm)
|
|
{
|
|
if (!op.isREG(32) && !op.isMEM()) throw ERR_BAD_COMBINATION;
|
|
opGen(mmx, op, B11000100, mmx.isXMM() ? 0x66 : NONE, 0, imm);
|
|
}
|
|
void insertps(const Xmm& xmm, const Operand& op, uint8 imm) { opGen(xmm, op, 0x21, 0x66, isXMM_XMMorMEM, imm, B00111010); }
|
|
void pinsrb(const Xmm& xmm, const Operand& op, uint8 imm) { opGen(xmm, op, 0x20, 0x66, isXMM_REG32orMEM, imm, B00111010); }
|
|
void pinsrd(const Xmm& xmm, const Operand& op, uint8 imm) { opGen(xmm, op, 0x22, 0x66, isXMM_REG32orMEM, imm, B00111010); }
|
|
|
|
void pmovmskb(const Reg32e& reg, const Mmx& mmx)
|
|
{
|
|
if (mmx.isXMM()) db(0x66);
|
|
opModR(reg, mmx, 0x0F, B11010111);
|
|
}
|
|
void maskmovq(const Mmx& reg1, const Mmx& reg2)
|
|
{
|
|
if (!reg1.isMMX() || !reg2.isMMX()) throw ERR_BAD_COMBINATION;
|
|
opModR(reg1, reg2, 0x0F, B11110111);
|
|
}
|
|
void lea(const Reg32e& reg, const Address& addr) { opModM(addr, reg, B10001101); }
|
|
|
|
void movmskps(const Reg32e& reg, const Xmm& xmm) { opModR(reg, xmm, 0x0F, B01010000); }
|
|
void movmskpd(const Reg32e& reg, const Xmm& xmm) { db(0x66); movmskps(reg, xmm); }
|
|
void movntps(const Address& addr, const Xmm& xmm) { opModM(addr, Mmx(xmm.getIdx()), 0x0F, B00101011); }
|
|
void movntdqa(const Xmm& xmm, const Address& addr) { db(0x66); opModM(addr, xmm, 0x0F, 0x38, 0x2A); }
|
|
void lddqu(const Xmm& xmm, const Address& addr) { db(0xF2); opModM(addr, xmm, 0x0F, B11110000); }
|
|
void movnti(const Address& addr, const Reg32e& reg) { opModM(addr, reg, 0x0F, B11000011); }
|
|
void movntq(const Address& addr, const Mmx& mmx)
|
|
{
|
|
if (!mmx.isMMX()) throw ERR_BAD_COMBINATION;
|
|
opModM(addr, mmx, 0x0F, B11100111);
|
|
}
|
|
void crc32(const Reg32e& reg, const Operand& op)
|
|
{
|
|
if (reg.isBit(32) && op.isBit(16)) db(0x66);
|
|
db(0xF2);
|
|
opModRM(reg, op, op.isREG(), op.isMEM(), 0x0F, 0x38, 0xF0 | (op.isBit(8) ? 0 : 1));
|
|
}
|
|
void rdrand(const Reg& r) { if (r.isBit(8)) throw ERR_BAD_SIZE_OF_REGISTER; opModR(Reg(6, Operand::REG, r.getBit()), r, 0x0f, 0xc7); }
|
|
void rorx(const Reg32e& r, const Operand& op, uint8 imm) { opGpr(r, op, Reg32e(0, r.getBit()), MM_0F3A | PP_F2, 0xF0, false); db(imm); }
|
|
enum { NONE = 256 };
|
|
CodeGenerator(size_t maxSize = DEFAULT_MAX_CODE_SIZE, void *userPtr = 0, Allocator *allocator = 0)
|
|
: CodeArray(maxSize, userPtr, allocator)
|
|
, mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7)
|
|
, xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7)
|
|
, ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7)
|
|
, xm0(xmm0), xm1(xmm1), xm2(xmm2), xm3(xmm3), xm4(xmm4), xm5(xmm5), xm6(xmm6), xm7(xmm7) // for my convenience
|
|
, ym0(ymm0), ym1(ymm1), ym2(ymm2), ym3(ymm3), ym4(ymm4), ym5(ymm5), ym6(ymm6), ym7(ymm7) // for my convenience
|
|
, eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI)
|
|
, ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI)
|
|
, al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH)
|
|
, ptr(0), byte(8), word(16), dword(32), qword(64)
|
|
, st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7)
|
|
#ifdef XBYAK64
|
|
, rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15)
|
|
, r8d(Operand::R8D), r9d(Operand::R9D), r10d(Operand::R10D), r11d(Operand::R11D), r12d(Operand::R12D), r13d(Operand::R13D), r14d(Operand::R14D), r15d(Operand::R15D)
|
|
