pcsx2/plugins/GSdx/GSDeviceOGL.cpp

1627 lines
53 KiB
C++

/*
* Copyright (C) 2011-2014 Gregory hainaut
* Copyright (C) 2007-2009 Gabest
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSDeviceOGL.h"
#include "GLState.h"
#include <fstream>
#include "res/glsl_source.h"
//#define ONLY_LINES
// TODO port those value into PerfMon API
#ifdef ENABLE_OGL_DEBUG_MEM_BW
uint64 g_real_texture_upload_byte = 0;
uint64 g_vertex_upload_byte = 0;
uint64 g_uniform_upload_byte = 0;
#endif
static const uint32 g_merge_cb_index = 10;
static const uint32 g_interlace_cb_index = 11;
static const uint32 g_shadeboost_cb_index = 12;
static const uint32 g_fx_cb_index = 14;
static const uint32 g_convert_index = 15;
bool GSDeviceOGL::m_debug_gl_call = false;
int GSDeviceOGL::s_n = 0;
FILE* GSDeviceOGL::m_debug_gl_file = NULL;
GSDeviceOGL::GSDeviceOGL()
: m_free_window(false)
, m_window(NULL)
, m_fbo(0)
, m_fbo_read(0)
, m_va(NULL)
, m_shader(NULL)
{
memset(&m_merge_obj, 0, sizeof(m_merge_obj));
memset(&m_interlace, 0, sizeof(m_interlace));
memset(&m_convert, 0, sizeof(m_convert));
memset(&m_fxaa, 0, sizeof(m_fxaa));
memset(&m_shaderfx, 0, sizeof(m_shaderfx));
memset(&m_date, 0, sizeof(m_date));
GLState::Clear();
// Reset the debug file
#ifdef ENABLE_OGL_DEBUG
m_debug_gl_file = fopen("GSdx_opengl_debug.txt","w");
#endif
m_debug_gl_call = theApp.GetConfig("debug_opengl", 0);
}
GSDeviceOGL::~GSDeviceOGL()
{
if (m_debug_gl_file) {
fclose(m_debug_gl_file);
m_debug_gl_file = NULL;
}
// If the create function wasn't called nothing to do.
if (m_shader == NULL)
return;
GL_PUSH("GSDeviceOGL destructor");
// Clean vertex buffer state
delete (m_va);
// Clean m_merge_obj
for (size_t i = 0; i < countof(m_merge_obj.ps); i++)
m_shader->Delete(m_merge_obj.ps[i]);
delete (m_merge_obj.cb);
// Clean m_interlace
for (size_t i = 0; i < countof(m_interlace.ps); i++)
m_shader->Delete(m_interlace.ps[i]);
delete (m_interlace.cb);
// Clean m_convert
m_shader->Delete(m_convert.vs);
for (size_t i = 0; i < countof(m_convert.ps); i++)
m_shader->Delete(m_convert.ps[i]);
delete m_convert.dss;
delete m_convert.dss_write;
delete m_convert.cb;
// Clean m_fxaa
delete m_fxaa.cb;
m_shader->Delete(m_fxaa.ps);
// Clean m_shaderfx
delete m_shaderfx.cb;
m_shader->Delete(m_shaderfx.ps);
// Clean m_date
delete m_date.dss;
// Clean shadeboost
delete m_shadeboost.cb;
m_shader->Delete(m_shadeboost.ps);
// Clean various opengl allocation
gl_DeleteFramebuffers(1, &m_fbo);
gl_DeleteFramebuffers(1, &m_fbo_read);
// Delete HW FX
delete m_vs_cb;
delete m_ps_cb;
gl_DeleteSamplers(1, &m_palette_ss);
m_shader->Delete(m_apitrace);
for (uint32 key = 0; key < countof(m_vs); key++) m_shader->Delete(m_vs[key]);
for (uint32 key = 0; key < countof(m_gs); key++) m_shader->Delete(m_gs[key]);
for (auto it = m_ps.begin(); it != m_ps.end() ; it++) m_shader->Delete(it->second);
m_ps.clear();
gl_DeleteSamplers(countof(m_ps_ss), m_ps_ss);
for (uint32 key = 0; key < countof(m_om_dss); key++) delete m_om_dss[key];
PboPool::Destroy();
// Must be done after the destruction of all shader/program objects
delete m_shader;
m_shader = NULL;
GL_POP();
}
GSTexture* GSDeviceOGL::CreateSurface(int type, int w, int h, bool msaa, int fmt)
{
GL_PUSH("Create surface");
// A wrapper to call GSTextureOGL, with the different kind of parameter
GSTextureOGL* t = NULL;
t = new GSTextureOGL(type, w, h, fmt, m_fbo_read);
// NOTE: I'm not sure RenderTarget always need to be cleared. It could be costly for big upscale.
switch(type)
{
case GSTexture::RenderTarget:
ClearRenderTarget(t, 0);
break;
case GSTexture::DepthStencil:
ClearDepth(t, 0);
// No need to clear the stencil now.
break;
}
GL_POP();
return t;
}
GSTexture* GSDeviceOGL::FetchSurface(int type, int w, int h, bool msaa, int format)
{
return GSDevice::FetchSurface(type, w, h, false, format);
}
bool GSDeviceOGL::Create(GSWnd* wnd)
{
if (m_window == NULL) {
if (!GLLoader::check_gl_version(3, 3)) return false;
if (!GLLoader::check_gl_supported_extension()) return false;
}
GL_PUSH("GSDeviceOGL::Create");
m_window = wnd;
// ****************************************************************
// Debug helper
// ****************************************************************
#ifdef ENABLE_OGL_DEBUG
if (theApp.GetConfig("debug_opengl", 0) && gl_DebugMessageCallback) {
gl_DebugMessageCallback((GLDEBUGPROC)DebugOutputToFile, NULL);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB);
}
#endif
// ****************************************************************
// Various object
// ****************************************************************
m_shader = new GSShaderOGL(!!theApp.GetConfig("debug_glsl_shader", 0));
gl_GenFramebuffers(1, &m_fbo);
// Always write to the first buffer
OMSetFBO(m_fbo);
GLenum target[1] = {GL_COLOR_ATTACHMENT0};
gl_DrawBuffers(1, target);
OMSetFBO(0);
gl_GenFramebuffers(1, &m_fbo_read);
// Always read from the first buffer
gl_BindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo_read);
glReadBuffer(GL_COLOR_ATTACHMENT0);
gl_BindFramebuffer(GL_READ_FRAMEBUFFER, 0);
// ****************************************************************
// Vertex buffer state
// ****************************************************************
ASSERT(sizeof(GSVertexPT1) == sizeof(GSVertex));
GSInputLayoutOGL il_convert[] =
{
{2 , GL_FLOAT , GL_FALSE , sizeof(GSVertexPT1) , (const GLvoid*)(0) } ,
{2 , GL_FLOAT , GL_FALSE , sizeof(GSVertexPT1) , (const GLvoid*)(16) } ,
{4 , GL_UNSIGNED_BYTE , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(8) } ,
{1 , GL_FLOAT , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(12) } ,
{2 , GL_UNSIGNED_SHORT , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(16) } ,
{1 , GL_UNSIGNED_INT , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(20) } ,
{2 , GL_UNSIGNED_SHORT , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(24) } ,
{4 , GL_UNSIGNED_BYTE , GL_TRUE , sizeof(GSVertex) , (const GLvoid*)(28) } , // Only 1 byte is useful but hardware unit only support 4B
