pcsx2/pcsx2/Counters.cpp

822 lines
25 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2009 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "PrecompiledHeader.h"
#include "Common.h"
#include <time.h>
#include <cmath>
#include "R3000A.h"
#include "Counters.h"
#include "IopCounters.h"
#include "GS.h"
#include "VUmicro.h"
using namespace Threading;
extern u8 psxhblankgate;
extern void ApplyPatch( int place = 1);
static const uint EECNT_FUTURE_TARGET = 0x10000000;
u64 profile_starttick = 0;
u64 profile_totalticks = 0;
int gates = 0;
// Counter 4 takes care of scanlines - hSync/hBlanks
// Counter 5 takes care of vSync/vBlanks
Counter counters[4];
SyncCounter hsyncCounter;
SyncCounter vsyncCounter;
u32 nextsCounter; // records the cpuRegs.cycle value of the last call to rcntUpdate()
s32 nextCounter; // delta from nextsCounter, in cycles, until the next rcntUpdate()
void rcntReset(int index) {
counters[index].count = 0;
counters[index].sCycleT = cpuRegs.cycle;
}
// Updates the state of the nextCounter value (if needed) to serve
// any pending events for the given counter.
// Call this method after any modifications to the state of a counter.
static __forceinline void _rcntSet( int cntidx )
{
s32 c;
jASSUME( cntidx <= 4 ); // rcntSet isn't valid for h/vsync counters.
const Counter& counter = counters[cntidx];
// Stopped or special hsync gate?
if (!counter.mode.IsCounting || (counter.mode.ClockSource == 0x3) ) return;
// check for special cases where the overflow or target has just passed
// (we probably missed it because we're doing/checking other things)
if( counter.count > 0x10000 || counter.count > counter.target )
{
nextCounter = 4;
return;
}
// nextCounter is relative to the cpuRegs.cycle when rcntUpdate() was last called.
// However, the current _rcntSet could be called at any cycle count, so we need to take
// that into account. Adding the difference from that cycle count to the current one
// will do the trick!
c = ((0x10000 - counter.count) * counter.rate) - (cpuRegs.cycle - counter.sCycleT);
c += cpuRegs.cycle - nextsCounter; // adjust for time passed since last rcntUpdate();
if (c < nextCounter)
{
nextCounter = c;
cpuSetNextBranch( nextsCounter, nextCounter ); //Need to update on counter resets/target changes
}
// Ignore target diff if target is currently disabled.
// (the overflow is all we care about since it goes first, and then the
// target will be turned on afterward, and handled in the next event test).
if( counter.target & EECNT_FUTURE_TARGET )
{
return;
}
else
{
c = ((counter.target - counter.count) * counter.rate) - (cpuRegs.cycle - counter.sCycleT);
c += cpuRegs.cycle - nextsCounter; // adjust for time passed since last rcntUpdate();
if (c < nextCounter)
{
nextCounter = c;
cpuSetNextBranch( nextsCounter, nextCounter ); //Need to update on counter resets/target changes
}
}
}
static __forceinline void cpuRcntSet()
{
int i;
nextsCounter = cpuRegs.cycle;
nextCounter = vsyncCounter.CycleT - (cpuRegs.cycle - vsyncCounter.sCycle);
for (i = 0; i < 4; i++)
_rcntSet( i );
// sanity check!
