mirror of https://github.com/PCSX2/pcsx2.git
435 lines
11 KiB
C++
435 lines
11 KiB
C++
//GiGaHeRz's SPU2 Driver
|
|
//Copyright (c) 2003-2008, David Quintana <gigaherz@gmail.com>
|
|
//
|
|
//This library is free software; you can redistribute it and/or
|
|
//modify it under the terms of the GNU Lesser General Public
|
|
//License as published by the Free Software Foundation; either
|
|
//version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
//This library is distributed in the hope that it will be useful,
|
|
//but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
//Lesser General Public License for more details.
|
|
//
|
|
//You should have received a copy of the GNU Lesser General Public
|
|
//License along with this library; if not, write to the Free Software
|
|
//Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
#include "spu2.h"
|
|
|
|
extern u8 callirq;
|
|
|
|
FILE *DMA4LogFile=0;
|
|
FILE *DMA7LogFile=0;
|
|
FILE *ADMA4LogFile=0;
|
|
FILE *ADMA7LogFile=0;
|
|
FILE *ADMAOutLogFile=0;
|
|
|
|
FILE *REGWRTLogFile[2]={0,0};
|
|
|
|
int packcount=0;
|
|
|
|
u16* MBASE[2] = {0,0};
|
|
|
|
u16* DMABaseAddr;
|
|
|
|
void DMALogOpen() {
|
|
if(!DMALog()) return;
|
|
DMA4LogFile=fopen(DMA4LogFileName,"wb");
|
|
DMA7LogFile=fopen(DMA7LogFileName,"wb");
|
|
ADMA4LogFile=fopen("logs/adma4.raw","wb");
|
|
ADMA7LogFile=fopen("logs/adma7.raw","wb");
|
|
ADMAOutLogFile=fopen("logs/admaOut.raw","wb");
|
|
//REGWRTLogFile[0]=fopen("logs/RegWrite0.raw","wb");
|
|
//REGWRTLogFile[1]=fopen("logs/RegWrite1.raw","wb");
|
|
}
|
|
void DMA4LogWrite(void *lpData, u32 ulSize) {
|
|
if(!DMALog()) return;
|
|
if (!DMA4LogFile) return;
|
|
fwrite(lpData,ulSize,1,DMA4LogFile);
|
|
}
|
|
|
|
void DMA7LogWrite(void *lpData, u32 ulSize) {
|
|
if(!DMALog()) return;
|
|
if (!DMA7LogFile) return;
|
|
fwrite(lpData,ulSize,1,DMA7LogFile);
|
|
}
|
|
|
|
void ADMA4LogWrite(void *lpData, u32 ulSize) {
|
|
if(!DMALog()) return;
|
|
if (!ADMA4LogFile) return;
|
|
fwrite(lpData,ulSize,1,ADMA4LogFile);
|
|
}
|
|
void ADMA7LogWrite(void *lpData, u32 ulSize) {
|
|
if(!DMALog()) return;
|
|
if (!ADMA7LogFile) return;
|
|
fwrite(lpData,ulSize,1,ADMA7LogFile);
|
|
}
|
|
void ADMAOutLogWrite(void *lpData, u32 ulSize) {
|
|
if(!DMALog()) return;
|
|
if (!ADMAOutLogFile) return;
|
|
fwrite(lpData,ulSize,1,ADMAOutLogFile);
|
|
}
|
|
|
|
void RegWriteLog(u32 core,u16 value)
|
|
{
|
|
if(!DMALog()) return;
|
|
if (!REGWRTLogFile[core]) return;
|
|
fwrite(&value,2,1,REGWRTLogFile[core]);
|
|
}
|
|
|
|
void DMALogClose() {
|
|
if(!DMALog()) return;
|
|
if (DMA4LogFile) fclose(DMA4LogFile);
|
|
if (DMA7LogFile) fclose(DMA7LogFile);
|
|
if (REGWRTLogFile[0]) fclose(REGWRTLogFile[0]);
|
|
if (REGWRTLogFile[1]) fclose(REGWRTLogFile[1]);
|
|
if (ADMA4LogFile) fclose(ADMA4LogFile);
|
|
if (ADMA7LogFile) fclose(ADMA7LogFile);
|
|
if (ADMAOutLogFile) fclose(ADMAOutLogFile);
|
|
}
|
|
|
|
|
|
__forceinline u16 DmaRead(u32 core)
|