};
m_va = new GSVertexBufferStateOGL(sizeof(GSVertexPT1), il_convert, countof(il_convert));
// ****************************************************************
// Pre Generate the different sampler object
// ****************************************************************
for (uint32 key = 0; key < countof(m_ps_ss); key++) {
m_ps_ss[key] = CreateSampler(PSSamplerSelector(key));
}
// ****************************************************************
// convert
// ****************************************************************
m_convert.cb = new GSUniformBufferOGL(g_convert_index, sizeof(ConvertConstantBuffer));
// Upload once and forget about it
ConvertConstantBuffer cb;
cb.ScalingFactor = GSVector4i(theApp.GetConfig("nativeres", 0) ? 1 : theApp.GetConfig("upscale_multiplier", 2));
m_convert.cb->upload(&cb);
m_convert.vs = m_shader->Compile("convert.glsl", "vs_main", GL_VERTEX_SHADER, convert_glsl);
for(size_t i = 0; i < countof(m_convert.ps); i++)
m_convert.ps[i] = m_shader->Compile("convert.glsl", format("ps_main%d", i), GL_FRAGMENT_SHADER, convert_glsl);
PSSamplerSelector point;
m_convert.pt = GetSamplerID(point);
PSSamplerSelector bilinear;
bilinear.ltf = true;
m_convert.ln = GetSamplerID(bilinear);
m_convert.dss = new GSDepthStencilOGL();
m_convert.dss_write = new GSDepthStencilOGL();
m_convert.dss_write->EnableDepth();
m_convert.dss_write->SetDepth(GL_ALWAYS, true);
// ****************************************************************
// merge
// ****************************************************************
m_merge_obj.cb = new GSUniformBufferOGL(g_merge_cb_index, sizeof(MergeConstantBuffer));
for(size_t i = 0; i < countof(m_merge_obj.ps); i++)
m_merge_obj.ps[i] = m_shader->Compile("merge.glsl", format("ps_main%d", i), GL_FRAGMENT_SHADER, merge_glsl);
// ****************************************************************
// interlace
// ****************************************************************
m_interlace.cb = new GSUniformBufferOGL(g_interlace_cb_index, sizeof(InterlaceConstantBuffer));
for(size_t i = 0; i < countof(m_interlace.ps); i++)
m_interlace.ps[i] = m_shader->Compile("interlace.glsl", format("ps_main%d", i), GL_FRAGMENT_SHADER, interlace_glsl);
// ****************************************************************
// Shade boost
// ****************************************************************
m_shadeboost.cb = new GSUniformBufferOGL(g_shadeboost_cb_index, sizeof(ShadeBoostConstantBuffer));
int ShadeBoost_Contrast = theApp.GetConfig("ShadeBoost_Contrast", 50);
int ShadeBoost_Brightness = theApp.GetConfig("ShadeBoost_Brightness", 50);
int ShadeBoost_Saturation = theApp.GetConfig("ShadeBoost_Saturation", 50);
std::string shade_macro = format("#define SB_SATURATION %d.0\n", ShadeBoost_Saturation)
+ format("#define SB_BRIGHTNESS %d.0\n", ShadeBoost_Brightness)
+ format("#define SB_CONTRAST %d.0\n", ShadeBoost_Contrast);
m_shadeboost.ps = m_shader->Compile("shadeboost.glsl", "ps_main", GL_FRAGMENT_SHADER, shadeboost_glsl, shade_macro);
// ****************************************************************
// rasterization configuration
// ****************************************************************
#ifdef ONLY_LINES
glLineWidth(5.0);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
#else
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
#endif
glDisable(GL_CULL_FACE);
glEnable(GL_SCISSOR_TEST);
glDisable(GL_MULTISAMPLE);
glDisable(GL_DITHER); // Honestly I don't know!
// ****************************************************************
// DATE
// ****************************************************************
m_date.dss = new GSDepthStencilOGL();
m_date.dss->EnableStencil();
m_date.dss->SetStencil(GL_ALWAYS, GL_REPLACE);
// ****************************************************************
// Use DX coordinate convention
// ****************************************************************
// VS gl_position.z => [-1,-1]
// FS depth => [0, 1]
// because of -1 we loose lot of precision for small GS value
// This extension allow FS depth to range from -1 to 1. So
// gl_position.z could range from [0, 1]
if (GLLoader::found_GL_ARB_clip_control) {
// Change depth convention
gl_ClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE);
}
// ****************************************************************
// HW renderer shader
// ****************************************************************
CreateTextureFX();
// ****************************************************************
// Pbo Pool allocation
// ****************************************************************
PboPool::Init();
GL_POP();
// ****************************************************************
// Finish window setup and backbuffer
// ****************************************************************
if(!GSDevice::Create(wnd))
return false;
GSVector4i rect = wnd->GetClientRect();
Reset(rect.z, rect.w);
// Basic to ensure structures are correctly packed
ASSERT(sizeof(VSSelector) == 4);
ASSERT(sizeof(PSSelector) == 8);
ASSERT(sizeof(PSSamplerSelector) == 4);
ASSERT(sizeof(OMDepthStencilSelector) == 4);
ASSERT(sizeof(OMColorMaskSelector) == 4);
return true;
}
bool GSDeviceOGL::Reset(int w, int h)
{
if(!GSDevice::Reset(w, h))
return false;
// Opengl allocate the backbuffer with the window. The render is done in the backbuffer when
// there isn't any FBO. Only a dummy texture is created to easily detect when the rendering is done
// in the backbuffer
m_backbuffer = new GSTextureOGL(GSTextureOGL::Backbuffer, w, h, 0, m_fbo_read);
return true;
}
void GSDeviceOGL::SetVSync(bool enable)
{
m_wnd->SetVSync(enable);
}
void GSDeviceOGL::Flip()
{
#ifdef ENABLE_OGL_DEBUG
CheckDebugLog();
#endif
m_wnd->Flip();
}
void GSDeviceOGL::BeforeDraw()
{
m_shader->UseProgram();
}
void GSDeviceOGL::AfterDraw()
{
}
void GSDeviceOGL::DrawPrimitive()
{
BeforeDraw();
m_va->DrawPrimitive();
AfterDraw();
}
void GSDeviceOGL::DrawPrimitive(int offset, int count)