if( nextCounter < 0 ) nextCounter = 0;
}
void rcntInit() {
int i;
memzero(counters);
for (i=0; i<4; i++) {
counters[i].rate = 2;
counters[i].target = 0xffff;
}
counters[0].interrupt = 9;
counters[1].interrupt = 10;
counters[2].interrupt = 11;
counters[3].interrupt = 12;
hsyncCounter.Mode = MODE_HRENDER;
hsyncCounter.sCycle = cpuRegs.cycle;
vsyncCounter.Mode = MODE_VRENDER;
vsyncCounter.sCycle = cpuRegs.cycle;
UpdateVSyncRate();
for (i=0; i<4; i++) rcntReset(i);
cpuRcntSet();
}
// debug code, used for stats
int g_nhsyncCounter;
static uint iFrame = 0;
#ifndef _WIN32
#include <sys/time.h>
#endif
static s64 m_iTicks=0;
static u64 m_iStart=0;
struct vSyncTimingInfo
{
u32 Framerate; // frames per second * 100 (so 2500 for PAL and 2997 for NTSC)
u32 Render; // time from vblank end to vblank start (cycles)
u32 Blank; // time from vblank start to vblank end (cycles)
u32 hSyncError; // rounding error after the duration of a rendered frame (cycles)
u32 hRender; // time from hblank end to hblank start (cycles)
u32 hBlank; // time from hblank start to hblank end (cycles)
u32 hScanlinesPerFrame; // number of scanlines per frame (525/625 for NTSC/PAL)
};
static vSyncTimingInfo vSyncInfo;
static void vSyncInfoCalc( vSyncTimingInfo* info, u32 framesPerSecond, u32 scansPerFrame )
{
// Important: Cannot use floats or doubles here. The emulator changes rounding modes
// depending on user-set speedhack options, and it can break float/double code
// (as in returning infinities and junk)
// NOTE: mgs3 likes a /4 vsync, but many games prefer /2. This seems to indicate a
// problem in the counters vsync gates somewhere.
u64 Frame = ((u64)PS2CLK * 1000000ULL) / framesPerSecond;
u64 HalfFrame = Frame / 2;
u64 Blank = HalfFrame / 2; // two blanks and renders per frame
u64 Render = HalfFrame - Blank; // so use the half-frame value for these...
// Important! The hRender/hBlank timers should be 50/50 for best results.
// In theory a 70%/30% ratio would be more correct but in practice it runs
// like crap and totally screws audio synchronization and other things.
u64 Scanline = Frame / scansPerFrame;
u64 hBlank = Scanline / 2;
u64 hRender = Scanline - hBlank;
info->Framerate = framesPerSecond;
info->Render = (u32)(Render/10000);
info->Blank = (u32)(Blank/10000);
info->hRender = (u32)(hRender/10000);
info->hBlank = (u32)(hBlank/10000);
info->hScanlinesPerFrame = scansPerFrame;
// Apply rounding:
if( ( Render - info->Render ) >= 5000 ) info->Render++;
else if( ( Blank - info->Blank ) >= 5000 ) info->Blank++;
if( ( hRender - info->hRender ) >= 5000 ) info->hRender++;
else if( ( hBlank - info->hBlank ) >= 5000 ) info->hBlank++;
// Calculate accumulative hSync rounding error per half-frame:
{
u32 hSyncCycles = ((info->hRender + info->hBlank) * scansPerFrame) / 2;
u32 vSyncCycles = (info->Render + info->Blank);
info->hSyncError = vSyncCycles - hSyncCycles;
}
// Note: In NTSC modes there is some small rounding error in the vsync too,
// however it would take thousands of frames for it to amount to anything and
// is thus not worth the effort at this time.
}
u32 UpdateVSyncRate()
{
static const char *limiterMsg = "Framelimiter rate updated (UpdateVSyncRate): %d.%d fps";
// fixme - According to some docs, progressive-scan modes actually refresh slower than
// interlaced modes. But I can't fathom how, since the refresh rate is a function of
// the television and all the docs I found on TVs made no indication that they ever
// run anything except their native refresh rate.