|
{
|
|
const u16 ret = (u16)spu2M_Read(Cores[core].TDA);
|
|
Cores[core].TDA++;
|
|
Cores[core].TDA&=0xfffff;
|
|
return ret;
|
|
}
|
|
|
|
__forceinline void DmaWrite(u32 core, u16 value)
|
|
{
|
|
spu2M_Write( Cores[core].TSA, value );
|
|
Cores[core].TSA++;
|
|
Cores[core].TSA&=0xfffff;
|
|
}
|
|
|
|
void AutoDMAReadBuffer(int core, int mode) //mode: 0= split stereo; 1 = do not split stereo
|
|
{
|
|
int spos=((Cores[core].InputPos+0xff)&0x100); //starting position of the free buffer
|
|
|
|
if(core==0)
|
|
ADMA4LogWrite(Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400);
|
|
else
|
|
ADMA7LogWrite(Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400);
|
|
|
|
if(mode)
|
|
{
|
|
//hacky :p
|
|
|
|
memcpy((Cores[core].ADMATempBuffer+(spos<<1)),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400);
|
|
Cores[core].MADR+=0x400;
|
|
Cores[core].InputDataLeft-=0x200;
|
|
Cores[core].InputDataProgress+=0x200;
|
|
}
|
|
else
|
|
{
|
|
memcpy((Cores[core].ADMATempBuffer+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200);
|
|
//memcpy((spu2mem+0x2000+(core<<10)+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200);
|
|
Cores[core].MADR+=0x200;
|
|
Cores[core].InputDataLeft-=0x100;
|
|
Cores[core].InputDataProgress+=0x100;
|
|
|
|
memcpy((Cores[core].ADMATempBuffer+spos+0x200),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200);
|
|
//memcpy((spu2mem+0x2200+(core<<10)+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200);
|
|
Cores[core].MADR+=0x200;
|
|
Cores[core].InputDataLeft-=0x100;
|
|
Cores[core].InputDataProgress+=0x100;
|
|
}
|
|
// See ReadInput at mixer.cpp for explanation on the commented out lines
|
|
//
|
|
}
|
|
|
|
void StartADMAWrite(int core,u16 *pMem, u32 sz)
|
|
{
|
|
int size=(sz)&(~511);
|
|
if(MsgAutoDMA()) ConLog(" * SPU2: DMA%c AutoDMA Transfer of %d bytes to %x (%02x %x %04x).\n",(core==0)?'4':'7',size<<1,Cores[core].TSA,Cores[core].DMABits,Cores[core].AutoDMACtrl,(~Cores[core].Regs.ATTR)&0x7fff);
|
|
|
|
Cores[core].InputDataProgress=0;
|
|
if((Cores[core].AutoDMACtrl&(core+1))==0)
|
|
{
|
|
Cores[core].TSA=0x2000+(core<<10);
|
|
Cores[core].DMAICounter=size;
|
|
}
|
|
else if(size>=512)
|
|
{
|
|
Cores[core].InputDataLeft=size;
|
|
if(Cores[core].AdmaInProgress==0)
|
|
{
|
|
#ifdef PCM24_S1_INTERLEAVE
|
|
if((core==1)&&((PlayMode&8)==8))
|
|
{
|
|
AutoDMAReadBuffer(core,1);
|
|
}
|
|
else
|
|
{
|
|
AutoDMAReadBuffer(core,0);
|
|
}
|
|
#else
|
|
if(((PlayMode&4)==4)&&(core==0))
|
|
Cores[0].InputPos=0;
|
|
|
|
AutoDMAReadBuffer(core,0);
|
|
#endif
|
|
|
|
if(size==512)
|
|
Cores[core].DMAICounter=size;
|
|
}
|
|
|
|
Cores[core].AdmaInProgress=1;
|
|
}
|
|
else
|
|
{
|
|
Cores[core].InputDataLeft=0;
|
|
Cores[core].DMAICounter=1;
|
|
}
|
|
Cores[core].TADR=Cores[core].MADR+(size<<1);
|
|
}
|
|
|
|
void DoDMAWrite(int core,u16 *pMem,u32 size)
|
|
{
|
|
u32 i;
|
|
|
|
{
|
|
// Perform an alignment check.