{
BeforeDraw();
m_va->DrawPrimitive(offset, count);
AfterDraw();
}
void GSDeviceOGL::DrawIndexedPrimitive()
{
BeforeDraw();
m_va->DrawIndexedPrimitive();
AfterDraw();
}
void GSDeviceOGL::DrawIndexedPrimitive(int offset, int count)
{
//ASSERT(offset + count <= (int)m_index.count);
BeforeDraw();
m_va->DrawIndexedPrimitive(offset, count);
AfterDraw();
}
void GSDeviceOGL::ClearRenderTarget(GSTexture* t, const GSVector4& c)
{
if (!t) return;
GSTextureOGL* T = static_cast<GSTextureOGL*>(t);
if (T->HasBeenCleaned() && !T->IsBackbuffer())
return;
GL_PUSH("Clear RT %d", T->GetID());
// TODO: check size of scissor before toggling it
glDisable(GL_SCISSOR_TEST);
uint32 old_color_mask = GLState::wrgba;
OMSetColorMaskState();
if (T->IsBackbuffer()) {
OMSetFBO(0);
// glDrawBuffer(GL_BACK); // this is the default when there is no FB
// 0 will select the first drawbuffer ie GL_BACK
gl_ClearBufferfv(GL_COLOR, 0, c.v);
} else {
OMSetFBO(m_fbo);
OMAttachRt(T);
gl_ClearBufferfv(GL_COLOR, 0, c.v);
}
OMSetColorMaskState(OMColorMaskSelector(old_color_mask));
glEnable(GL_SCISSOR_TEST);
T->WasCleaned();
GL_POP();
}
void GSDeviceOGL::ClearRenderTarget(GSTexture* t, uint32 c)
{
if (!t) return;
GSVector4 color = GSVector4::rgba32(c) * (1.0f / 255);
ClearRenderTarget(t, color);
}
void GSDeviceOGL::ClearRenderTarget_i(GSTexture* t, int32 c)
{
if (!t) return;
GSTextureOGL* T = static_cast<GSTextureOGL*>(t);
GL_PUSH("Clear RTi %d", T->GetID());
uint32 old_color_mask = GLState::wrgba;
OMSetColorMaskState();
// Keep SCISSOR_TEST enabled on purpose to reduce the size
// of clean in DATE (impact big upscaling)
int32 col[4] = {c, c, c, c};
OMSetFBO(m_fbo);
OMAttachRt(T);
// Blending is not supported when you render to an Integer texture
if (GLState::blend) {
glDisable(GL_BLEND);
}
gl_ClearBufferiv(GL_COLOR, 0, col);
OMSetColorMaskState(OMColorMaskSelector(old_color_mask));
if (GLState::blend) {
glEnable(GL_BLEND);
}
GL_POP();
}
void GSDeviceOGL::ClearDepth(GSTexture* t, float c)
{
if (!t) return;
GSTextureOGL* T = static_cast<GSTextureOGL*>(t);
GL_PUSH("Clear Depth %d", T->GetID());
OMSetFBO(m_fbo);
OMAttachDs(T);
// TODO: check size of scissor before toggling it
glDisable(GL_SCISSOR_TEST);
if (GLState::depth_mask) {
gl_ClearBufferfv(GL_DEPTH, 0, &c);
} else {
glDepthMask(true);
gl_ClearBufferfv(GL_DEPTH, 0, &c);
glDepthMask(false);
}
glEnable(GL_SCISSOR_TEST);
GL_POP();
}
void GSDeviceOGL::ClearStencil(GSTexture* t, uint8 c)
{
if (!t) return;
GSTextureOGL* T = static_cast<GSTextureOGL*>(t);
GL_PUSH("Clear Stencil %d", T->GetID());
// Keep SCISSOR_TEST enabled on purpose to reduce the size
// of clean in DATE (impact big upscaling)
OMSetFBO(m_fbo);
OMAttachDs(T);
GLint color = c;
gl_ClearBufferiv(GL_STENCIL, 0, &color);
GL_POP();
}
GLuint GSDeviceOGL::CreateSampler(PSSamplerSelector sel)
{
return CreateSampler(sel.ltf, sel.tau, sel.tav);
}
GLuint GSDeviceOGL::CreateSampler(bool bilinear, bool tau, bool tav)
{
GL_PUSH("Create Sampler");
GLuint sampler;
gl_GenSamplers(1, &sampler);
if (bilinear) {
gl_SamplerParameteri(sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl_SamplerParameteri(sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
} else {
gl_SamplerParameteri(sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl_SamplerParameteri(sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
}
if (tau)
gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_S, GL_REPEAT);
else
gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
if (tav)
gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_T, GL_REPEAT);
else
gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
gl_SamplerParameterf(sampler, GL_TEXTURE_MIN_LOD, 0);
gl_SamplerParameterf(sampler, GL_TEXTURE_MAX_LOD, 6);
if (GLLoader::found_GL_EXT_texture_filter_anisotropic && !!theApp.GetConfig("AnisotropicFiltering", 0) && !theApp.GetConfig("paltex", 0)) {
int anisotropy = theApp.GetConfig("MaxAnisotropy", 1);
if (anisotropy > 1) // 1 is the default in opengl so don't do anything
gl_SamplerParameterf(sampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)anisotropy);
}
GL_POP();
return sampler;
}
void GSDeviceOGL::InitPrimDateTexture(GSTexture* rt)
{
const GSVector2i& rtsize = rt->GetSize();
// Create a texture to avoid the useless clean@0
if (m_date.t == NULL)
m_date.t = CreateTexture(rtsize.x, rtsize.y, GL_R32I);
// Clean with the max signed value
ClearRenderTarget_i(m_date.t, 0x7FFFFFFF);
gl_BindImageTexture(2, m_date.t->GetID(), 0, false, 0, GL_READ_WRITE, GL_R32I);
}
void GSDeviceOGL::RecycleDateTexture()
{
if (m_date.t) {
//static_cast<GSTextureOGL*>(m_date.t)->Save(format("/tmp/date_adv_%04ld.csv", s_n));
Recycle(m_date.t);
m_date.t = NULL;
}
}
void GSDeviceOGL::Barrier(GLbitfield b)
{
gl_MemoryBarrier(b);
}
/* Note: must be here because tfx_glsl is static */
GLuint GSDeviceOGL::CompileVS(VSSelector sel, int logz)
{
std::string macro = format("#define VS_BPPZ %d\n", sel.bppz)
+ format("#define VS_LOGZ %d\n", logz)
+ format("#define VS_TME %d\n", sel.tme)
+ format("#define VS_FST %d\n", sel.fst)
+ format("#define VS_WILDHACK %d\n", sel.wildhack)
;
return m_shader->Compile("tfx_vgs.glsl", "vs_main", GL_VERTEX_SHADER, tfx_vgs_glsl, macro);
}
/* Note: must be here because tfx_glsl is static */
GLuint GSDeviceOGL::CompileGS(GSSelector sel)
{
std::string macro = format("#define GS_POINT %d\n", sel.point);
return m_shader->Compile("tfx_vgs.glsl", "gs_main", GL_GEOMETRY_SHADER, tfx_vgs_glsl, macro);
}
/* Note: must be here because tfx_glsl is static */
GLuint GSDeviceOGL::CompilePS(PSSelector sel)
{
std::string macro = format("#define PS_FST %d\n", sel.fst)
+ format("#define PS_WMS %d\n", sel.wms)
+ format("#define PS_WMT %d\n", sel.wmt)
+ format("#define PS_FMT %d\n", sel.fmt)
+ format("#define PS_IFMT %d\n", sel.ifmt)
+ format("#define PS_DFMT %d\n", sel.dfmt)
+ format("#define PS_AEM %d\n", sel.aem)
+ format("#define PS_TFX %d\n", sel.tfx)
+ format("#define PS_TCC %d\n", sel.tcc)