//#define VBLANK_NTSC ((Config.PsxType & 2) ? 59.94 : 59.82) //59.94 is more precise
//#define VBLANK_PAL ((Config.PsxType & 2) ? 50.00 : 49.76)
if( gsRegionMode == Region_PAL )
{
if( vSyncInfo.Framerate != FRAMERATE_PAL )
vSyncInfoCalc( &vSyncInfo, FRAMERATE_PAL, SCANLINES_TOTAL_PAL );
}
else
{
if( vSyncInfo.Framerate != FRAMERATE_NTSC )
vSyncInfoCalc( &vSyncInfo, FRAMERATE_NTSC, SCANLINES_TOTAL_NTSC );
}
hsyncCounter.CycleT = vSyncInfo.hRender; // Amount of cycles before the counter will be updated
vsyncCounter.CycleT = vSyncInfo.Render; // Amount of cycles before the counter will be updated
if( EmuConfig.Video.EnableFrameLimiting && (EmuConfig.Video.FpsLimit > 0) )
{
s64 ticks = GetTickFrequency() / EmuConfig.Video.FpsLimit;
if( m_iTicks != ticks )
{
m_iTicks = ticks;
gsOnModeChanged( vSyncInfo.Framerate, m_iTicks );
Console.WriteLn( limiterMsg, EmuConfig.Video.FpsLimit, 0 );
}
}
else
{
s64 ticks = (GetTickFrequency() * 50) / vSyncInfo.Framerate;
if( m_iTicks != ticks )
{
m_iTicks = ticks;
gsOnModeChanged( vSyncInfo.Framerate, m_iTicks );
Console.WriteLn( limiterMsg, vSyncInfo.Framerate/50, (vSyncInfo.Framerate*2)%100 );
}
}
m_iStart = GetCPUTicks();
cpuRcntSet();
return (u32)m_iTicks;
}
void frameLimitReset()
{
m_iStart = GetCPUTicks();
}
// Framelimiter - Measures the delta time between calls and stalls until a
// certain amount of time passes if such time hasn't passed yet.
// See the GS FrameSkip function for details on why this is here and not in the GS.
extern int limitOn;
static __forceinline void frameLimit()
{
// 999 means the user would rather just have framelimiting turned off...
if( /*!EmuConfig.Video.EnableFrameLimiting*/ !limitOn || EmuConfig.Video.FpsLimit >= 999 ) return;
s64 sDeltaTime;
u64 uExpectedEnd;
u64 iEnd;
uExpectedEnd = m_iStart + m_iTicks;
iEnd = GetCPUTicks();
sDeltaTime = iEnd - uExpectedEnd;
// If the framerate drops too low, reset the expected value. This avoids
// excessive amounts of "fast forward" syndrome which would occur if we
// tried to catch up too much.
if( sDeltaTime > m_iTicks*8 )
{
m_iStart = iEnd - m_iTicks;
// Let the GS Skipper know we lost time.
// Keeps the GS skipper from trying to catch up to a framerate
// that the limiter already gave up on.
gsSyncLimiterLostTime( (s32)(m_iStart - uExpectedEnd) );
return;
}
// use the expected frame completion time as our starting point.
// improves smoothness by making the framelimiter more adaptive to the
// imperfect TIMESLICE() wait, and allows it to speed up a wee bit after
// slow frames to "catch up."
m_iStart = uExpectedEnd;
// Shortcut for cases where no waiting is needed (they're running slow already,
// so don't bog 'em down with extra math...)
if( sDeltaTime >= 0 ) return;
// If we're way ahead then we can afford to sleep the thread a bit.
// (note, sleep(1) thru sleep(2) tend to be the least accurate sleeps, and longer
// sleeps tend to be pretty reliable, so that's why the convoluted if/else below)
s32 msec = (int)((sDeltaTime*-1000) / (s64)GetTickFrequency());
if( msec > 4 ) Threading::Sleep( msec );
else if( msec > 2 ) Threading::Sleep( 1 );
// Sleep is not picture-perfect accurate, but it's actually not necessary to
// maintain a "perfect" lock to uExpectedEnd anyway. if we're a little ahead
// starting this frame, it'll just sleep longer the next to make up for it. :)
}
static __forceinline void VSyncStart(u32 sCycle)
{
EECNT_LOG( "///////// EE COUNTER VSYNC START \\\\\\\\\\\\\\\\\\\\ (frame: %d)", iFrame );
vSyncDebugStuff( iFrame ); // EE Profiling and Debug code
if ((CSRw & 0x8))
{
if (!(GSIMR&0x800))
{
gsIrq();
}
GSCSRr|= 0x8;
}
hwIntcIrq(INTC_VBLANK_S);
psxVBlankStart();
if (gates) rcntStartGate(true, sCycle); // Counters Start Gate code
if (EmuConfig.EnablePatches) ApplyPatch(); // fixme - Apply patches
// INTC - VB Blank Start Hack --
// Hack fix! This corrects a freezeup in Granda 2 where it decides to spin
// on the INTC_STAT register after the exception handler has already cleared
// it. But be warned! Set the value to larger than 4 and it breaks Dark
// Cloud and other games. -_-
// How it works: Normally the INTC raises exceptions immediately at the end of the
// current branch test. But in the case of Grandia 2, the game's code is spinning
// on the INTC status, and the exception handler (for some reason?) clears the INTC
// before returning *and* returns to a location other than EPC. So the game never
// gets to the point where it sees the INTC Irq set true.