|
|
// Not really important. Everything should work regardless,
|
|
// but it could be indicative of an emulation foopah elsewhere.
|
|
|
|
uptr pa = ((uptr)pMem)&7;
|
|
uptr pm = Cores[core].TSA&0x7;
|
|
|
|
if( pa )
|
|
{
|
|
fprintf(stderr, "* SPU2 DMA Write > Missaligned SOURCE! Core: %d TSA: 0x%x TDA: 0x%x Size: 0x%x\n", core, Cores[core].TSA, Cores[core].TDA, size);
|
|
}
|
|
|
|
if( pm )
|
|
{
|
|
fprintf(stderr, "* SPU2 DMA Write > Missaligned TARGET! Core: %d TSA: 0x%x TDA: 0x%x Size: 0x%x\n", core, Cores[core].TSA, Cores[core].TDA, size );
|
|
}
|
|
}
|
|
|
|
|
|
if(core==0)
|
|
DMA4LogWrite(pMem,size<<1);
|
|
else
|
|
DMA7LogWrite(pMem,size<<1);
|
|
|
|
if(MsgDMA()) ConLog(" * SPU2: DMA%c Transfer of %d bytes to %x (%02x %x %04x).\n",(core==0)?'4':'7',size<<1,Cores[core].TSA,Cores[core].DMABits,Cores[core].AutoDMACtrl,(~Cores[core].Regs.ATTR)&0x7fff);
|
|
|
|
// split the DMA copy into two chunks if needed.
|
|
|
|
// Instead of checking the adpcm cache for every word, we check for every block.
|
|
// That way we can use the optimized fast write instruction to commit the memory.
|
|
|
|
Cores[core].TDA = Cores[core].TSA & 0xfffff;
|
|
|
|
u32 buff1end = Cores[core].TDA + size;
|
|
s32 buff2end = buff1end - 0xfffff;
|
|
if( buff2end > 0 )
|
|
buff1end = 0xfffff;
|
|
|
|
{
|
|
u32 nexta = Cores[core].TDA >> 3; // next address in 8 word blocks
|
|
const u32 leftsidebit = nexta & 31;
|
|
u32 rightsidebit; // assigned later
|
|
nexta >>= 5;
|
|
|
|
// Left side remainder:
|
|
// this produces a bitmask of the left side remainder of the cache flags:
|
|
pcm_cache_flags[nexta] &= (1ul << leftsidebit)-1;
|
|
|
|
// middle run!
|
|
// Traverse from start to finish in 8*32 word blocks,
|
|
// and clear all the the pcm cache flags for each block.
|
|
|
|
const u32 buff1size = (buff1end-Cores[core].TDA);
|
|
memcpy( GetMemPtr( Cores[core].TDA ), pMem, buff1size*2 );
|
|
//for(; Cores[core].TDA<buff1end; ++Cores[core].TDA, ++pMem)
|
|
// *GetMemPtr( Cores[core].TDA ) = *pMem;
|
|
|
|
buff1end >>= (3+5); // 8 words per block, 32 blocks per int.