+ format("#define PS_ATST %d\n", sel.atst)
+ format("#define PS_FOG %d\n", sel.fog)
+ format("#define PS_CLR1 %d\n", sel.clr1)
+ format("#define PS_FBA %d\n", sel.fba)
+ format("#define PS_LTF %d\n", sel.ltf)
+ format("#define PS_COLCLIP %d\n", sel.colclip)
+ format("#define PS_DATE %d\n", sel.date)
+ format("#define PS_TCOFFSETHACK %d\n", sel.tcoffsethack)
//+ format("#define PS_POINT_SAMPLER %d\n", sel.point_sampler)
+ format("#define PS_BLEND_A %d\n", sel.blend_a)
+ format("#define PS_BLEND_B %d\n", sel.blend_b)
+ format("#define PS_BLEND_C %d\n", sel.blend_c)
+ format("#define PS_BLEND_D %d\n", sel.blend_d)
+ format("#define PS_IIP %d\n", sel.iip)
+ format("#define PS_SHUFFLE %d\n", sel.shuffle)
+ format("#define PS_READ_BA %d\n", sel.read_ba)
+ format("#define PS_WRITE_RG %d\n", sel.write_rg)
+ format("#define PS_FBMASK %d\n", sel.fbmask)
+ format("#define PS_HDR %d\n", sel.hdr)
+ format("#define PS_PABE %d\n", sel.pabe);
;
return m_shader->Compile("tfx.glsl", "ps_main", GL_FRAGMENT_SHADER, tfx_fs_all_glsl, macro);
}
void GSDeviceOGL::SelfShaderTest()
{
#define RUN_TEST \
do { \
GLuint p = CompilePS(sel); \
nb_shader++; \
perf += m_shader->DumpAsm(file, p); \
m_shader->Delete(p); \
} while(0);
#define PRINT_TEST(s) \
do { \
fprintf(stderr, "%s %d instructions for %d shaders (mean of %4.2f)\n", \
s, perf, nb_shader, (float)perf/(float)nb_shader); \
all += perf; \
perf = 0; \
nb_shader = 0; \
} while(0);
int nb_shader = 0;
int perf = 0;
int all = 0;
// Test: SW blending
for (int colclip = 0; colclip < 2; colclip++) {
for (int fmt = 0; fmt < 3; fmt++) {
for (int i = 0; i < 3; i++) {
PSSelector sel;
sel.atst = 1;
sel.tfx = 4;
int ib = (i + 1) % 3;
sel.blend_a = i;
sel.blend_b = ib;;
sel.blend_c = i;
sel.blend_d = i;
sel.colclip = colclip;
sel.dfmt = fmt;
std::string file = format("Shader_Blend_%d_%d_%d_%d__Cclip_%d__Dfmt_%d.glsl.asm",
i, ib, i, i, colclip, fmt);
RUN_TEST;
}
}
}
PRINT_TEST("Blend");
// Test: alpha test
for (int atst = 0; atst < 8; atst++) {
PSSelector sel;
sel.tfx = 4;
sel.atst = atst;
std::string file = format("Shader_Atst_%d.glsl.asm", atst);
RUN_TEST;
}
PRINT_TEST("Alpha Tst");
// Test: fbmask/fog/shuffle/read_ba
for (int read_ba = 0; read_ba < 2; read_ba++) {
PSSelector sel;
sel.tfx = 4;
sel.atst = 1;
sel.fog = 1;
sel.fbmask = 1;
sel.shuffle = 1;
sel.read_ba = read_ba;
std::string file = format("Shader_Fog__Fbmask__Shuffle__Read_ba_%d.glsl.asm", read_ba);
RUN_TEST;
}
PRINT_TEST("Fbmask/fog/shuffle/read_ba");
// Test: Date
for (int date = 1; date < 7; date++) {
PSSelector sel;
sel.tfx = 4;
sel.atst = 1;
sel.date = date;
std::string file = format("Shader_Date_%d.glsl.asm", date);
RUN_TEST;
}
PRINT_TEST("Date");
// Test: FBA
for (int fmt = 0; fmt < 3; fmt++) {
PSSelector sel;
sel.tfx = 4;
sel.atst = 1;
sel.fba = 1;
sel.dfmt = fmt;
sel.clr1 = 1;
std::string file = format("Shader_Fba__Clr1__Dfmt_%d.glsl.asm", fmt);
RUN_TEST;
}
PRINT_TEST("Fba/Clr1/Dfmt");
// Test: Fst/Tc/IIP
{
PSSelector sel;
sel.tfx = 1;
sel.atst = 1;
sel.fst = 0;
sel.iip = 1;
sel.tcoffsethack = 1;
std::string file = format("Shader_Fst__TC__Iip.glsl.asm");
RUN_TEST;
}
PRINT_TEST("Fst/Tc/IIp");
// Test: tfx/tcc
for (int tfx = 0; tfx < 5; tfx++) {
for (int tcc = 0; tcc < 2; tcc++) {
PSSelector sel;
sel.atst = 1;
sel.fst = 1;
sel.tfx = tfx;
sel.tcc = tcc;
std::string file = format("Shader_Tfx_%d__Tcc_%d.glsl.asm", tfx, tcc);
RUN_TEST;
}
}
PRINT_TEST("Tfx/Tcc");
// Test: Texture Sampling
for (int fmt = 0; fmt < 8; fmt++) {
if ((fmt & 3) == 3) continue;
for (int ltf = 0; ltf < 2; ltf++) {
for (int aem = 0; aem < 2; aem++) {
for (int ifmt = 0; ifmt < 3; ifmt++) {
for (int wms = 1; wms < 4; wms++) {
for (int wmt = 1; wmt < 4; wmt++) {
PSSelector sel;
sel.atst = 1;
sel.tfx = 1;
sel.tcc = 1;
sel.ltf = ltf;
sel.aem = aem;
sel.fmt = fmt;
sel.ifmt = ifmt;
sel.wms = wms;
sel.wmt = wmt;
std::string file = format("Shader_Ltf_%d__Aem_%d__Fmt_%d__Ifmt_%d__Wms_%d__Wmt_%d.glsl.asm",
ltf, aem, fmt, ifmt, wms, wmt);
RUN_TEST;
}
}
}
}
}
}
PRINT_TEST("Texture Sampling");
fprintf(stderr, "\nTotal %d\n", all);
#undef RUN_TEST
#undef PRINT_TEST
}
GSTexture* GSDeviceOGL::CreateRenderTarget(int w, int h, bool msaa, int format)
{
return GSDevice::CreateRenderTarget(w, h, msaa, format ? format : GL_RGBA8);
}
GSTexture* GSDeviceOGL::CreateDepthStencil(int w, int h, bool msaa, int format)
{
return GSDevice::CreateDepthStencil(w, h, msaa, format ? format : GL_DEPTH32F_STENCIL8);
}
GSTexture* GSDeviceOGL::CreateTexture(int w, int h, int format)
{
return GSDevice::CreateTexture(w, h, format ? format : GL_RGBA8);
}
GSTexture* GSDeviceOGL::CreateOffscreen(int w, int h, int format)
{
return GSDevice::CreateOffscreen(w, h, format ? format : GL_RGBA8);
}
// blit a texture into an offscreen buffer
GSTexture* GSDeviceOGL::CopyOffscreen(GSTexture* src, const GSVector4& sRect, int w, int h, int format, int ps_shader)
{
if (format == 0)
format = GL_RGBA8;
ASSERT(src);
ASSERT(format == GL_RGBA8 || format == GL_R16UI || format == GL_R32UI);
GSTexture* dst = CreateOffscreen(w, h, format);
GSVector4 dRect(0, 0, w, h);
StretchRect(src, sRect, dst, dRect, m_convert.ps[ps_shader]);
return dst;
}
// Copy a sub part of texture (same as below but force a conversion)
void GSDeviceOGL::CopyRectConv(GSTexture* sTex, GSTexture* dTex, const GSVector4i& r, bool at_origin)
{
const GLuint& sid = sTex->GetID();
const GLuint& did = dTex->GetID();
GL_PUSH(format("CopyRectConv from %d to %d", sid, did).c_str());
gl_BindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo_read);
gl_FramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sid, 0);
if (at_origin)
gl_CopyTextureSubImage2D(did, GL_TEX_LEVEL_0, 0, 0, r.x, r.y, r.width(), r.height());
else
gl_CopyTextureSubImage2D(did, GL_TEX_LEVEL_0, r.x, r.y, r.x, r.y, r.width(), r.height());
gl_BindFramebuffer(GL_READ_FRAMEBUFFER, 0);
GL_POP();
}
// Copy a sub part of a texture into another
void GSDeviceOGL::CopyRect(GSTexture* sTex, GSTexture* dTex, const GSVector4i& r)