// (I haven't investigated why Dark Cloud freezes on larger values)
// (all testing done using the recompiler -- dunno how the ints respond yet)
//cpuRegs.eCycle[30] = 2;
// Should no longer be required (Refraction)
}
static __forceinline void VSyncEnd(u32 sCycle)
{
EECNT_LOG( "///////// EE COUNTER VSYNC END \\\\\\\\\\\\\\\\\\\\ (frame: %d)", iFrame );
iFrame++;
gsPostVsyncEnd( true );
hwIntcIrq(INTC_VBLANK_E); // HW Irq
psxVBlankEnd(); // psxCounters vBlank End
if (gates) rcntEndGate(true, sCycle); // Counters End Gate Code
frameLimit(); // limit FPS
// This doesn't seem to be needed here. Games only seem to break with regard to the
// vsyncstart irq.
//cpuRegs.eCycle[30] = 2;
}
//#define VSYNC_DEBUG // Uncomment this to enable some vSync Timer debugging features.
#ifdef VSYNC_DEBUG
static u32 hsc=0;
static int vblankinc = 0;
#endif
__forceinline void rcntUpdate_hScanline()
{
if( !cpuTestCycle( hsyncCounter.sCycle, hsyncCounter.CycleT ) ) return;
//iopBranchAction = 1;
if (hsyncCounter.Mode & MODE_HBLANK) { //HBLANK Start
rcntStartGate(false, hsyncCounter.sCycle);
psxCheckStartGate16(0);
// Setup the hRender's start and end cycle information:
hsyncCounter.sCycle += vSyncInfo.hBlank; // start (absolute cycle value)
hsyncCounter.CycleT = vSyncInfo.hRender; // endpoint (delta from start value)
hsyncCounter.Mode = MODE_HRENDER;
}
else { //HBLANK END / HRENDER Begin
if (CSRw & 0x4)
{
if (!(GSIMR&0x400))
{
gsIrq();
}
GSCSRr |= 4; // signal
}
if (gates) rcntEndGate(false, hsyncCounter.sCycle);
if (psxhblankgate) psxCheckEndGate16(0);
// set up the hblank's start and end cycle information:
hsyncCounter.sCycle += vSyncInfo.hRender; // start (absolute cycle value)
hsyncCounter.CycleT = vSyncInfo.hBlank; // endpoint (delta from start value)
hsyncCounter.Mode = MODE_HBLANK;
# ifdef VSYNC_DEBUG
hsc++;
# endif
}
}
__forceinline void rcntUpdate_vSync()
{
s32 diff = (cpuRegs.cycle - vsyncCounter.sCycle);
if( diff < vsyncCounter.CycleT ) return;
if (vsyncCounter.Mode == MODE_VSYNC)
{
Cpu->CheckExecutionState();
VSyncEnd(vsyncCounter.sCycle);
vsyncCounter.sCycle += vSyncInfo.Blank;
vsyncCounter.CycleT = vSyncInfo.Render;
vsyncCounter.Mode = MODE_VRENDER;
}
else // VSYNC end / VRENDER begin
{
VSyncStart(vsyncCounter.sCycle);
vsyncCounter.sCycle += vSyncInfo.Render;
vsyncCounter.CycleT = vSyncInfo.Blank;
vsyncCounter.Mode = MODE_VSYNC;
// Accumulate hsync rounding errors:
hsyncCounter.sCycle += vSyncInfo.hSyncError;
if (CHECK_MICROVU0) vsyncVUrec(0);
if (CHECK_MICROVU1) vsyncVUrec(1);
# ifdef VSYNC_DEBUG
vblankinc++;
if( vblankinc > 1 )
{
if( hsc != vSyncInfo.hScanlinesPerFrame )
Console.WriteLn( " ** vSync > Abnormal Scanline Count: %d", hsc );
hsc = 0;
vblankinc = 0;
}
# endif
}
}