|
|
memset( &pcm_cache_flags[nexta], 0, sizeof( u32 ) * (buff1end-nexta) );
|
|
|
|
if( buff2end > 0 )
|
|
{
|
|
// second branch needs cleared:
|
|
// It starts at the beginning of memory and moves forward to buff2end
|
|
|
|
const u32 endpt2 = buff2end >> (3+5); // 8 words per block, 32 blocks per int.
|
|
memset( pcm_cache_flags, 0, sizeof( u32 ) * endpt2 );
|
|
|
|
memcpy( GetMemPtr( 0 ), &pMem[buff1size], buff2end*2 );
|
|
//for(Cores[core].TDA=0; Cores[core].TDA<(u32)buff2end; ++Cores[core].TDA, ++pMem)
|
|
// *GetMemPtr( Cores[core].TDA ) = *pMem;
|
|
|
|
rightsidebit = buff2end >> 3;
|
|
nexta = endpt2;
|
|
|
|
if(Cores[core].IRQEnable)
|
|
{
|
|
// Flag interrupt?
|
|
// If IRQA occurs between start and dest, flag it.
|
|
// Since the buffer wraps, the conditional might seem odd, but it works.
|
|
|
|
if( ( Cores[core].IRQA >= Cores[core].TDA ) ||
|
|
( Cores[core].IRQA <= buff2end ) )
|
|
{
|
|
Spdif.Info=4<<core;
|
|
SetIrqCall();
|
|
}
|
|
}
|
|
|
|
Cores[core].TDA = buff2end;
|
|
}
|
|
else
|
|
{
|
|
rightsidebit = buff1end >> 3;
|
|
nexta = buff1end;
|
|
|
|
Cores[core].TDA = buff1end;
|
|
|
|
if(Cores[core].IRQEnable)
|
|
{
|
|
// Flag interrupt?
|
|
// If IRQA occurs between start and dest, flag it:
|
|
|
|
if( ( Cores[core].IRQA >= Cores[core].TSA ) &&
|
|
( Cores[core].IRQA <= Cores[core].TDA ) )
|
|
{
|
|
Spdif.Info=4<<core;
|
|
SetIrqCall();
|
|
}
|
|
}
|
|
}
|
|
|
|
// clear the right-side remainder:
|
|
pcm_cache_flags[nexta] &= ~((1ul << (32-(rightsidebit&31)))-1);
|
|
}
|
|
|
|
//Cores[core].TDA=Cores[core].TSA+size;
|
|
Cores[core].TSA=Cores[core].TDA&0xFFFF0;
|
|
Cores[core].DMAICounter=size;
|
|
Cores[core].TADR=Cores[core].MADR+(size<<1);
|
|
|
|
|
|
}
|
|
|
|
void SPU2readDMA(int core, u16* pMem, u32 size)
|
|
{
|
|
if(hasPtr) TimeUpdate(*cPtr,1);
|
|
|
|
u32 i;
|
|
Cores[core].TSA&=~7;
|
|
Cores[core].TDA=Cores[core].TSA;
|
|
for (i=0;i<size;i++)
|
|
pMem[i]=DmaRead(core);
|
|
i=Cores[core].TSA;
|
|
Cores[core].TDA=Cores[core].TSA+size+0x1f;
|
|
Cores[core].TSA=Cores[core].TDA&0xFFFFF;
|
|
if((Cores[core].TDA>0xFFFFF)||((Cores[core].TSA<=Cores[core].IRQA)&&(i>=Cores[core].IRQA))) {
|
|
if(Cores[core].IRQEnable)
|
|
{
|
|
Spdif.Info=4<<core;
|
|
SetIrqCall();
|
|
}
|
|
}
|
|
Cores[core].DMAICounter=size;
|
|
Cores[core].Regs.STATX &= ~0x80;
|
|
//Cores[core].Regs.ATTR |= 0x30;
|
|