{
ASSERT(sTex && dTex);
const GLuint& sid = sTex->GetID();
const GLuint& did = dTex->GetID();
GL_PUSH("CopyRect from %d to %d", sid, did);
if (GLLoader::found_GL_ARB_copy_image) {
gl_CopyImageSubData( sid, GL_TEXTURE_2D,
0, r.x, r.y, 0,
did, GL_TEXTURE_2D,
0, 0, 0, 0,
r.width(), r.height(), 1);
} else {
// Slower copy (conversion is done)
CopyRectConv(sTex, dTex, r, true);
}
GL_POP();
}
void GSDeviceOGL::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, int shader, bool linear)
{
StretchRect(sTex, sRect, dTex, dRect, m_convert.ps[shader], linear);
}
void GSDeviceOGL::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, GLuint ps, bool linear)
{
StretchRect(sTex, sRect, dTex, dRect, ps, m_NO_BLEND, linear);
}
void GSDeviceOGL::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, GLuint ps, int bs, bool linear)
{
if(!sTex || !dTex)
{
ASSERT(0);
return;
}
bool draw_in_depth = (ps == m_convert.ps[12] || ps == m_convert.ps[13] || ps == m_convert.ps[14]);
// Performance optimization. It might be faster to use a framebuffer blit for standard case
// instead to emulate it with shader
// see https://www.opengl.org/wiki/Framebuffer#Blitting
GL_PUSH("StretchRect from %d to %d", sTex->GetID(), dTex->GetID());
// ************************************
// Init
// ************************************
BeginScene();
GSVector2i ds = dTex->GetSize();
m_shader->VS(m_convert.vs);
m_shader->GS(0);
m_shader->PS(ps);
// ************************************
// om
// ************************************
if (draw_in_depth)
OMSetDepthStencilState(m_convert.dss_write);
else
OMSetDepthStencilState(m_convert.dss);
if (draw_in_depth)
OMSetRenderTargets(NULL, dTex);
else
OMSetRenderTargets(dTex, NULL);
OMSetBlendState(bs);
OMSetColorMaskState();
// ************************************
// ia
// ************************************
// Original code from DX
float left = dRect.x * 2 / ds.x - 1.0f;
float right = dRect.z * 2 / ds.x - 1.0f;
#if 0
float top = 1.0f - dRect.y * 2 / ds.y;
float bottom = 1.0f - dRect.w * 2 / ds.y;
#else
// Opengl get some issues with the coordinate
// I flip top/bottom to fix scaling of the internal resolution
float top = -1.0f + dRect.y * 2 / ds.y;
float bottom = -1.0f + dRect.w * 2 / ds.y;
#endif
// Flip y axis only when we render in the backbuffer
// By default everything is render in the wrong order (ie dx).
// 1/ consistency between several pass rendering (interlace)
// 2/ in case some GSdx code expect thing in dx order.
// Only flipping the backbuffer is transparent (I hope)...
GSVector4 flip_sr = sRect;
if (static_cast<GSTextureOGL*>(dTex)->IsBackbuffer()) {
flip_sr.y = sRect.w;
flip_sr.w = sRect.y;
}
GSVertexPT1 vertices[] =
{
{GSVector4(left , top , 0.0f, 0.0f) , GSVector2(flip_sr.x , flip_sr.y)} ,
{GSVector4(right , top , 0.0f, 0.0f) , GSVector2(flip_sr.z , flip_sr.y)} ,
{GSVector4(left , bottom, 0.0f, 0.0f) , GSVector2(flip_sr.x , flip_sr.w)} ,
{GSVector4(right , bottom, 0.0f, 0.0f) , GSVector2(flip_sr.z , flip_sr.w)} ,
};
IASetVertexBuffer(vertices, 4);
IASetPrimitiveTopology(GL_TRIANGLE_STRIP);
// ************************************
// Texture
// ************************************
PSSetShaderResource(0, sTex);
PSSetSamplerState(linear ? m_convert.ln : m_convert.pt);
// ************************************
// Draw
// ************************************
DrawPrimitive();
// ************************************
// End
// ************************************
EndScene();
GL_POP();
}
void GSDeviceOGL::DoMerge(GSTexture* sTex[2], GSVector4* sRect, GSTexture* dTex, GSVector4* dRect, bool slbg, bool mmod, const GSVector4& c)
{
GL_PUSH("DoMerge");
OMSetColorMaskState();
ClearRenderTarget(dTex, c);
if(sTex[1] && !slbg)
{
StretchRect(sTex[1], sRect[1], dTex, dRect[1], m_merge_obj.ps[0]);
}
if(sTex[0])
{
m_merge_obj.cb->upload(&c.v);
StretchRect(sTex[0], sRect[0], dTex, dRect[0], m_merge_obj.ps[mmod ? 1 : 0], m_MERGE_BLEND);
}
GL_POP();
}
void GSDeviceOGL::DoInterlace(GSTexture* sTex, GSTexture* dTex, int shader, bool linear, float yoffset)
{
GL_PUSH("DoInterlace");
OMSetColorMaskState();
GSVector4 s = GSVector4(dTex->GetSize());
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0.0f, yoffset, s.x, s.y + yoffset);
InterlaceConstantBuffer cb;
cb.ZrH = GSVector2(0, 1.0f / s.y);
cb.hH = s.y / 2;
m_interlace.cb->upload(&cb);
StretchRect(sTex, sRect, dTex, dRect, m_interlace.ps[shader], linear);
GL_POP();
}
void GSDeviceOGL::DoFXAA(GSTexture* sTex, GSTexture* dTex)
{
// Lazy compile
if (!m_fxaa.ps) {
if (!GLLoader::found_GL_ARB_gpu_shader5) { // GL4.0 extension
return;
}
std::string fxaa_macro = "#define FXAA_GLSL_130 1\n";
fxaa_macro += "#extension GL_ARB_gpu_shader5 : enable\n";
m_fxaa.ps = m_shader->Compile("fxaa.fx", "ps_main", GL_FRAGMENT_SHADER, fxaa_fx, fxaa_macro);
}
GL_PUSH("DoFxaa");
OMSetColorMaskState();
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
StretchRect(sTex, sRect, dTex, dRect, m_fxaa.ps, true);
GL_POP();
}
void GSDeviceOGL::DoExternalFX(GSTexture* sTex, GSTexture* dTex)
{
// Lazy compile
if (!m_shaderfx.ps) {
if (!GLLoader::found_GL_ARB_gpu_shader5) { // GL4.0 extension
return;
}
std::string config_name(theApp.GetConfig("shaderfx_conf", "dummy.ini"));
std::ifstream fconfig(config_name);
std::stringstream config;
if (fconfig.good())
config << fconfig.rdbuf();
else
fprintf(stderr, "Warning failed to load '%s'. External Shader might be wrongly configured\n", config_name.c_str());
std::string shader_name(theApp.GetConfig("shaderfx_glsl", "dummy.glsl"));
std::ifstream fshader(shader_name);
std::stringstream shader;
if (!fshader.good()) {
fprintf(stderr, "Error failed to load '%s'. External Shader will be disabled !\n", shader_name.c_str());
return;
}
shader << fshader.rdbuf();
m_shaderfx.cb = new GSUniformBufferOGL(g_fx_cb_index, sizeof(ExternalFXConstantBuffer));
m_shaderfx.ps = m_shader->Compile("Extra", "ps_main", GL_FRAGMENT_SHADER, shader.str().c_str(), config.str());
}
GL_PUSH("DoExternalFX");