static __forceinline void _cpuTestTarget( int i )
{
if (counters[i].count < counters[i].target) return;
if(counters[i].mode.TargetInterrupt) {
EECNT_LOG("EE Counter[%d] TARGET reached - mode=%x, count=%x, target=%x", i, counters[i].mode, counters[i].count, counters[i].target);
counters[i].mode.TargetReached = 1;
hwIntcIrq(counters[i].interrupt);
// The PS2 only resets if the interrupt is enabled - Tested on PS2
if (counters[i].mode.ZeroReturn)
counters[i].count -= counters[i].target; // Reset on target
else
counters[i].target |= EECNT_FUTURE_TARGET;
}
else counters[i].target |= EECNT_FUTURE_TARGET;
}
static __forceinline void _cpuTestOverflow( int i )
{
if (counters[i].count <= 0xffff) return;
if (counters[i].mode.OverflowInterrupt) {
EECNT_LOG("EE Counter[%d] OVERFLOW - mode=%x, count=%x", i, counters[i].mode, counters[i].count);
counters[i].mode.OverflowReached = 1;
hwIntcIrq(counters[i].interrupt);
}
// wrap counter back around zero, and enable the future target:
counters[i].count -= 0x10000;
counters[i].target &= 0xffff;
}
// forceinline note: this method is called from two locations, but one
// of them is the interpreter, which doesn't count. ;) So might as
// well forceinline it!
__forceinline void rcntUpdate()
{
rcntUpdate_vSync();
// Update counters so that we can perform overflow and target tests.
for (int i=0; i<=3; i++)
{
// We want to count gated counters (except the hblank which exclude below, and are
// counted by the hblank timer instead)
//if ( gates & (1<<i) ) continue;
if (!counters[i].mode.IsCounting ) continue;
if(counters[i].mode.ClockSource != 0x3) // don't count hblank sources
{
s32 change = cpuRegs.cycle - counters[i].sCycleT;
if( change < 0 ) change = 0; // sanity check!
counters[i].count += change / counters[i].rate;
change -= (change / counters[i].rate) * counters[i].rate;
counters[i].sCycleT = cpuRegs.cycle - change;
// Check Counter Targets and Overflows:
_cpuTestTarget( i );
_cpuTestOverflow( i );
}
else counters[i].sCycleT = cpuRegs.cycle;
}
cpuRcntSet();
}
static __forceinline void _rcntSetGate( int index )
{
if (counters[index].mode.EnableGate)
{
// If the Gate Source is hblank and the clock selection is also hblank
// then the gate is disabled and the counter acts as a normal hblank source.
if( !(counters[index].mode.GateSource == 0 && counters[index].mode.ClockSource == 3) )
{
EECNT_LOG( "EE Counter[%d] Using Gate! Source=%s, Mode=%d.",
index, counters[index].mode.GateSource ? "vblank" : "hblank", counters[index].mode.GateMode );
gates |= (1<<index);
counters[index].mode.IsCounting = 0;
rcntReset(index);
return;
}
else
EECNT_LOG( "EE Counter[%d] GATE DISABLED because of hblank source.", index );
}
gates &= ~(1<<index);
}
// mode - 0 means hblank source, 8 means vblank source.