, r8w(Operand::R8W), r9w(Operand::R9W), r10w(Operand::R10W), r11w(Operand::R11W), r12w(Operand::R12W), r13w(Operand::R13W), r14w(Operand::R14W), r15w(Operand::R15W)
|
|
, r8b(Operand::R8B), r9b(Operand::R9B), r10b(Operand::R10B), r11b(Operand::R11B), r12b(Operand::R12B), r13b(Operand::R13B), r14b(Operand::R14B), r15b(Operand::R15B)
|
|
, spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true)
|
|
, xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15)
|
|
, ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15)
|
|
, xm8(xmm8), xm9(xmm9), xm10(xmm10), xm11(xmm11), xm12(xmm12), xm13(xmm13), xm14(xmm14), xm15(xmm15) // for my convenience
|
|
, ym8(ymm8), ym9(ymm9), ym10(ymm10), ym11(ymm11), ym12(ymm12), ym13(ymm13), ym14(ymm14), ym15(ymm15) // for my convenience
|
|
, rip()
|
|
#endif
|
|
{
|
|
label_.set(this);
|
|
}
|
|
void reset()
|
|
{
|
|
resetSize();
|
|
label_.reset();
|
|
label_.set(this);
|
|
}
|
|
bool hasUndefinedLabel() const { return label_.hasUndefinedLabel(); }
|
|
/*
|
|
call ready() to complete generating code on AutoGrow
|
|
*/
|
|
void ready()
|
|
{
|
|
if (hasUndefinedLabel()) throw ERR_LABEL_IS_NOT_FOUND;
|
|
calcJmpAddress();
|
|
}
|
|
#ifdef XBYAK_TEST
|
|
void dump(bool doClear = true)
|
|
{
|
|
CodeArray::dump();
|
|
if (doClear) size_ = 0;
|
|
}
|
|
#endif
|
|
|
|
#ifndef XBYAK_DONT_READ_LIST
|
|
#include "xbyak_mnemonic.h"
|
|
void align(int x = 16)
|
|
{
|
|
if (x == 1) return;
|
|
if (x < 1 || (x & (x - 1))) throw ERR_BAD_ALIGN;
|
|
if (isAutoGrow() && x > (int)inner::ALIGN_PAGE_SIZE) fprintf(stderr, "warning:autoGrow mode does not support %d align\n", x);
|
|
while (size_t(getCurr()) % x) {
|
|
nop();
|
|
}
|
|
}
|
|
#endif
|
|
};
|
|
|
|
namespace util {
|
|
static const Mmx mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7);
|
|
static const Xmm xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7);
|
|
static const Ymm ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7);
|
|
static const Reg32 eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI);
|
|
static const Reg16 ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI);
|
|
static const Reg8 al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH);
|
|
static const AddressFrame ptr(0), byte(8), word(16), dword(32), qword(64);
|
|
static const Fpu st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7);
|
|
#ifdef XBYAK64
|
|
static const Reg64 rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15);
|
|
static const Reg32 r8d(Operand::R8D), r9d(Operand::R9D), r10d(Operand::R10D), r11d(Operand::R11D), r12d(Operand::R12D), r13d(Operand::R13D), r14d(Operand::R14D), r15d(Operand::R15D);
|
|
static const Reg16 r8w(Operand::R8W), r9w(Operand::R9W), r10w(Operand::R10W), r11w(Operand::R11W), r12w(Operand::R12W), r13w(Operand::R13W), r14w(Operand::R14W), r15w(Operand::R15W);
|
|
static const Reg8 r8b(Operand::R8B), r9b(Operand::R9B), r10b(Operand::R10B), r11b(Operand::R11B), r12b(Operand::R12B), r13b(Operand::R13B), r14b(Operand::R14B), r15b(Operand::R15B), spl(Operand::SPL, 1), bpl(Operand::BPL, 1), sil(Operand::SIL, 1), dil(Operand::DIL, 1);
|
|
static const Xmm xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15);
|
|
static const Ymm ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15);
|
|
static const RegRip rip;
|
|
#endif
|
|
} // util
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
} // end of namespace
|
|
|
|
#endif // XBYAK_XBYAK_H_
|