OMSetColorMaskState();
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
ExternalFXConstantBuffer cb;
cb.xyFrame = GSVector2(s.x, s.y);
cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f);
cb.rcpFrameOpt = GSVector4::zero();
m_shaderfx.cb->upload(&cb);
StretchRect(sTex, sRect, dTex, dRect, m_shaderfx.ps, true);
GL_POP();
}
void GSDeviceOGL::DoShadeBoost(GSTexture* sTex, GSTexture* dTex)
{
GL_PUSH("DoShadeBoost");
OMSetColorMaskState();
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
ShadeBoostConstantBuffer cb;
cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f);
cb.rcpFrameOpt = GSVector4::zero();
m_shadeboost.cb->upload(&cb);
StretchRect(sTex, sRect, dTex, dRect, m_shadeboost.ps, true);
GL_POP();
}
void GSDeviceOGL::SetupDATE(GSTexture* rt, GSTexture* ds, const GSVertexPT1* vertices, bool datm)
{
GL_PUSH("DATE First Pass");
// sfex3 (after the capcom logo), vf4 (first menu fading in), ffxii shadows, rumble roses shadows, persona4 shadows
BeginScene();
ClearStencil(ds, 0);
m_shader->VS(m_convert.vs);
m_shader->GS(0);
m_shader->PS(m_convert.ps[datm ? 2 : 3]);
// om
OMSetDepthStencilState(m_date.dss);
if (GLState::blend) {
glDisable(GL_BLEND);
}
OMSetRenderTargets(NULL, ds, &GLState::scissor);
// ia
IASetVertexBuffer(vertices, 4);
IASetPrimitiveTopology(GL_TRIANGLE_STRIP);
// Texture
PSSetShaderResource(0, rt);
PSSetSamplerState(m_convert.pt);
DrawPrimitive();
if (GLState::blend) {
glEnable(GL_BLEND);
}
EndScene();
GL_POP();
}
void GSDeviceOGL::EndScene()
{
m_va->EndScene();
}
void GSDeviceOGL::IASetVertexBuffer(const void* vertices, size_t count)
{
m_va->UploadVB(vertices, count);
}
void GSDeviceOGL::IASetIndexBuffer(const void* index, size_t count)
{
m_va->UploadIB(index, count);
}
void GSDeviceOGL::IASetPrimitiveTopology(GLenum topology)
{
m_va->SetTopology(topology);
}
void GSDeviceOGL::PSSetShaderResource(int i, GSTexture* sr)
{
ASSERT(i < (int)countof(GLState::tex_unit));
// Note: Nvidia debgger doesn't support the id 0 (ie the NULL texture)
if (sr) {
GLuint id = sr->GetID();
if (GLState::tex_unit[i] != id) {
GLState::tex_unit[i] = id;
gl_BindTextureUnit(i, id);
}
}
}
void GSDeviceOGL::PSSetShaderResources(GSTexture* sr0, GSTexture* sr1)
{
PSSetShaderResource(0, sr0);
PSSetShaderResource(1, sr1);
}
void GSDeviceOGL::PSSetSamplerState(GLuint ss)
{
if (GLState::ps_ss != ss) {
GLState::ps_ss = ss;
gl_BindSampler(0, ss);
}
}
void GSDeviceOGL::OMAttachRt(GSTextureOGL* rt)
{
GLuint id;
if (rt) {
rt->WasAttached();
id = rt->GetID();
} else {
id = 0;
}
if (GLState::rt != id) {
GLState::rt = id;
gl_FramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, id, 0);
}
}
void GSDeviceOGL::OMAttachDs(GSTextureOGL* ds)
{
GLuint id;
if (ds) {
ds->WasAttached();
id = ds->GetID();
} else {
id = 0;
}
if (GLState::ds != id) {
GLState::ds = id;
gl_FramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, id, 0);
}
}
void GSDeviceOGL::OMSetFBO(GLuint fbo)
{
if (GLState::fbo != fbo) {
GLState::fbo = fbo;
gl_BindFramebuffer(GL_FRAMEBUFFER, fbo);
}
}
void GSDeviceOGL::OMSetDepthStencilState(GSDepthStencilOGL* dss)
{
dss->SetupDepth();
dss->SetupStencil();
}
void GSDeviceOGL::OMSetColorMaskState(OMColorMaskSelector sel)
{
if (sel.wrgba != GLState::wrgba) {
GLState::wrgba = sel.wrgba;
gl_ColorMaski(0, sel.wr, sel.wg, sel.wb, sel.wa);
}
}
void GSDeviceOGL::OMSetBlendState(uint8 blend_index, uint8 blend_factor, bool is_blend_constant)
{
if (blend_index) {
if (!GLState::blend) {
GLState::blend = true;
glEnable(GL_BLEND);
}
if (is_blend_constant && GLState::bf != blend_factor) {
GLState::bf = blend_factor;
float bf = (float)blend_factor / 128.0f;
gl_BlendColor(bf, bf, bf, bf);
}
const OGLBlend& b = m_blendMapOGL[blend_index];
if (GLState::eq_RGB != b.op) {
GLState::eq_RGB = b.op;
if (gl_BlendEquationSeparateiARB)
gl_BlendEquationSeparateiARB(0, b.op, GL_FUNC_ADD);
else
gl_BlendEquationSeparate(b.op, GL_FUNC_ADD);
}
if (GLState::f_sRGB != b.src || GLState::f_dRGB != b.dst) {
GLState::f_sRGB = b.src;
GLState::f_dRGB = b.dst;
if (gl_BlendFuncSeparateiARB)
gl_BlendFuncSeparateiARB(0, b.src, b.dst, GL_ONE, GL_ZERO);
else
gl_BlendFuncSeparate(b.src, b.dst, GL_ONE, GL_ZERO);
}
} else {
if (GLState::blend) {
GLState::blend = false;
glDisable(GL_BLEND);
}
}
}
void GSDeviceOGL::OMSetRenderTargets(GSTexture* rt, GSTexture* ds, const GSVector4i* scissor)
{
GSTextureOGL* RT = static_cast<GSTextureOGL*>(rt);
GSTextureOGL* DS = static_cast<GSTextureOGL*>(ds);
if (rt == NULL || !RT->IsBackbuffer()) {
OMSetFBO(m_fbo);
if (rt) {
OMAttachRt(RT);
} else {
OMAttachRt();
}
// Note: it must be done after OMSetFBO
if (ds)
OMAttachDs(DS);
else
OMAttachDs();
} else {
// Render in the backbuffer
OMSetFBO(0);
}
GSVector2i size = rt ? rt->GetSize() : ds->GetSize();
if(GLState::viewport != size)
{
GLState::viewport = size;
// FIXME ViewportIndexedf or ViewportIndexedfv (GL4.1)
glViewport(0, 0, size.x, size.y);
}
GSVector4i r = scissor ? *scissor : GSVector4i(size).zwxy();
if(!GLState::scissor.eq(r))
{
GLState::scissor = r;
// FIXME ScissorIndexedv (GL4.1)
glScissor( r.x, r.y, r.width(), r.height() );
}
}
void GSDeviceOGL::CheckDebugLog()
{
if (!m_debug_gl_call) return;
unsigned int count = 16; // max. num. of messages that will be read from the log
int bufsize = 2048;
unsigned int sources[16] = {};
unsigned int types[16] = {};
unsigned int ids[16] = {};
unsigned int severities[16] = {};
int lengths[16] = {};
char* messageLog = new char[bufsize];
unsigned int retVal = gl_GetDebugMessageLogARB(count, bufsize, sources, types, ids, severities, lengths, messageLog);
if(retVal > 0)
{
unsigned int pos = 0;
for(unsigned int i=0; i<retVal; i++)
{
DebugOutputToFile(sources[i], types[i], ids[i], severities[i], lengths[i], &messageLog[pos], NULL);
pos += lengths[i];
}
}
delete[] messageLog;
}
// Note: used as a callback of DebugMessageCallback. Don't change the signature
void GSDeviceOGL::DebugOutputToFile(GLenum gl_source, GLenum gl_type, GLuint id, GLenum gl_severity, GLsizei gl_length, const GLchar *gl_message, const void* userParam)