__forceinline void rcntStartGate(bool isVblank, u32 sCycle)
{
int i;
for (i=0; i <=3; i++)
{
//if ((mode == 0) && ((counters[i].mode & 0x83) == 0x83))
if (!isVblank && counters[i].mode.IsCounting && (counters[i].mode.ClockSource == 3) )
{
// Update counters using the hblank as the clock. This keeps the hblank source
// nicely in sync with the counters and serves as an optimization also, since these
// counter won't recieve special rcntUpdate scheduling.
// Note: Target and overflow tests must be done here since they won't be done
// currectly by rcntUpdate (since it's not being scheduled for these counters)
counters[i].count += HBLANK_COUNTER_SPEED;
_cpuTestTarget( i );
_cpuTestOverflow( i );
}
if (!(gates & (1<<i))) continue;
if ((!!counters[i].mode.GateSource) != isVblank) continue;
switch (counters[i].mode.GateMode) {
case 0x0: //Count When Signal is low (off)
// Just set the start cycle (sCycleT) -- counting will be done as needed
// for events (overflows, targets, mode changes, and the gate off below)
counters[i].mode.IsCounting = 1;
counters[i].sCycleT = sCycle;
EECNT_LOG("EE Counter[%d] %s StartGate Type0, count = %x",
isVblank ? "vblank" : "hblank", i, counters[i].count );
break;
case 0x2: // reset and start counting on vsync end
// this is the vsync start so do nothing.
break;
case 0x1: //Reset and start counting on Vsync start
case 0x3: //Reset and start counting on Vsync start and end
counters[i].mode.IsCounting = 1;
counters[i].count = 0;
counters[i].target &= 0xffff;
counters[i].sCycleT = sCycle;
EECNT_LOG("EE Counter[%d] %s StartGate Type%d, count = %x",
isVblank ? "vblank" : "hblank", i, counters[i].mode.GateMode, counters[i].count );
break;
}
}
// No need to update actual counts here. Counts are calculated as needed by reads to
// rcntRcount(). And so long as sCycleT is set properly, any targets or overflows
// will be scheduled and handled.
// Note: No need to set counters here. They'll get set when control returns to
// rcntUpdate, since we're being called from there anyway.
}
// mode - 0 means hblank signal, 8 means vblank signal.
__forceinline void rcntEndGate(bool isVblank , u32 sCycle)
{
int i;
for(i=0; i <=3; i++) { //Gates for counters
if (!(gates & (1<<i))) continue;
if ((!!counters[i].mode.GateSource) != isVblank) continue;
switch (counters[i].mode.GateMode) {
case 0x0: //Count When Signal is low (off)
// Set the count here. Since the timer is being turned off it's
// important to record its count at this point (it won't be counted by
// calls to rcntUpdate).
counters[i].count = rcntRcount(i);
counters[i].mode.IsCounting = 0;
counters[i].sCycleT = sCycle;
EECNT_LOG("EE Counter[%d] %s EndGate Type0, count = %x",
isVblank ? "vblank" : "hblank", i, counters[i].count );
break;
case 0x1: // Reset and start counting on Vsync start
// this is the vsync end so do nothing
break;
case 0x2: //Reset and start counting on Vsync end
case 0x3: //Reset and start counting on Vsync start and end
counters[i].mode.IsCounting = 1;
counters[i].count = 0;
counters[i].target &= 0xffff;
counters[i].sCycleT = sCycle;
EECNT_LOG("EE Counter[%d] %s EndGate Type%d, count = %x",
isVblank ? "vblank" : "hblank", i, counters[i].mode.GateMode, counters[i].count );
break;
}
}
// Note: No need to set counters here. They'll get set when control returns to
// rcntUpdate, since we're being called from there anyway.