Cores[core].TADR=Cores[core].MADR+(size<<1);
|
|
|
|
}
|
|
|
|
void SPU2writeDMA(int core, u16* pMem, u32 size)
|
|
{
|
|
if(hasPtr) TimeUpdate(*cPtr,1);
|
|
|
|
Cores[core].DMAPtr=pMem;
|
|
|
|
if(size<2) {
|
|
//if(dma7callback) dma7callback();
|
|
Cores[core].Regs.STATX &= ~0x80;
|
|
//Cores[core].Regs.ATTR |= 0x30;
|
|
Cores[core].DMAICounter=1;
|
|
|
|
return;
|
|
}
|
|
|
|
#ifndef PUBLIC
|
|
DebugCores[core].lastsize=size;
|
|
#endif
|
|
Cores[core].TSA&=~7;
|
|
|
|
bool adma_enable = ((Cores[core].AutoDMACtrl&(core+1))==(core+1));
|
|
|
|
if(adma_enable)
|
|
{
|
|
Cores[core].TSA&=0x1fff;
|
|
StartADMAWrite(core,pMem,size);
|
|
}
|
|
else
|
|
{
|
|
DoDMAWrite(core,pMem,size);
|
|
}
|
|
Cores[core].Regs.STATX &= ~0x80;
|
|
//Cores[core].Regs.ATTR |= 0x30;
|
|
}
|
|
|
|
u32 CALLBACK SPU2ReadMemAddr(int core)
|
|
{
|
|
return Cores[core].MADR;
|
|
}
|
|
void CALLBACK SPU2WriteMemAddr(int core,u32 value)
|
|
{
|
|
Cores[core].MADR=value;
|
|
}
|
|
|
|
void CALLBACK SPU2setDMABaseAddr(uptr baseaddr)
|
|
{
|
|
DMABaseAddr = (u16*)baseaddr;
|
|
}
|
|
|
|
void CALLBACK SPU2readDMA4Mem(u16 *pMem, u32 size) { //size now in 16bit units
|
|
FileLog("[%10d] SPU2 readDMA4Mem size %x\n",Cycles, size<<1);
|
|
SPU2readDMA(0,pMem,size);
|
|
}
|
|
|
|
void CALLBACK SPU2writeDMA4Mem(u16* pMem, u32 size) { //size now in 16bit units
|
|
FileLog("[%10d] SPU2 writeDMA4Mem size %x at address %x\n",Cycles, size<<1, Cores[0].TSA);
|
|
#ifdef S2R_ENABLE
|
|
if(!replay_mode)
|
|
s2r_writedma4(Cycles,pMem,size);
|
|
#endif
|
|
SPU2writeDMA(0,pMem,size);
|
|
}
|
|
|
|
void CALLBACK SPU2interruptDMA4() {
|
|
FileLog("[%10d] SPU2 interruptDMA4\n",Cycles);
|
|
Cores[0].Regs.STATX |= 0x80;
|
|
//Cores[0].Regs.ATTR &= ~0x30;
|
|
}
|
|
|
|
void CALLBACK SPU2readDMA7Mem(u16* pMem, u32 size) {
|
|
FileLog("[%10d] SPU2 readDMA7Mem size %x\n",Cycles, size<<1);
|
|
|
|
SPU2readDMA(1,pMem,size);
|
|
}
|
|
|
|
void CALLBACK SPU2writeDMA7Mem(u16* pMem, u32 size) {
|
|
FileLog("[%10d] SPU2 writeDMA7Mem size %x at address %x\n",Cycles, size<<1, Cores[1].TSA);
|
|
#ifdef S2R_ENABLE
|
|
if(!replay_mode)
|
|
s2r_writedma7(Cycles,pMem,size);
|
|
#endif
|
|
SPU2writeDMA(1,pMem,size);
|
|
}
|
|
|
|
void CALLBACK SPU2interruptDMA7() {
|
|
FileLog("[%10d] SPU2 interruptDMA7\n",Cycles);
|
|
Cores[1].Regs.STATX |= 0x80;
|
|
//Cores[1].Regs.ATTR &= ~0x30;
|
|
}
|
|
|