{
std::string message(gl_message, gl_length);
std::string type, severity, source;
static int sev_counter = 0;
switch(gl_type) {
case GL_DEBUG_TYPE_ERROR_ARB : type = "Error"; break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB : type = "Deprecated bhv"; break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB : type = "Undefined bhv"; break;
case GL_DEBUG_TYPE_PORTABILITY_ARB : type = "Portability"; break;
case GL_DEBUG_TYPE_PERFORMANCE_ARB : type = "Perf"; break;
case GL_DEBUG_TYPE_OTHER_ARB : type = "Others"; break;
case GL_DEBUG_TYPE_PUSH_GROUP : return; // Don't print message injected by myself
case GL_DEBUG_TYPE_POP_GROUP : return; // Don't print message injected by myself
default : type = "TTT"; break;
}
switch(gl_severity) {
case GL_DEBUG_SEVERITY_HIGH_ARB : severity = "High"; sev_counter++; break;
case GL_DEBUG_SEVERITY_MEDIUM_ARB : severity = "Mid"; break;
case GL_DEBUG_SEVERITY_LOW_ARB : severity = "Low"; break;
default : severity = "Info"; break;
}
switch(gl_source) {
case GL_DEBUG_SOURCE_API_ARB : source = "API"; break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB : source = "WINDOW"; break;
case GL_DEBUG_SOURCE_SHADER_COMPILER_ARB : source = "COMPILER"; break;
case GL_DEBUG_SOURCE_THIRD_PARTY_ARB : source = "3rdparty"; break;
case GL_DEBUG_SOURCE_APPLICATION_ARB : source = "Application"; break;
case GL_DEBUG_SOURCE_OTHER_ARB : source = "Others"; break;
default : source = "???"; break;
}
#ifdef _DEBUG
// Don't spam noisy information on the terminal
if (gl_severity != GL_DEBUG_SEVERITY_NOTIFICATION) {
fprintf(stderr,"Type:%s\tID:%d\tSeverity:%s\tMessage:%s\n", type.c_str(), s_n, severity.c_str(), message.c_str());
}
#endif
if (m_debug_gl_file)
fprintf(m_debug_gl_file,"Type:%s\tID:%d\tSeverity:%s\tMessage:%s\n", type.c_str(), s_n, severity.c_str(), message.c_str());
ASSERT(sev_counter < 5);
}
// (A - B) * C + D
// A: Cs/Cd/0
// B: Cs/Cd/0
// C: As/Ad/FIX
// D: Cs/Cd/0
// bogus: 0100, 0110, 0120, 0200, 0210, 0220, 1001, 1011, 1021
// tricky: 1201, 1211, 1221
// Source.rgb = float3(1, 1, 1);
// 1201 Cd*(1 + As) => Source * Dest color + Dest * Source alpha
// 1211 Cd*(1 + Ad) => Source * Dest color + Dest * Dest alpha
// 1221 Cd*(1 + F) => Source * Dest color + Dest * Factor
// Special blending method table:
// # (tricky) => 1 * Cd + Cd * F => Use (Cd, F) as factor of color (1, Cd)
// * (bogus) => C * (1 + F ) + ... => factor is always bigger than 1 (except above case)
// ? => Cs * F + Cd => do the multiplication in shader and addition in blending unit. It is an optimization
// Copy Dx blend table and convert it to ogl
#define D3DBLENDOP_ADD GL_FUNC_ADD
#define D3DBLENDOP_SUBTRACT GL_FUNC_SUBTRACT
#define D3DBLENDOP_REVSUBTRACT GL_FUNC_REVERSE_SUBTRACT
#define D3DBLEND_ONE GL_ONE
#define D3DBLEND_ZERO GL_ZERO
#define D3DBLEND_INVDESTALPHA GL_ONE_MINUS_DST_ALPHA
#define D3DBLEND_DESTALPHA GL_DST_ALPHA
#define D3DBLEND_DESTCOLOR GL_DST_COLOR
#define D3DBLEND_BLENDFACTOR GL_CONSTANT_COLOR
#define D3DBLEND_INVBLENDFACTOR GL_ONE_MINUS_CONSTANT_COLOR
#define D3DBLEND_SRCALPHA GL_SRC1_ALPHA
#define D3DBLEND_INVSRCALPHA GL_ONE_MINUS_SRC1_ALPHA
const int GSDeviceOGL::m_NO_BLEND = 0;
const int GSDeviceOGL::m_MERGE_BLEND = 3*3*3*3;
const GSDeviceOGL::OGLBlend GSDeviceOGL::m_blendMapOGL[3*3*3*3 + 1] =
{
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 0000: (Cs - Cs)*As + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 0001: (Cs - Cs)*As + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 0002: (Cs - Cs)*As + 0 ==> 0
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 0010: (Cs - Cs)*Ad + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 0011: (Cs - Cs)*Ad + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 0012: (Cs - Cs)*Ad + 0 ==> 0
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 0020: (Cs - Cs)*F + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 0021: (Cs - Cs)*F + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 0022: (Cs - Cs)*F + 0 ==> 0
{ BLEND_A_MAX , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_SRCALPHA} , //*0100: (Cs - Cd)*As + Cs ==> Cs*(As + 1) - Cd*As
{ 0 , D3DBLENDOP_ADD , D3DBLEND_SRCALPHA , D3DBLEND_INVSRCALPHA} , // 0101: (Cs - Cd)*As + Cd ==> Cs*As + Cd*(1 - As)
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_SRCALPHA , D3DBLEND_SRCALPHA} , // 0102: (Cs - Cd)*As + 0 ==> Cs*As - Cd*As
{ BLEND_A_MAX , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_DESTALPHA} , //*0110: (Cs - Cd)*Ad + Cs ==> Cs*(Ad + 1) - Cd*Ad
{ 0 , D3DBLENDOP_ADD , D3DBLEND_DESTALPHA , D3DBLEND_INVDESTALPHA} , // 0111: (Cs - Cd)*Ad + Cd ==> Cs*Ad + Cd*(1 - Ad)
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_DESTALPHA} , // 0112: (Cs - Cd)*Ad + 0 ==> Cs*Ad - Cd*Ad
{ BLEND_A_MAX , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_BLENDFACTOR} , //*0120: (Cs - Cd)*F + Cs ==> Cs*(F + 1) - Cd*F
{ 0 , D3DBLENDOP_ADD , D3DBLEND_BLENDFACTOR , D3DBLEND_INVBLENDFACTOR} , // 0121: (Cs - Cd)*F + Cd ==> Cs*F + Cd*(1 - F)
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_BLENDFACTOR , D3DBLEND_BLENDFACTOR} , // 0122: (Cs - Cd)*F + 0 ==> Cs*F - Cd*F
{ BLEND_NO_BAR | BLEND_A_MAX , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , //*0200: (Cs - 0)*As + Cs ==> Cs*(As + 1)
{ BLEND_ACCU , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ONE} , //?0201: (Cs - 0)*As + Cd ==> Cs*As + Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_SRCALPHA , D3DBLEND_ZERO} , // 0202: (Cs - 0)*As + 0 ==> Cs*As
{ BLEND_A_MAX , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , //*0210: (Cs - 0)*Ad + Cs ==> Cs*(Ad + 1)
{ 0 , D3DBLENDOP_ADD , D3DBLEND_DESTALPHA , D3DBLEND_ONE} , // 0211: (Cs - 0)*Ad + Cd ==> Cs*Ad + Cd
{ 0 , D3DBLENDOP_ADD , D3DBLEND_DESTALPHA , D3DBLEND_ZERO} , // 0212: (Cs - 0)*Ad + 0 ==> Cs*Ad
{ BLEND_NO_BAR | BLEND_A_MAX , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , //*0220: (Cs - 0)*F + Cs ==> Cs*(F + 1)