}
__forceinline void rcntWmode(int index, u32 value)
{
if(counters[index].mode.IsCounting) {
if(counters[index].mode.ClockSource != 0x3) {
u32 change = cpuRegs.cycle - counters[index].sCycleT;
if( change > 0 )
{
counters[index].count += change / counters[index].rate;
change -= (change / counters[index].rate) * counters[index].rate;
counters[index].sCycleT = cpuRegs.cycle - change;
}
}
}
else counters[index].sCycleT = cpuRegs.cycle;
// Clear OverflowReached and TargetReached flags (0xc00 mask), but *only* if they are set to 1 in the
// given value. (yes, the bits are cleared when written with '1's).
counters[index].modeval &= ~(value & 0xc00);
counters[index].modeval = (counters[index].modeval & 0xc00) | (value & 0x3ff);
EECNT_LOG("EE Counter[%d] writeMode = %x passed value=%x", index, counters[index].modeval, value );
switch (counters[index].mode.ClockSource) { //Clock rate divisers *2, they use BUSCLK speed not PS2CLK
case 0: counters[index].rate = 2; break;
case 1: counters[index].rate = 32; break;
case 2: counters[index].rate = 512; break;
case 3: counters[index].rate = vSyncInfo.hBlank+vSyncInfo.hRender; break;
}
_rcntSetGate( index );
_rcntSet( index );
}
__forceinline void rcntWcount(int index, u32 value)
{
EECNT_LOG("EE Counter[%d] writeCount = %x, oldcount=%x, target=%x", index, value, counters[index].count, counters[index].target );
counters[index].count = value & 0xffff;
// reset the target, and make sure we don't get a premature target.
counters[index].target &= 0xffff;
if( counters[index].count > counters[index].target )
counters[index].target |= EECNT_FUTURE_TARGET;
// re-calculate the start cycle of the counter based on elapsed time since the last counter update:
if(counters[index].mode.IsCounting) {
if(counters[index].mode.ClockSource != 0x3) {
s32 change = cpuRegs.cycle - counters[index].sCycleT;
if( change > 0 ) {
change -= (change / counters[index].rate) * counters[index].rate;
counters[index].sCycleT = cpuRegs.cycle - change;
}
}
}
else counters[index].sCycleT = cpuRegs.cycle;
_rcntSet( index );
}
__forceinline void rcntWtarget(int index, u32 value)
{
EECNT_LOG("EE Counter[%d] writeTarget = %x", index, value);
counters[index].target = value & 0xffff;
// guard against premature (instant) targeting.
// If the target is behind the current count, set it up so that the counter must
// overflow first before the target fires:
if(counters[index].mode.IsCounting) {
if(counters[index].mode.ClockSource != 0x3) {
u32 change = cpuRegs.cycle - counters[index].sCycleT;
if( change > 0 )
{
counters[index].count += change / counters[index].rate;
change -= (change / counters[index].rate) * counters[index].rate;
counters[index].sCycleT = cpuRegs.cycle - change;
}
}
}
if( counters[index].target <= rcntCycle(index) )
counters[index].target |= EECNT_FUTURE_TARGET;
_rcntSet( index );
}
__forceinline void rcntWhold(int index, u32 value)
{
EECNT_LOG("EE Counter[%d] Hold Write = %x", index, value);
counters[index].hold = value;
}
__forceinline u32 rcntRcount(int index)
{
u32 ret;
// only count if the counter is turned on (0x80) and is not an hsync gate (!0x03)
if (counters[index].mode.IsCounting && (counters[index].mode.ClockSource != 0x3))
ret = counters[index].count + ((cpuRegs.cycle - counters[index].sCycleT) / counters[index].rate);
else
ret = counters[index].count;
// Spams the Console.
EECNT_LOG("EE Counter[%d] readCount32 = %x", index, ret);
return ret;
}
__forceinline u32 rcntCycle(int index)
{
if (counters[index].mode.IsCounting && (counters[index].mode.ClockSource != 0x3))
return counters[index].count + ((cpuRegs.cycle - counters[index].sCycleT) / counters[index].rate);
else
return counters[index].count;
}
void SaveStateBase::rcntFreeze()
{
Freeze( counters );
Freeze( hsyncCounter );
Freeze( vsyncCounter );
Freeze( nextCounter );
Freeze( nextsCounter );
if( IsLoading() )
{
UpdateVSyncRate();
// make sure the gate flags are set based on the counter modes...
for( int i=0; i<4; i++ )
_rcntSetGate( i );
iopBranchAction = 1; // probably not needed but won't hurt anything either.
}
}