{ BLEND_ACCU , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ONE} , //?0221: (Cs - 0)*F + Cd ==> Cs*F + Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_BLENDFACTOR , D3DBLEND_ZERO} , // 0222: (Cs - 0)*F + 0 ==> Cs*F
{ 0 , D3DBLENDOP_ADD , D3DBLEND_INVSRCALPHA , D3DBLEND_SRCALPHA} , // 1000: (Cd - Cs)*As + Cs ==> Cd*As + Cs*(1 - As)
{ BLEND_A_MAX , D3DBLENDOP_REVSUBTRACT , D3DBLEND_SRCALPHA , D3DBLEND_ONE} , //*1001: (Cd - Cs)*As + Cd ==> Cd*(As + 1) - Cs*As
{ 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_SRCALPHA , D3DBLEND_SRCALPHA} , // 1002: (Cd - Cs)*As + 0 ==> Cd*As - Cs*As
{ 0 , D3DBLENDOP_ADD , D3DBLEND_INVDESTALPHA , D3DBLEND_DESTALPHA} , // 1010: (Cd - Cs)*Ad + Cs ==> Cd*Ad + Cs*(1 - Ad)
{ BLEND_A_MAX , D3DBLENDOP_REVSUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_ONE} , //*1011: (Cd - Cs)*Ad + Cd ==> Cd*(Ad + 1) - Cs*Ad
{ 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_DESTALPHA} , // 1012: (Cd - Cs)*Ad + 0 ==> Cd*Ad - Cs*Ad
{ 0 , D3DBLENDOP_ADD , D3DBLEND_INVBLENDFACTOR , D3DBLEND_BLENDFACTOR} , // 1020: (Cd - Cs)*F + Cs ==> Cd*F + Cs*(1 - F)
{ BLEND_A_MAX , D3DBLENDOP_REVSUBTRACT , D3DBLEND_BLENDFACTOR , D3DBLEND_ONE} , //*1021: (Cd - Cs)*F + Cd ==> Cd*(F + 1) - Cs*F
{ 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_BLENDFACTOR , D3DBLEND_BLENDFACTOR} , // 1022: (Cd - Cs)*F + 0 ==> Cd*F - Cs*F
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 1100: (Cd - Cd)*As + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 1101: (Cd - Cd)*As + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 1102: (Cd - Cd)*As + 0 ==> 0
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 1110: (Cd - Cd)*Ad + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 1111: (Cd - Cd)*Ad + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 1112: (Cd - Cd)*Ad + 0 ==> 0
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 1120: (Cd - Cd)*F + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 1121: (Cd - Cd)*F + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 1122: (Cd - Cd)*F + 0 ==> 0
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_SRCALPHA} , // 1200: (Cd - 0)*As + Cs ==> Cs + Cd*As
{ BLEND_C_CLR , D3DBLENDOP_ADD , D3DBLEND_DESTCOLOR , D3DBLEND_SRCALPHA} , //#1201: (Cd - 0)*As + Cd ==> Cd*(1 + As) // ffxii main menu background
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_SRCALPHA} , // 1202: (Cd - 0)*As + 0 ==> Cd*As
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_DESTALPHA} , // 1210: (Cd - 0)*Ad + Cs ==> Cs + Cd*Ad
{ BLEND_C_CLR , D3DBLENDOP_ADD , D3DBLEND_DESTCOLOR , D3DBLEND_DESTALPHA} , //#1211: (Cd - 0)*Ad + Cd ==> Cd*(1 + Ad)
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_DESTALPHA} , // 1212: (Cd - 0)*Ad + 0 ==> Cd*Ad
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_BLENDFACTOR} , // 1220: (Cd - 0)*F + Cs ==> Cs + Cd*F
{ BLEND_C_CLR , D3DBLENDOP_ADD , D3DBLEND_DESTCOLOR , D3DBLEND_BLENDFACTOR} , //#1221: (Cd - 0)*F + Cd ==> Cd*(1 + F)
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_BLENDFACTOR} , // 1222: (Cd - 0)*F + 0 ==> Cd*F
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_INVSRCALPHA , D3DBLEND_ZERO} , // 2000: (0 - Cs)*As + Cs ==> Cs*(1 - As)
{ BLEND_ACCU , D3DBLENDOP_REVSUBTRACT , D3DBLEND_ONE , D3DBLEND_ONE} , // 2001: (0 - Cs)*As + Cd ==> Cd - Cs*As
{ BLEND_NO_BAR , D3DBLENDOP_REVSUBTRACT , D3DBLEND_SRCALPHA , D3DBLEND_ZERO} , // 2002: (0 - Cs)*As + 0 ==> 0 - Cs*As
{ 0 , D3DBLENDOP_ADD , D3DBLEND_INVDESTALPHA , D3DBLEND_ZERO} , // 2010: (0 - Cs)*Ad + Cs ==> Cs*(1 - Ad)
{ 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_ONE} , // 2011: (0 - Cs)*Ad + Cd ==> Cd - Cs*Ad
{ 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_ZERO} , // 2012: (0 - Cs)*Ad + 0 ==> 0 - Cs*Ad
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_INVBLENDFACTOR , D3DBLEND_ZERO} , // 2020: (0 - Cs)*F + Cs ==> Cs*(1 - F)
{ BLEND_ACCU , D3DBLENDOP_REVSUBTRACT , D3DBLEND_ONE , D3DBLEND_ONE} , // 2021: (0 - Cs)*F + Cd ==> Cd - Cs*F
{ BLEND_NO_BAR , D3DBLENDOP_REVSUBTRACT , D3DBLEND_BLENDFACTOR , D3DBLEND_ZERO} , // 2022: (0 - Cs)*F + 0 ==> 0 - Cs*F
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_SRCALPHA} , // 2100: (0 - Cd)*As + Cs ==> Cs - Cd*As
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_INVSRCALPHA} , // 2101: (0 - Cd)*As + Cd ==> Cd*(1 - As)
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ZERO , D3DBLEND_SRCALPHA} , // 2102: (0 - Cd)*As + 0 ==> 0 - Cd*As
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_DESTALPHA} , // 2110: (0 - Cd)*Ad + Cs ==> Cs - Cd*Ad
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_INVDESTALPHA} , // 2111: (0 - Cd)*Ad + Cd ==> Cd*(1 - Ad)
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_DESTALPHA} , // 2112: (0 - Cd)*Ad + 0 ==> 0 - Cd*Ad
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_BLENDFACTOR} , // 2120: (0 - Cd)*F + Cs ==> Cs - Cd*F
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_INVBLENDFACTOR} , // 2121: (0 - Cd)*F + Cd ==> Cd*(1 - F)
{ 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_BLENDFACTOR} , // 2122: (0 - Cd)*F + 0 ==> 0 - Cd*F
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 2200: (0 - 0)*As + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 2201: (0 - 0)*As + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 2202: (0 - 0)*As + 0 ==> 0
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 2210: (0 - 0)*Ad + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 2211: (0 - 0)*Ad + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 2212: (0 - 0)*Ad + 0 ==> 0
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 2220: (0 - 0)*F + Cs ==> Cs
{ 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 2221: (0 - 0)*F + Cd ==> Cd
{ BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 2222: (0 - 0)*F + 0 ==> 0
{ 0 , D3DBLENDOP_ADD , GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA} , // extra for merge operation
};